Home | History | Annotate | Download | only in CodeGen
      1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Objective-C code as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CGDebugInfo.h"
     15 #include "CGObjCRuntime.h"
     16 #include "CodeGenFunction.h"
     17 #include "CodeGenModule.h"
     18 #include "TargetInfo.h"
     19 #include "clang/AST/ASTContext.h"
     20 #include "clang/AST/DeclObjC.h"
     21 #include "clang/AST/StmtObjC.h"
     22 #include "clang/Basic/Diagnostic.h"
     23 #include "clang/CodeGen/CGFunctionInfo.h"
     24 #include "llvm/ADT/STLExtras.h"
     25 #include "llvm/IR/CallSite.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/InlineAsm.h"
     28 using namespace clang;
     29 using namespace CodeGen;
     30 
     31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
     32 static TryEmitResult
     33 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
     34 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
     35                                       QualType ET,
     36                                       const ObjCMethodDecl *Method,
     37                                       RValue Result);
     38 
     39 /// Given the address of a variable of pointer type, find the correct
     40 /// null to store into it.
     41 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
     42   llvm::Type *type =
     43     cast<llvm::PointerType>(addr->getType())->getElementType();
     44   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
     45 }
     46 
     47 /// Emits an instance of NSConstantString representing the object.
     48 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
     49 {
     50   llvm::Constant *C =
     51       CGM.getObjCRuntime().GenerateConstantString(E->getString());
     52   // FIXME: This bitcast should just be made an invariant on the Runtime.
     53   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
     54 }
     55 
     56 /// EmitObjCBoxedExpr - This routine generates code to call
     57 /// the appropriate expression boxing method. This will either be
     58 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:].
     59 ///
     60 llvm::Value *
     61 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
     62   // Generate the correct selector for this literal's concrete type.
     63   const Expr *SubExpr = E->getSubExpr();
     64   // Get the method.
     65   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
     66   assert(BoxingMethod && "BoxingMethod is null");
     67   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
     68   Selector Sel = BoxingMethod->getSelector();
     69 
     70   // Generate a reference to the class pointer, which will be the receiver.
     71   // Assumes that the method was introduced in the class that should be
     72   // messaged (avoids pulling it out of the result type).
     73   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
     74   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
     75   llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
     76 
     77   const ParmVarDecl *argDecl = *BoxingMethod->param_begin();
     78   QualType ArgQT = argDecl->getType().getUnqualifiedType();
     79   RValue RV = EmitAnyExpr(SubExpr);
     80   CallArgList Args;
     81   Args.add(RV, ArgQT);
     82 
     83   RValue result = Runtime.GenerateMessageSend(
     84       *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
     85       Args, ClassDecl, BoxingMethod);
     86   return Builder.CreateBitCast(result.getScalarVal(),
     87                                ConvertType(E->getType()));
     88 }
     89 
     90 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
     91                                     const ObjCMethodDecl *MethodWithObjects) {
     92   ASTContext &Context = CGM.getContext();
     93   const ObjCDictionaryLiteral *DLE = nullptr;
     94   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
     95   if (!ALE)
     96     DLE = cast<ObjCDictionaryLiteral>(E);
     97 
     98   // Compute the type of the array we're initializing.
     99   uint64_t NumElements =
    100     ALE ? ALE->getNumElements() : DLE->getNumElements();
    101   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
    102                             NumElements);
    103   QualType ElementType = Context.getObjCIdType().withConst();
    104   QualType ElementArrayType
    105     = Context.getConstantArrayType(ElementType, APNumElements,
    106                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
    107 
    108   // Allocate the temporary array(s).
    109   llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
    110   llvm::Value *Keys = nullptr;
    111   if (DLE)
    112     Keys = CreateMemTemp(ElementArrayType, "keys");
    113 
    114   // In ARC, we may need to do extra work to keep all the keys and
    115   // values alive until after the call.
    116   SmallVector<llvm::Value *, 16> NeededObjects;
    117   bool TrackNeededObjects =
    118     (getLangOpts().ObjCAutoRefCount &&
    119     CGM.getCodeGenOpts().OptimizationLevel != 0);
    120 
    121   // Perform the actual initialialization of the array(s).
    122   for (uint64_t i = 0; i < NumElements; i++) {
    123     if (ALE) {
    124       // Emit the element and store it to the appropriate array slot.
    125       const Expr *Rhs = ALE->getElement(i);
    126       LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
    127                                    ElementType,
    128                                    Context.getTypeAlignInChars(Rhs->getType()),
    129                                    Context);
    130 
    131       llvm::Value *value = EmitScalarExpr(Rhs);
    132       EmitStoreThroughLValue(RValue::get(value), LV, true);
    133       if (TrackNeededObjects) {
    134         NeededObjects.push_back(value);
    135       }
    136     } else {
    137       // Emit the key and store it to the appropriate array slot.
    138       const Expr *Key = DLE->getKeyValueElement(i).Key;
    139       LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
    140                                       ElementType,
    141                                     Context.getTypeAlignInChars(Key->getType()),
    142                                       Context);
    143       llvm::Value *keyValue = EmitScalarExpr(Key);
    144       EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
    145 
    146       // Emit the value and store it to the appropriate array slot.
    147       const Expr *Value = DLE->getKeyValueElement(i).Value;
    148       LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
    149                                         ElementType,
    150                                   Context.getTypeAlignInChars(Value->getType()),
    151                                         Context);
    152       llvm::Value *valueValue = EmitScalarExpr(Value);
    153       EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
    154       if (TrackNeededObjects) {
    155         NeededObjects.push_back(keyValue);
    156         NeededObjects.push_back(valueValue);
    157       }
    158     }
    159   }
    160 
    161   // Generate the argument list.
    162   CallArgList Args;
    163   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
    164   const ParmVarDecl *argDecl = *PI++;
    165   QualType ArgQT = argDecl->getType().getUnqualifiedType();
    166   Args.add(RValue::get(Objects), ArgQT);
    167   if (DLE) {
    168     argDecl = *PI++;
    169     ArgQT = argDecl->getType().getUnqualifiedType();
    170     Args.add(RValue::get(Keys), ArgQT);
    171   }
    172   argDecl = *PI;
    173   ArgQT = argDecl->getType().getUnqualifiedType();
    174   llvm::Value *Count =
    175     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
    176   Args.add(RValue::get(Count), ArgQT);
    177 
    178   // Generate a reference to the class pointer, which will be the receiver.
    179   Selector Sel = MethodWithObjects->getSelector();
    180   QualType ResultType = E->getType();
    181   const ObjCObjectPointerType *InterfacePointerType
    182     = ResultType->getAsObjCInterfacePointerType();
    183   ObjCInterfaceDecl *Class
    184     = InterfacePointerType->getObjectType()->getInterface();
    185   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
    186   llvm::Value *Receiver = Runtime.GetClass(*this, Class);
    187 
    188   // Generate the message send.
    189   RValue result = Runtime.GenerateMessageSend(
    190       *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
    191       Receiver, Args, Class, MethodWithObjects);
    192 
    193   // The above message send needs these objects, but in ARC they are
    194   // passed in a buffer that is essentially __unsafe_unretained.
    195   // Therefore we must prevent the optimizer from releasing them until
    196   // after the call.
    197   if (TrackNeededObjects) {
    198     EmitARCIntrinsicUse(NeededObjects);
    199   }
    200 
    201   return Builder.CreateBitCast(result.getScalarVal(),
    202                                ConvertType(E->getType()));
    203 }
    204 
    205 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
    206   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
    207 }
    208 
    209 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
    210                                             const ObjCDictionaryLiteral *E) {
    211   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
    212 }
    213 
    214 /// Emit a selector.
    215 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
    216   // Untyped selector.
    217   // Note that this implementation allows for non-constant strings to be passed
    218   // as arguments to @selector().  Currently, the only thing preventing this
    219   // behaviour is the type checking in the front end.
    220   return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
    221 }
    222 
    223 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
    224   // FIXME: This should pass the Decl not the name.
    225   return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
    226 }
    227 
    228 /// \brief Adjust the type of the result of an Objective-C message send
    229 /// expression when the method has a related result type.
    230 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
    231                                       QualType ExpT,
    232                                       const ObjCMethodDecl *Method,
    233                                       RValue Result) {
    234   if (!Method)
    235     return Result;
    236 
    237   if (!Method->hasRelatedResultType() ||
    238       CGF.getContext().hasSameType(ExpT, Method->getReturnType()) ||
    239       !Result.isScalar())
    240     return Result;
    241 
    242   // We have applied a related result type. Cast the rvalue appropriately.
    243   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
    244                                                CGF.ConvertType(ExpT)));
    245 }
    246 
    247 /// Decide whether to extend the lifetime of the receiver of a
    248 /// returns-inner-pointer message.
    249 static bool
    250 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
    251   switch (message->getReceiverKind()) {
    252 
    253   // For a normal instance message, we should extend unless the
    254   // receiver is loaded from a variable with precise lifetime.
    255   case ObjCMessageExpr::Instance: {
    256     const Expr *receiver = message->getInstanceReceiver();
    257     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
    258     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
    259     receiver = ice->getSubExpr()->IgnoreParens();
    260 
    261     // Only __strong variables.
    262     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
    263       return true;
    264 
    265     // All ivars and fields have precise lifetime.
    266     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
    267       return false;
    268 
    269     // Otherwise, check for variables.
    270     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
    271     if (!declRef) return true;
    272     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
    273     if (!var) return true;
    274 
    275     // All variables have precise lifetime except local variables with
    276     // automatic storage duration that aren't specially marked.
    277     return (var->hasLocalStorage() &&
    278             !var->hasAttr<ObjCPreciseLifetimeAttr>());
    279   }
    280 
    281   case ObjCMessageExpr::Class:
    282   case ObjCMessageExpr::SuperClass:
    283     // It's never necessary for class objects.
    284     return false;
    285 
    286   case ObjCMessageExpr::SuperInstance:
    287     // We generally assume that 'self' lives throughout a method call.
    288     return false;
    289   }
    290 
    291   llvm_unreachable("invalid receiver kind");
    292 }
    293 
    294 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
    295                                             ReturnValueSlot Return) {
    296   // Only the lookup mechanism and first two arguments of the method
    297   // implementation vary between runtimes.  We can get the receiver and
    298   // arguments in generic code.
    299 
    300   bool isDelegateInit = E->isDelegateInitCall();
    301 
    302   const ObjCMethodDecl *method = E->getMethodDecl();
    303 
    304   // We don't retain the receiver in delegate init calls, and this is
    305   // safe because the receiver value is always loaded from 'self',
    306   // which we zero out.  We don't want to Block_copy block receivers,
    307   // though.
    308   bool retainSelf =
    309     (!isDelegateInit &&
    310      CGM.getLangOpts().ObjCAutoRefCount &&
    311      method &&
    312      method->hasAttr<NSConsumesSelfAttr>());
    313 
    314   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
    315   bool isSuperMessage = false;
    316   bool isClassMessage = false;
    317   ObjCInterfaceDecl *OID = nullptr;
    318   // Find the receiver
    319   QualType ReceiverType;
    320   llvm::Value *Receiver = nullptr;
    321   switch (E->getReceiverKind()) {
    322   case ObjCMessageExpr::Instance:
    323     ReceiverType = E->getInstanceReceiver()->getType();
    324     if (retainSelf) {
    325       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
    326                                                    E->getInstanceReceiver());
    327       Receiver = ter.getPointer();
    328       if (ter.getInt()) retainSelf = false;
    329     } else
    330       Receiver = EmitScalarExpr(E->getInstanceReceiver());
    331     break;
    332 
    333   case ObjCMessageExpr::Class: {
    334     ReceiverType = E->getClassReceiver();
    335     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
    336     assert(ObjTy && "Invalid Objective-C class message send");
    337     OID = ObjTy->getInterface();
    338     assert(OID && "Invalid Objective-C class message send");
    339     Receiver = Runtime.GetClass(*this, OID);
    340     isClassMessage = true;
    341     break;
    342   }
    343 
    344   case ObjCMessageExpr::SuperInstance:
    345     ReceiverType = E->getSuperType();
    346     Receiver = LoadObjCSelf();
    347     isSuperMessage = true;
    348     break;
    349 
    350   case ObjCMessageExpr::SuperClass:
    351     ReceiverType = E->getSuperType();
    352     Receiver = LoadObjCSelf();
    353     isSuperMessage = true;
    354     isClassMessage = true;
    355     break;
    356   }
    357 
    358   if (retainSelf)
    359     Receiver = EmitARCRetainNonBlock(Receiver);
    360 
    361   // In ARC, we sometimes want to "extend the lifetime"
    362   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
    363   // messages.
    364   if (getLangOpts().ObjCAutoRefCount && method &&
    365       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
    366       shouldExtendReceiverForInnerPointerMessage(E))
    367     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
    368 
    369   QualType ResultType = method ? method->getReturnType() : E->getType();
    370 
    371   CallArgList Args;
    372   EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
    373 
    374   // For delegate init calls in ARC, do an unsafe store of null into
    375   // self.  This represents the call taking direct ownership of that
    376   // value.  We have to do this after emitting the other call
    377   // arguments because they might also reference self, but we don't
    378   // have to worry about any of them modifying self because that would
    379   // be an undefined read and write of an object in unordered
    380   // expressions.
    381   if (isDelegateInit) {
    382     assert(getLangOpts().ObjCAutoRefCount &&
    383            "delegate init calls should only be marked in ARC");
    384 
    385     // Do an unsafe store of null into self.
    386     llvm::Value *selfAddr =
    387       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
    388     assert(selfAddr && "no self entry for a delegate init call?");
    389 
    390     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
    391   }
    392 
    393   RValue result;
    394   if (isSuperMessage) {
    395     // super is only valid in an Objective-C method
    396     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
    397     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
    398     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
    399                                               E->getSelector(),
    400                                               OMD->getClassInterface(),
    401                                               isCategoryImpl,
    402                                               Receiver,
    403                                               isClassMessage,
    404                                               Args,
    405                                               method);
    406   } else {
    407     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
    408                                          E->getSelector(),
    409                                          Receiver, Args, OID,
    410                                          method);
    411   }
    412 
    413   // For delegate init calls in ARC, implicitly store the result of
    414   // the call back into self.  This takes ownership of the value.
    415   if (isDelegateInit) {
    416     llvm::Value *selfAddr =
    417       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
    418     llvm::Value *newSelf = result.getScalarVal();
    419 
    420     // The delegate return type isn't necessarily a matching type; in
    421     // fact, it's quite likely to be 'id'.
    422     llvm::Type *selfTy =
    423       cast<llvm::PointerType>(selfAddr->getType())->getElementType();
    424     newSelf = Builder.CreateBitCast(newSelf, selfTy);
    425 
    426     Builder.CreateStore(newSelf, selfAddr);
    427   }
    428 
    429   return AdjustRelatedResultType(*this, E->getType(), method, result);
    430 }
    431 
    432 namespace {
    433 struct FinishARCDealloc : EHScopeStack::Cleanup {
    434   void Emit(CodeGenFunction &CGF, Flags flags) override {
    435     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
    436 
    437     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
    438     const ObjCInterfaceDecl *iface = impl->getClassInterface();
    439     if (!iface->getSuperClass()) return;
    440 
    441     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
    442 
    443     // Call [super dealloc] if we have a superclass.
    444     llvm::Value *self = CGF.LoadObjCSelf();
    445 
    446     CallArgList args;
    447     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
    448                                                       CGF.getContext().VoidTy,
    449                                                       method->getSelector(),
    450                                                       iface,
    451                                                       isCategory,
    452                                                       self,
    453                                                       /*is class msg*/ false,
    454                                                       args,
    455                                                       method);
    456   }
    457 };
    458 }
    459 
    460 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
    461 /// the LLVM function and sets the other context used by
    462 /// CodeGenFunction.
    463 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
    464                                       const ObjCContainerDecl *CD,
    465                                       SourceLocation StartLoc) {
    466   FunctionArgList args;
    467   // Check if we should generate debug info for this method.
    468   if (OMD->hasAttr<NoDebugAttr>())
    469     DebugInfo = nullptr; // disable debug info indefinitely for this function
    470 
    471   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
    472 
    473   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
    474   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
    475 
    476   args.push_back(OMD->getSelfDecl());
    477   args.push_back(OMD->getCmdDecl());
    478 
    479   for (const auto *PI : OMD->params())
    480     args.push_back(PI);
    481 
    482   CurGD = OMD;
    483 
    484   StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
    485                 OMD->getLocation(), StartLoc);
    486 
    487   // In ARC, certain methods get an extra cleanup.
    488   if (CGM.getLangOpts().ObjCAutoRefCount &&
    489       OMD->isInstanceMethod() &&
    490       OMD->getSelector().isUnarySelector()) {
    491     const IdentifierInfo *ident =
    492       OMD->getSelector().getIdentifierInfoForSlot(0);
    493     if (ident->isStr("dealloc"))
    494       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
    495   }
    496 }
    497 
    498 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
    499                                               LValue lvalue, QualType type);
    500 
    501 /// Generate an Objective-C method.  An Objective-C method is a C function with
    502 /// its pointer, name, and types registered in the class struture.
    503 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
    504   StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
    505   PGO.assignRegionCounters(OMD, CurFn);
    506   assert(isa<CompoundStmt>(OMD->getBody()));
    507   RegionCounter Cnt = getPGORegionCounter(OMD->getBody());
    508   Cnt.beginRegion(Builder);
    509   EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
    510   FinishFunction(OMD->getBodyRBrace());
    511   PGO.emitInstrumentationData();
    512   PGO.destroyRegionCounters();
    513 }
    514 
    515 /// emitStructGetterCall - Call the runtime function to load a property
    516 /// into the return value slot.
    517 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
    518                                  bool isAtomic, bool hasStrong) {
    519   ASTContext &Context = CGF.getContext();
    520 
    521   llvm::Value *src =
    522     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
    523                           ivar, 0).getAddress();
    524 
    525   // objc_copyStruct (ReturnValue, &structIvar,
    526   //                  sizeof (Type of Ivar), isAtomic, false);
    527   CallArgList args;
    528 
    529   llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
    530   args.add(RValue::get(dest), Context.VoidPtrTy);
    531 
    532   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
    533   args.add(RValue::get(src), Context.VoidPtrTy);
    534 
    535   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
    536   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
    537   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
    538   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
    539 
    540   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
    541   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
    542                                                       FunctionType::ExtInfo(),
    543                                                       RequiredArgs::All),
    544                fn, ReturnValueSlot(), args);
    545 }
    546 
    547 /// Determine whether the given architecture supports unaligned atomic
    548 /// accesses.  They don't have to be fast, just faster than a function
    549 /// call and a mutex.
    550 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
    551   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
    552   // currently supported by the backend.)
    553   return 0;
    554 }
    555 
    556 /// Return the maximum size that permits atomic accesses for the given
    557 /// architecture.
    558 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
    559                                         llvm::Triple::ArchType arch) {
    560   // ARM has 8-byte atomic accesses, but it's not clear whether we
    561   // want to rely on them here.
    562 
    563   // In the default case, just assume that any size up to a pointer is
    564   // fine given adequate alignment.
    565   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
    566 }
    567 
    568 namespace {
    569   class PropertyImplStrategy {
    570   public:
    571     enum StrategyKind {
    572       /// The 'native' strategy is to use the architecture's provided
    573       /// reads and writes.
    574       Native,
    575 
    576       /// Use objc_setProperty and objc_getProperty.
    577       GetSetProperty,
    578 
    579       /// Use objc_setProperty for the setter, but use expression
    580       /// evaluation for the getter.
    581       SetPropertyAndExpressionGet,
    582 
    583       /// Use objc_copyStruct.
    584       CopyStruct,
    585 
    586       /// The 'expression' strategy is to emit normal assignment or
    587       /// lvalue-to-rvalue expressions.
    588       Expression
    589     };
    590 
    591     StrategyKind getKind() const { return StrategyKind(Kind); }
    592 
    593     bool hasStrongMember() const { return HasStrong; }
    594     bool isAtomic() const { return IsAtomic; }
    595     bool isCopy() const { return IsCopy; }
    596 
    597     CharUnits getIvarSize() const { return IvarSize; }
    598     CharUnits getIvarAlignment() const { return IvarAlignment; }
    599 
    600     PropertyImplStrategy(CodeGenModule &CGM,
    601                          const ObjCPropertyImplDecl *propImpl);
    602 
    603   private:
    604     unsigned Kind : 8;
    605     unsigned IsAtomic : 1;
    606     unsigned IsCopy : 1;
    607     unsigned HasStrong : 1;
    608 
    609     CharUnits IvarSize;
    610     CharUnits IvarAlignment;
    611   };
    612 }
    613 
    614 /// Pick an implementation strategy for the given property synthesis.
    615 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
    616                                      const ObjCPropertyImplDecl *propImpl) {
    617   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
    618   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
    619 
    620   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
    621   IsAtomic = prop->isAtomic();
    622   HasStrong = false; // doesn't matter here.
    623 
    624   // Evaluate the ivar's size and alignment.
    625   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
    626   QualType ivarType = ivar->getType();
    627   std::tie(IvarSize, IvarAlignment) =
    628       CGM.getContext().getTypeInfoInChars(ivarType);
    629 
    630   // If we have a copy property, we always have to use getProperty/setProperty.
    631   // TODO: we could actually use setProperty and an expression for non-atomics.
    632   if (IsCopy) {
    633     Kind = GetSetProperty;
    634     return;
    635   }
    636 
    637   // Handle retain.
    638   if (setterKind == ObjCPropertyDecl::Retain) {
    639     // In GC-only, there's nothing special that needs to be done.
    640     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
    641       // fallthrough
    642 
    643     // In ARC, if the property is non-atomic, use expression emission,
    644     // which translates to objc_storeStrong.  This isn't required, but
    645     // it's slightly nicer.
    646     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
    647       // Using standard expression emission for the setter is only
    648       // acceptable if the ivar is __strong, which won't be true if
    649       // the property is annotated with __attribute__((NSObject)).
    650       // TODO: falling all the way back to objc_setProperty here is
    651       // just laziness, though;  we could still use objc_storeStrong
    652       // if we hacked it right.
    653       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
    654         Kind = Expression;
    655       else
    656         Kind = SetPropertyAndExpressionGet;
    657       return;
    658 
    659     // Otherwise, we need to at least use setProperty.  However, if
    660     // the property isn't atomic, we can use normal expression
    661     // emission for the getter.
    662     } else if (!IsAtomic) {
    663       Kind = SetPropertyAndExpressionGet;
    664       return;
    665 
    666     // Otherwise, we have to use both setProperty and getProperty.
    667     } else {
    668       Kind = GetSetProperty;
    669       return;
    670     }
    671   }
    672 
    673   // If we're not atomic, just use expression accesses.
    674   if (!IsAtomic) {
    675     Kind = Expression;
    676     return;
    677   }
    678 
    679   // Properties on bitfield ivars need to be emitted using expression
    680   // accesses even if they're nominally atomic.
    681   if (ivar->isBitField()) {
    682     Kind = Expression;
    683     return;
    684   }
    685 
    686   // GC-qualified or ARC-qualified ivars need to be emitted as
    687   // expressions.  This actually works out to being atomic anyway,
    688   // except for ARC __strong, but that should trigger the above code.
    689   if (ivarType.hasNonTrivialObjCLifetime() ||
    690       (CGM.getLangOpts().getGC() &&
    691        CGM.getContext().getObjCGCAttrKind(ivarType))) {
    692     Kind = Expression;
    693     return;
    694   }
    695 
    696   // Compute whether the ivar has strong members.
    697   if (CGM.getLangOpts().getGC())
    698     if (const RecordType *recordType = ivarType->getAs<RecordType>())
    699       HasStrong = recordType->getDecl()->hasObjectMember();
    700 
    701   // We can never access structs with object members with a native
    702   // access, because we need to use write barriers.  This is what
    703   // objc_copyStruct is for.
    704   if (HasStrong) {
    705     Kind = CopyStruct;
    706     return;
    707   }
    708 
    709   // Otherwise, this is target-dependent and based on the size and
    710   // alignment of the ivar.
    711 
    712   // If the size of the ivar is not a power of two, give up.  We don't
    713   // want to get into the business of doing compare-and-swaps.
    714   if (!IvarSize.isPowerOfTwo()) {
    715     Kind = CopyStruct;
    716     return;
    717   }
    718 
    719   llvm::Triple::ArchType arch =
    720     CGM.getTarget().getTriple().getArch();
    721 
    722   // Most architectures require memory to fit within a single cache
    723   // line, so the alignment has to be at least the size of the access.
    724   // Otherwise we have to grab a lock.
    725   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
    726     Kind = CopyStruct;
    727     return;
    728   }
    729 
    730   // If the ivar's size exceeds the architecture's maximum atomic
    731   // access size, we have to use CopyStruct.
    732   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
    733     Kind = CopyStruct;
    734     return;
    735   }
    736 
    737   // Otherwise, we can use native loads and stores.
    738   Kind = Native;
    739 }
    740 
    741 /// \brief Generate an Objective-C property getter function.
    742 ///
    743 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
    744 /// is illegal within a category.
    745 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
    746                                          const ObjCPropertyImplDecl *PID) {
    747   llvm::Constant *AtomicHelperFn =
    748     GenerateObjCAtomicGetterCopyHelperFunction(PID);
    749   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
    750   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
    751   assert(OMD && "Invalid call to generate getter (empty method)");
    752   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
    753 
    754   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
    755 
    756   FinishFunction();
    757 }
    758 
    759 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
    760   const Expr *getter = propImpl->getGetterCXXConstructor();
    761   if (!getter) return true;
    762 
    763   // Sema only makes only of these when the ivar has a C++ class type,
    764   // so the form is pretty constrained.
    765 
    766   // If the property has a reference type, we might just be binding a
    767   // reference, in which case the result will be a gl-value.  We should
    768   // treat this as a non-trivial operation.
    769   if (getter->isGLValue())
    770     return false;
    771 
    772   // If we selected a trivial copy-constructor, we're okay.
    773   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
    774     return (construct->getConstructor()->isTrivial());
    775 
    776   // The constructor might require cleanups (in which case it's never
    777   // trivial).
    778   assert(isa<ExprWithCleanups>(getter));
    779   return false;
    780 }
    781 
    782 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
    783 /// copy the ivar into the resturn slot.
    784 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
    785                                           llvm::Value *returnAddr,
    786                                           ObjCIvarDecl *ivar,
    787                                           llvm::Constant *AtomicHelperFn) {
    788   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
    789   //                           AtomicHelperFn);
    790   CallArgList args;
    791 
    792   // The 1st argument is the return Slot.
    793   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
    794 
    795   // The 2nd argument is the address of the ivar.
    796   llvm::Value *ivarAddr =
    797   CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
    798                         CGF.LoadObjCSelf(), ivar, 0).getAddress();
    799   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
    800   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
    801 
    802   // Third argument is the helper function.
    803   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
    804 
    805   llvm::Value *copyCppAtomicObjectFn =
    806     CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
    807   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
    808                                                       args,
    809                                                       FunctionType::ExtInfo(),
    810                                                       RequiredArgs::All),
    811                copyCppAtomicObjectFn, ReturnValueSlot(), args);
    812 }
    813 
    814 void
    815 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
    816                                         const ObjCPropertyImplDecl *propImpl,
    817                                         const ObjCMethodDecl *GetterMethodDecl,
    818                                         llvm::Constant *AtomicHelperFn) {
    819   // If there's a non-trivial 'get' expression, we just have to emit that.
    820   if (!hasTrivialGetExpr(propImpl)) {
    821     if (!AtomicHelperFn) {
    822       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
    823                      /*nrvo*/ nullptr);
    824       EmitReturnStmt(ret);
    825     }
    826     else {
    827       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
    828       emitCPPObjectAtomicGetterCall(*this, ReturnValue,
    829                                     ivar, AtomicHelperFn);
    830     }
    831     return;
    832   }
    833 
    834   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
    835   QualType propType = prop->getType();
    836   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
    837 
    838   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
    839 
    840   // Pick an implementation strategy.
    841   PropertyImplStrategy strategy(CGM, propImpl);
    842   switch (strategy.getKind()) {
    843   case PropertyImplStrategy::Native: {
    844     // We don't need to do anything for a zero-size struct.
    845     if (strategy.getIvarSize().isZero())
    846       return;
    847 
    848     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
    849 
    850     // Currently, all atomic accesses have to be through integer
    851     // types, so there's no point in trying to pick a prettier type.
    852     llvm::Type *bitcastType =
    853       llvm::Type::getIntNTy(getLLVMContext(),
    854                             getContext().toBits(strategy.getIvarSize()));
    855     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
    856 
    857     // Perform an atomic load.  This does not impose ordering constraints.
    858     llvm::Value *ivarAddr = LV.getAddress();
    859     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
    860     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
    861     load->setAlignment(strategy.getIvarAlignment().getQuantity());
    862     load->setAtomic(llvm::Unordered);
    863 
    864     // Store that value into the return address.  Doing this with a
    865     // bitcast is likely to produce some pretty ugly IR, but it's not
    866     // the *most* terrible thing in the world.
    867     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
    868 
    869     // Make sure we don't do an autorelease.
    870     AutoreleaseResult = false;
    871     return;
    872   }
    873 
    874   case PropertyImplStrategy::GetSetProperty: {
    875     llvm::Value *getPropertyFn =
    876       CGM.getObjCRuntime().GetPropertyGetFunction();
    877     if (!getPropertyFn) {
    878       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
    879       return;
    880     }
    881 
    882     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
    883     // FIXME: Can't this be simpler? This might even be worse than the
    884     // corresponding gcc code.
    885     llvm::Value *cmd =
    886       Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
    887     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
    888     llvm::Value *ivarOffset =
    889       EmitIvarOffset(classImpl->getClassInterface(), ivar);
    890 
    891     CallArgList args;
    892     args.add(RValue::get(self), getContext().getObjCIdType());
    893     args.add(RValue::get(cmd), getContext().getObjCSelType());
    894     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
    895     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
    896              getContext().BoolTy);
    897 
    898     // FIXME: We shouldn't need to get the function info here, the
    899     // runtime already should have computed it to build the function.
    900     llvm::Instruction *CallInstruction;
    901     RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args,
    902                                                        FunctionType::ExtInfo(),
    903                                                             RequiredArgs::All),
    904                          getPropertyFn, ReturnValueSlot(), args, nullptr,
    905                          &CallInstruction);
    906     if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
    907       call->setTailCall();
    908 
    909     // We need to fix the type here. Ivars with copy & retain are
    910     // always objects so we don't need to worry about complex or
    911     // aggregates.
    912     RV = RValue::get(Builder.CreateBitCast(
    913         RV.getScalarVal(),
    914         getTypes().ConvertType(getterMethod->getReturnType())));
    915 
    916     EmitReturnOfRValue(RV, propType);
    917 
    918     // objc_getProperty does an autorelease, so we should suppress ours.
    919     AutoreleaseResult = false;
    920 
    921     return;
    922   }
    923 
    924   case PropertyImplStrategy::CopyStruct:
    925     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
    926                          strategy.hasStrongMember());
    927     return;
    928 
    929   case PropertyImplStrategy::Expression:
    930   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
    931     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
    932 
    933     QualType ivarType = ivar->getType();
    934     switch (getEvaluationKind(ivarType)) {
    935     case TEK_Complex: {
    936       ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
    937       EmitStoreOfComplex(pair,
    938                          MakeNaturalAlignAddrLValue(ReturnValue, ivarType),
    939                          /*init*/ true);
    940       return;
    941     }
    942     case TEK_Aggregate:
    943       // The return value slot is guaranteed to not be aliased, but
    944       // that's not necessarily the same as "on the stack", so
    945       // we still potentially need objc_memmove_collectable.
    946       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
    947       return;
    948     case TEK_Scalar: {
    949       llvm::Value *value;
    950       if (propType->isReferenceType()) {
    951         value = LV.getAddress();
    952       } else {
    953         // We want to load and autoreleaseReturnValue ARC __weak ivars.
    954         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
    955           value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
    956 
    957         // Otherwise we want to do a simple load, suppressing the
    958         // final autorelease.
    959         } else {
    960           value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
    961           AutoreleaseResult = false;
    962         }
    963 
    964         value = Builder.CreateBitCast(value, ConvertType(propType));
    965         value = Builder.CreateBitCast(
    966             value, ConvertType(GetterMethodDecl->getReturnType()));
    967       }
    968 
    969       EmitReturnOfRValue(RValue::get(value), propType);
    970       return;
    971     }
    972     }
    973     llvm_unreachable("bad evaluation kind");
    974   }
    975 
    976   }
    977   llvm_unreachable("bad @property implementation strategy!");
    978 }
    979 
    980 /// emitStructSetterCall - Call the runtime function to store the value
    981 /// from the first formal parameter into the given ivar.
    982 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
    983                                  ObjCIvarDecl *ivar) {
    984   // objc_copyStruct (&structIvar, &Arg,
    985   //                  sizeof (struct something), true, false);
    986   CallArgList args;
    987 
    988   // The first argument is the address of the ivar.
    989   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
    990                                                 CGF.LoadObjCSelf(), ivar, 0)
    991     .getAddress();
    992   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
    993   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
    994 
    995   // The second argument is the address of the parameter variable.
    996   ParmVarDecl *argVar = *OMD->param_begin();
    997   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
    998                      VK_LValue, SourceLocation());
    999   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
   1000   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
   1001   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
   1002 
   1003   // The third argument is the sizeof the type.
   1004   llvm::Value *size =
   1005     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
   1006   args.add(RValue::get(size), CGF.getContext().getSizeType());
   1007 
   1008   // The fourth argument is the 'isAtomic' flag.
   1009   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
   1010 
   1011   // The fifth argument is the 'hasStrong' flag.
   1012   // FIXME: should this really always be false?
   1013   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
   1014 
   1015   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
   1016   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
   1017                                                       args,
   1018                                                       FunctionType::ExtInfo(),
   1019                                                       RequiredArgs::All),
   1020                copyStructFn, ReturnValueSlot(), args);
   1021 }
   1022 
   1023 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
   1024 /// the value from the first formal parameter into the given ivar, using
   1025 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
   1026 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
   1027                                           ObjCMethodDecl *OMD,
   1028                                           ObjCIvarDecl *ivar,
   1029                                           llvm::Constant *AtomicHelperFn) {
   1030   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
   1031   //                           AtomicHelperFn);
   1032   CallArgList args;
   1033 
   1034   // The first argument is the address of the ivar.
   1035   llvm::Value *ivarAddr =
   1036     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
   1037                           CGF.LoadObjCSelf(), ivar, 0).getAddress();
   1038   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
   1039   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
   1040 
   1041   // The second argument is the address of the parameter variable.
   1042   ParmVarDecl *argVar = *OMD->param_begin();
   1043   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
   1044                      VK_LValue, SourceLocation());
   1045   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
   1046   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
   1047   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
   1048 
   1049   // Third argument is the helper function.
   1050   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
   1051 
   1052   llvm::Value *copyCppAtomicObjectFn =
   1053     CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
   1054   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
   1055                                                       args,
   1056                                                       FunctionType::ExtInfo(),
   1057                                                       RequiredArgs::All),
   1058                copyCppAtomicObjectFn, ReturnValueSlot(), args);
   1059 }
   1060 
   1061 
   1062 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
   1063   Expr *setter = PID->getSetterCXXAssignment();
   1064   if (!setter) return true;
   1065 
   1066   // Sema only makes only of these when the ivar has a C++ class type,
   1067   // so the form is pretty constrained.
   1068 
   1069   // An operator call is trivial if the function it calls is trivial.
   1070   // This also implies that there's nothing non-trivial going on with
   1071   // the arguments, because operator= can only be trivial if it's a
   1072   // synthesized assignment operator and therefore both parameters are
   1073   // references.
   1074   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
   1075     if (const FunctionDecl *callee
   1076           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
   1077       if (callee->isTrivial())
   1078         return true;
   1079     return false;
   1080   }
   1081 
   1082   assert(isa<ExprWithCleanups>(setter));
   1083   return false;
   1084 }
   1085 
   1086 static bool UseOptimizedSetter(CodeGenModule &CGM) {
   1087   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
   1088     return false;
   1089   return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
   1090 }
   1091 
   1092 void
   1093 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
   1094                                         const ObjCPropertyImplDecl *propImpl,
   1095                                         llvm::Constant *AtomicHelperFn) {
   1096   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
   1097   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
   1098   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
   1099 
   1100   // Just use the setter expression if Sema gave us one and it's
   1101   // non-trivial.
   1102   if (!hasTrivialSetExpr(propImpl)) {
   1103     if (!AtomicHelperFn)
   1104       // If non-atomic, assignment is called directly.
   1105       EmitStmt(propImpl->getSetterCXXAssignment());
   1106     else
   1107       // If atomic, assignment is called via a locking api.
   1108       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
   1109                                     AtomicHelperFn);
   1110     return;
   1111   }
   1112 
   1113   PropertyImplStrategy strategy(CGM, propImpl);
   1114   switch (strategy.getKind()) {
   1115   case PropertyImplStrategy::Native: {
   1116     // We don't need to do anything for a zero-size struct.
   1117     if (strategy.getIvarSize().isZero())
   1118       return;
   1119 
   1120     llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
   1121 
   1122     LValue ivarLValue =
   1123       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
   1124     llvm::Value *ivarAddr = ivarLValue.getAddress();
   1125 
   1126     // Currently, all atomic accesses have to be through integer
   1127     // types, so there's no point in trying to pick a prettier type.
   1128     llvm::Type *bitcastType =
   1129       llvm::Type::getIntNTy(getLLVMContext(),
   1130                             getContext().toBits(strategy.getIvarSize()));
   1131     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
   1132 
   1133     // Cast both arguments to the chosen operation type.
   1134     argAddr = Builder.CreateBitCast(argAddr, bitcastType);
   1135     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
   1136 
   1137     // This bitcast load is likely to cause some nasty IR.
   1138     llvm::Value *load = Builder.CreateLoad(argAddr);
   1139 
   1140     // Perform an atomic store.  There are no memory ordering requirements.
   1141     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
   1142     store->setAlignment(strategy.getIvarAlignment().getQuantity());
   1143     store->setAtomic(llvm::Unordered);
   1144     return;
   1145   }
   1146 
   1147   case PropertyImplStrategy::GetSetProperty:
   1148   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
   1149 
   1150     llvm::Value *setOptimizedPropertyFn = nullptr;
   1151     llvm::Value *setPropertyFn = nullptr;
   1152     if (UseOptimizedSetter(CGM)) {
   1153       // 10.8 and iOS 6.0 code and GC is off
   1154       setOptimizedPropertyFn =
   1155         CGM.getObjCRuntime()
   1156            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
   1157                                             strategy.isCopy());
   1158       if (!setOptimizedPropertyFn) {
   1159         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
   1160         return;
   1161       }
   1162     }
   1163     else {
   1164       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
   1165       if (!setPropertyFn) {
   1166         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
   1167         return;
   1168       }
   1169     }
   1170 
   1171     // Emit objc_setProperty((id) self, _cmd, offset, arg,
   1172     //                       <is-atomic>, <is-copy>).
   1173     llvm::Value *cmd =
   1174       Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
   1175     llvm::Value *self =
   1176       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
   1177     llvm::Value *ivarOffset =
   1178       EmitIvarOffset(classImpl->getClassInterface(), ivar);
   1179     llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
   1180     arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
   1181 
   1182     CallArgList args;
   1183     args.add(RValue::get(self), getContext().getObjCIdType());
   1184     args.add(RValue::get(cmd), getContext().getObjCSelType());
   1185     if (setOptimizedPropertyFn) {
   1186       args.add(RValue::get(arg), getContext().getObjCIdType());
   1187       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
   1188       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
   1189                                                   FunctionType::ExtInfo(),
   1190                                                   RequiredArgs::All),
   1191                setOptimizedPropertyFn, ReturnValueSlot(), args);
   1192     } else {
   1193       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
   1194       args.add(RValue::get(arg), getContext().getObjCIdType());
   1195       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
   1196                getContext().BoolTy);
   1197       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
   1198                getContext().BoolTy);
   1199       // FIXME: We shouldn't need to get the function info here, the runtime
   1200       // already should have computed it to build the function.
   1201       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
   1202                                                   FunctionType::ExtInfo(),
   1203                                                   RequiredArgs::All),
   1204                setPropertyFn, ReturnValueSlot(), args);
   1205     }
   1206 
   1207     return;
   1208   }
   1209 
   1210   case PropertyImplStrategy::CopyStruct:
   1211     emitStructSetterCall(*this, setterMethod, ivar);
   1212     return;
   1213 
   1214   case PropertyImplStrategy::Expression:
   1215     break;
   1216   }
   1217 
   1218   // Otherwise, fake up some ASTs and emit a normal assignment.
   1219   ValueDecl *selfDecl = setterMethod->getSelfDecl();
   1220   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
   1221                    VK_LValue, SourceLocation());
   1222   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
   1223                             selfDecl->getType(), CK_LValueToRValue, &self,
   1224                             VK_RValue);
   1225   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
   1226                           SourceLocation(), SourceLocation(),
   1227                           &selfLoad, true, true);
   1228 
   1229   ParmVarDecl *argDecl = *setterMethod->param_begin();
   1230   QualType argType = argDecl->getType().getNonReferenceType();
   1231   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
   1232   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
   1233                            argType.getUnqualifiedType(), CK_LValueToRValue,
   1234                            &arg, VK_RValue);
   1235 
   1236   // The property type can differ from the ivar type in some situations with
   1237   // Objective-C pointer types, we can always bit cast the RHS in these cases.
   1238   // The following absurdity is just to ensure well-formed IR.
   1239   CastKind argCK = CK_NoOp;
   1240   if (ivarRef.getType()->isObjCObjectPointerType()) {
   1241     if (argLoad.getType()->isObjCObjectPointerType())
   1242       argCK = CK_BitCast;
   1243     else if (argLoad.getType()->isBlockPointerType())
   1244       argCK = CK_BlockPointerToObjCPointerCast;
   1245     else
   1246       argCK = CK_CPointerToObjCPointerCast;
   1247   } else if (ivarRef.getType()->isBlockPointerType()) {
   1248      if (argLoad.getType()->isBlockPointerType())
   1249       argCK = CK_BitCast;
   1250     else
   1251       argCK = CK_AnyPointerToBlockPointerCast;
   1252   } else if (ivarRef.getType()->isPointerType()) {
   1253     argCK = CK_BitCast;
   1254   }
   1255   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
   1256                            ivarRef.getType(), argCK, &argLoad,
   1257                            VK_RValue);
   1258   Expr *finalArg = &argLoad;
   1259   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
   1260                                            argLoad.getType()))
   1261     finalArg = &argCast;
   1262 
   1263 
   1264   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
   1265                         ivarRef.getType(), VK_RValue, OK_Ordinary,
   1266                         SourceLocation(), false);
   1267   EmitStmt(&assign);
   1268 }
   1269 
   1270 /// \brief Generate an Objective-C property setter function.
   1271 ///
   1272 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
   1273 /// is illegal within a category.
   1274 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
   1275                                          const ObjCPropertyImplDecl *PID) {
   1276   llvm::Constant *AtomicHelperFn =
   1277     GenerateObjCAtomicSetterCopyHelperFunction(PID);
   1278   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
   1279   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
   1280   assert(OMD && "Invalid call to generate setter (empty method)");
   1281   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
   1282 
   1283   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
   1284 
   1285   FinishFunction();
   1286 }
   1287 
   1288 namespace {
   1289   struct DestroyIvar : EHScopeStack::Cleanup {
   1290   private:
   1291     llvm::Value *addr;
   1292     const ObjCIvarDecl *ivar;
   1293     CodeGenFunction::Destroyer *destroyer;
   1294     bool useEHCleanupForArray;
   1295   public:
   1296     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
   1297                 CodeGenFunction::Destroyer *destroyer,
   1298                 bool useEHCleanupForArray)
   1299       : addr(addr), ivar(ivar), destroyer(destroyer),
   1300         useEHCleanupForArray(useEHCleanupForArray) {}
   1301 
   1302     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1303       LValue lvalue
   1304         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
   1305       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
   1306                       flags.isForNormalCleanup() && useEHCleanupForArray);
   1307     }
   1308   };
   1309 }
   1310 
   1311 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
   1312 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
   1313                                       llvm::Value *addr,
   1314                                       QualType type) {
   1315   llvm::Value *null = getNullForVariable(addr);
   1316   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
   1317 }
   1318 
   1319 static void emitCXXDestructMethod(CodeGenFunction &CGF,
   1320                                   ObjCImplementationDecl *impl) {
   1321   CodeGenFunction::RunCleanupsScope scope(CGF);
   1322 
   1323   llvm::Value *self = CGF.LoadObjCSelf();
   1324 
   1325   const ObjCInterfaceDecl *iface = impl->getClassInterface();
   1326   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
   1327        ivar; ivar = ivar->getNextIvar()) {
   1328     QualType type = ivar->getType();
   1329 
   1330     // Check whether the ivar is a destructible type.
   1331     QualType::DestructionKind dtorKind = type.isDestructedType();
   1332     if (!dtorKind) continue;
   1333 
   1334     CodeGenFunction::Destroyer *destroyer = nullptr;
   1335 
   1336     // Use a call to objc_storeStrong to destroy strong ivars, for the
   1337     // general benefit of the tools.
   1338     if (dtorKind == QualType::DK_objc_strong_lifetime) {
   1339       destroyer = destroyARCStrongWithStore;
   1340 
   1341     // Otherwise use the default for the destruction kind.
   1342     } else {
   1343       destroyer = CGF.getDestroyer(dtorKind);
   1344     }
   1345 
   1346     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
   1347 
   1348     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
   1349                                          cleanupKind & EHCleanup);
   1350   }
   1351 
   1352   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
   1353 }
   1354 
   1355 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
   1356                                                  ObjCMethodDecl *MD,
   1357                                                  bool ctor) {
   1358   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
   1359   StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
   1360 
   1361   // Emit .cxx_construct.
   1362   if (ctor) {
   1363     // Suppress the final autorelease in ARC.
   1364     AutoreleaseResult = false;
   1365 
   1366     for (const auto *IvarInit : IMP->inits()) {
   1367       FieldDecl *Field = IvarInit->getAnyMember();
   1368       ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
   1369       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
   1370                                     LoadObjCSelf(), Ivar, 0);
   1371       EmitAggExpr(IvarInit->getInit(),
   1372                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
   1373                                           AggValueSlot::DoesNotNeedGCBarriers,
   1374                                           AggValueSlot::IsNotAliased));
   1375     }
   1376     // constructor returns 'self'.
   1377     CodeGenTypes &Types = CGM.getTypes();
   1378     QualType IdTy(CGM.getContext().getObjCIdType());
   1379     llvm::Value *SelfAsId =
   1380       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
   1381     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
   1382 
   1383   // Emit .cxx_destruct.
   1384   } else {
   1385     emitCXXDestructMethod(*this, IMP);
   1386   }
   1387   FinishFunction();
   1388 }
   1389 
   1390 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
   1391   CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
   1392   it++; it++;
   1393   const ABIArgInfo &AI = it->info;
   1394   // FIXME. Is this sufficient check?
   1395   return (AI.getKind() == ABIArgInfo::Indirect);
   1396 }
   1397 
   1398 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
   1399   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
   1400     return false;
   1401   if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
   1402     return FDTTy->getDecl()->hasObjectMember();
   1403   return false;
   1404 }
   1405 
   1406 llvm::Value *CodeGenFunction::LoadObjCSelf() {
   1407   VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
   1408   DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
   1409                   Self->getType(), VK_LValue, SourceLocation());
   1410   return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
   1411 }
   1412 
   1413 QualType CodeGenFunction::TypeOfSelfObject() {
   1414   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
   1415   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
   1416   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
   1417     getContext().getCanonicalType(selfDecl->getType()));
   1418   return PTy->getPointeeType();
   1419 }
   1420 
   1421 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
   1422   llvm::Constant *EnumerationMutationFn =
   1423     CGM.getObjCRuntime().EnumerationMutationFunction();
   1424 
   1425   if (!EnumerationMutationFn) {
   1426     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
   1427     return;
   1428   }
   1429 
   1430   CGDebugInfo *DI = getDebugInfo();
   1431   if (DI)
   1432     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
   1433 
   1434   // The local variable comes into scope immediately.
   1435   AutoVarEmission variable = AutoVarEmission::invalid();
   1436   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
   1437     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
   1438 
   1439   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
   1440 
   1441   // Fast enumeration state.
   1442   QualType StateTy = CGM.getObjCFastEnumerationStateType();
   1443   llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
   1444   EmitNullInitialization(StatePtr, StateTy);
   1445 
   1446   // Number of elements in the items array.
   1447   static const unsigned NumItems = 16;
   1448 
   1449   // Fetch the countByEnumeratingWithState:objects:count: selector.
   1450   IdentifierInfo *II[] = {
   1451     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
   1452     &CGM.getContext().Idents.get("objects"),
   1453     &CGM.getContext().Idents.get("count")
   1454   };
   1455   Selector FastEnumSel =
   1456     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
   1457 
   1458   QualType ItemsTy =
   1459     getContext().getConstantArrayType(getContext().getObjCIdType(),
   1460                                       llvm::APInt(32, NumItems),
   1461                                       ArrayType::Normal, 0);
   1462   llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
   1463 
   1464   // Emit the collection pointer.  In ARC, we do a retain.
   1465   llvm::Value *Collection;
   1466   if (getLangOpts().ObjCAutoRefCount) {
   1467     Collection = EmitARCRetainScalarExpr(S.getCollection());
   1468 
   1469     // Enter a cleanup to do the release.
   1470     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
   1471   } else {
   1472     Collection = EmitScalarExpr(S.getCollection());
   1473   }
   1474 
   1475   // The 'continue' label needs to appear within the cleanup for the
   1476   // collection object.
   1477   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
   1478 
   1479   // Send it our message:
   1480   CallArgList Args;
   1481 
   1482   // The first argument is a temporary of the enumeration-state type.
   1483   Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
   1484 
   1485   // The second argument is a temporary array with space for NumItems
   1486   // pointers.  We'll actually be loading elements from the array
   1487   // pointer written into the control state; this buffer is so that
   1488   // collections that *aren't* backed by arrays can still queue up
   1489   // batches of elements.
   1490   Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
   1491 
   1492   // The third argument is the capacity of that temporary array.
   1493   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
   1494   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
   1495   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
   1496 
   1497   // Start the enumeration.
   1498   RValue CountRV =
   1499     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
   1500                                              getContext().UnsignedLongTy,
   1501                                              FastEnumSel,
   1502                                              Collection, Args);
   1503 
   1504   // The initial number of objects that were returned in the buffer.
   1505   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
   1506 
   1507   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
   1508   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
   1509 
   1510   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
   1511 
   1512   // If the limit pointer was zero to begin with, the collection is
   1513   // empty; skip all this. Set the branch weight assuming this has the same
   1514   // probability of exiting the loop as any other loop exit.
   1515   uint64_t EntryCount = PGO.getCurrentRegionCount();
   1516   RegionCounter Cnt = getPGORegionCounter(&S);
   1517   Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
   1518                        EmptyBB, LoopInitBB,
   1519                        PGO.createBranchWeights(EntryCount, Cnt.getCount()));
   1520 
   1521   // Otherwise, initialize the loop.
   1522   EmitBlock(LoopInitBB);
   1523 
   1524   // Save the initial mutations value.  This is the value at an
   1525   // address that was written into the state object by
   1526   // countByEnumeratingWithState:objects:count:.
   1527   llvm::Value *StateMutationsPtrPtr =
   1528     Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
   1529   llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
   1530                                                       "mutationsptr");
   1531 
   1532   llvm::Value *initialMutations =
   1533     Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
   1534 
   1535   // Start looping.  This is the point we return to whenever we have a
   1536   // fresh, non-empty batch of objects.
   1537   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
   1538   EmitBlock(LoopBodyBB);
   1539 
   1540   // The current index into the buffer.
   1541   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
   1542   index->addIncoming(zero, LoopInitBB);
   1543 
   1544   // The current buffer size.
   1545   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
   1546   count->addIncoming(initialBufferLimit, LoopInitBB);
   1547 
   1548   Cnt.beginRegion(Builder);
   1549 
   1550   // Check whether the mutations value has changed from where it was
   1551   // at start.  StateMutationsPtr should actually be invariant between
   1552   // refreshes.
   1553   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
   1554   llvm::Value *currentMutations
   1555     = Builder.CreateLoad(StateMutationsPtr, "statemutations");
   1556 
   1557   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
   1558   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
   1559 
   1560   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
   1561                        WasNotMutatedBB, WasMutatedBB);
   1562 
   1563   // If so, call the enumeration-mutation function.
   1564   EmitBlock(WasMutatedBB);
   1565   llvm::Value *V =
   1566     Builder.CreateBitCast(Collection,
   1567                           ConvertType(getContext().getObjCIdType()));
   1568   CallArgList Args2;
   1569   Args2.add(RValue::get(V), getContext().getObjCIdType());
   1570   // FIXME: We shouldn't need to get the function info here, the runtime already
   1571   // should have computed it to build the function.
   1572   EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
   1573                                                   FunctionType::ExtInfo(),
   1574                                                   RequiredArgs::All),
   1575            EnumerationMutationFn, ReturnValueSlot(), Args2);
   1576 
   1577   // Otherwise, or if the mutation function returns, just continue.
   1578   EmitBlock(WasNotMutatedBB);
   1579 
   1580   // Initialize the element variable.
   1581   RunCleanupsScope elementVariableScope(*this);
   1582   bool elementIsVariable;
   1583   LValue elementLValue;
   1584   QualType elementType;
   1585   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
   1586     // Initialize the variable, in case it's a __block variable or something.
   1587     EmitAutoVarInit(variable);
   1588 
   1589     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
   1590     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
   1591                         VK_LValue, SourceLocation());
   1592     elementLValue = EmitLValue(&tempDRE);
   1593     elementType = D->getType();
   1594     elementIsVariable = true;
   1595 
   1596     if (D->isARCPseudoStrong())
   1597       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
   1598   } else {
   1599     elementLValue = LValue(); // suppress warning
   1600     elementType = cast<Expr>(S.getElement())->getType();
   1601     elementIsVariable = false;
   1602   }
   1603   llvm::Type *convertedElementType = ConvertType(elementType);
   1604 
   1605   // Fetch the buffer out of the enumeration state.
   1606   // TODO: this pointer should actually be invariant between
   1607   // refreshes, which would help us do certain loop optimizations.
   1608   llvm::Value *StateItemsPtr =
   1609     Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
   1610   llvm::Value *EnumStateItems =
   1611     Builder.CreateLoad(StateItemsPtr, "stateitems");
   1612 
   1613   // Fetch the value at the current index from the buffer.
   1614   llvm::Value *CurrentItemPtr =
   1615     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
   1616   llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
   1617 
   1618   // Cast that value to the right type.
   1619   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
   1620                                       "currentitem");
   1621 
   1622   // Make sure we have an l-value.  Yes, this gets evaluated every
   1623   // time through the loop.
   1624   if (!elementIsVariable) {
   1625     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
   1626     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
   1627   } else {
   1628     EmitScalarInit(CurrentItem, elementLValue);
   1629   }
   1630 
   1631   // If we do have an element variable, this assignment is the end of
   1632   // its initialization.
   1633   if (elementIsVariable)
   1634     EmitAutoVarCleanups(variable);
   1635 
   1636   // Perform the loop body, setting up break and continue labels.
   1637   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
   1638   {
   1639     RunCleanupsScope Scope(*this);
   1640     EmitStmt(S.getBody());
   1641   }
   1642   BreakContinueStack.pop_back();
   1643 
   1644   // Destroy the element variable now.
   1645   elementVariableScope.ForceCleanup();
   1646 
   1647   // Check whether there are more elements.
   1648   EmitBlock(AfterBody.getBlock());
   1649 
   1650   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
   1651 
   1652   // First we check in the local buffer.
   1653   llvm::Value *indexPlusOne
   1654     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
   1655 
   1656   // If we haven't overrun the buffer yet, we can continue.
   1657   // Set the branch weights based on the simplifying assumption that this is
   1658   // like a while-loop, i.e., ignoring that the false branch fetches more
   1659   // elements and then returns to the loop.
   1660   Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
   1661                        LoopBodyBB, FetchMoreBB,
   1662                        PGO.createBranchWeights(Cnt.getCount(), EntryCount));
   1663 
   1664   index->addIncoming(indexPlusOne, AfterBody.getBlock());
   1665   count->addIncoming(count, AfterBody.getBlock());
   1666 
   1667   // Otherwise, we have to fetch more elements.
   1668   EmitBlock(FetchMoreBB);
   1669 
   1670   CountRV =
   1671     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
   1672                                              getContext().UnsignedLongTy,
   1673                                              FastEnumSel,
   1674                                              Collection, Args);
   1675 
   1676   // If we got a zero count, we're done.
   1677   llvm::Value *refetchCount = CountRV.getScalarVal();
   1678 
   1679   // (note that the message send might split FetchMoreBB)
   1680   index->addIncoming(zero, Builder.GetInsertBlock());
   1681   count->addIncoming(refetchCount, Builder.GetInsertBlock());
   1682 
   1683   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
   1684                        EmptyBB, LoopBodyBB);
   1685 
   1686   // No more elements.
   1687   EmitBlock(EmptyBB);
   1688 
   1689   if (!elementIsVariable) {
   1690     // If the element was not a declaration, set it to be null.
   1691 
   1692     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
   1693     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
   1694     EmitStoreThroughLValue(RValue::get(null), elementLValue);
   1695   }
   1696 
   1697   if (DI)
   1698     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
   1699 
   1700   // Leave the cleanup we entered in ARC.
   1701   if (getLangOpts().ObjCAutoRefCount)
   1702     PopCleanupBlock();
   1703 
   1704   EmitBlock(LoopEnd.getBlock());
   1705 }
   1706 
   1707 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
   1708   CGM.getObjCRuntime().EmitTryStmt(*this, S);
   1709 }
   1710 
   1711 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
   1712   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
   1713 }
   1714 
   1715 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
   1716                                               const ObjCAtSynchronizedStmt &S) {
   1717   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
   1718 }
   1719 
   1720 /// Produce the code for a CK_ARCProduceObject.  Just does a
   1721 /// primitive retain.
   1722 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
   1723                                                     llvm::Value *value) {
   1724   return EmitARCRetain(type, value);
   1725 }
   1726 
   1727 namespace {
   1728   struct CallObjCRelease : EHScopeStack::Cleanup {
   1729     CallObjCRelease(llvm::Value *object) : object(object) {}
   1730     llvm::Value *object;
   1731 
   1732     void Emit(CodeGenFunction &CGF, Flags flags) override {
   1733       // Releases at the end of the full-expression are imprecise.
   1734       CGF.EmitARCRelease(object, ARCImpreciseLifetime);
   1735     }
   1736   };
   1737 }
   1738 
   1739 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
   1740 /// release at the end of the full-expression.
   1741 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
   1742                                                     llvm::Value *object) {
   1743   // If we're in a conditional branch, we need to make the cleanup
   1744   // conditional.
   1745   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
   1746   return object;
   1747 }
   1748 
   1749 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
   1750                                                            llvm::Value *value) {
   1751   return EmitARCRetainAutorelease(type, value);
   1752 }
   1753 
   1754 /// Given a number of pointers, inform the optimizer that they're
   1755 /// being intrinsically used up until this point in the program.
   1756 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
   1757   llvm::Constant *&fn = CGM.getARCEntrypoints().clang_arc_use;
   1758   if (!fn) {
   1759     llvm::FunctionType *fnType =
   1760       llvm::FunctionType::get(CGM.VoidTy, ArrayRef<llvm::Type*>(), true);
   1761     fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
   1762   }
   1763 
   1764   // This isn't really a "runtime" function, but as an intrinsic it
   1765   // doesn't really matter as long as we align things up.
   1766   EmitNounwindRuntimeCall(fn, values);
   1767 }
   1768 
   1769 
   1770 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
   1771                                                 llvm::FunctionType *type,
   1772                                                 StringRef fnName) {
   1773   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
   1774 
   1775   if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
   1776     // If the target runtime doesn't naturally support ARC, emit weak
   1777     // references to the runtime support library.  We don't really
   1778     // permit this to fail, but we need a particular relocation style.
   1779     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
   1780       f->setLinkage(llvm::Function::ExternalWeakLinkage);
   1781     } else if (fnName == "objc_retain" || fnName  == "objc_release") {
   1782       // If we have Native ARC, set nonlazybind attribute for these APIs for
   1783       // performance.
   1784       f->addFnAttr(llvm::Attribute::NonLazyBind);
   1785     }
   1786   }
   1787 
   1788   return fn;
   1789 }
   1790 
   1791 /// Perform an operation having the signature
   1792 ///   i8* (i8*)
   1793 /// where a null input causes a no-op and returns null.
   1794 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
   1795                                           llvm::Value *value,
   1796                                           llvm::Constant *&fn,
   1797                                           StringRef fnName,
   1798                                           bool isTailCall = false) {
   1799   if (isa<llvm::ConstantPointerNull>(value)) return value;
   1800 
   1801   if (!fn) {
   1802     llvm::FunctionType *fnType =
   1803       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
   1804     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
   1805   }
   1806 
   1807   // Cast the argument to 'id'.
   1808   llvm::Type *origType = value->getType();
   1809   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
   1810 
   1811   // Call the function.
   1812   llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
   1813   if (isTailCall)
   1814     call->setTailCall();
   1815 
   1816   // Cast the result back to the original type.
   1817   return CGF.Builder.CreateBitCast(call, origType);
   1818 }
   1819 
   1820 /// Perform an operation having the following signature:
   1821 ///   i8* (i8**)
   1822 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
   1823                                          llvm::Value *addr,
   1824                                          llvm::Constant *&fn,
   1825                                          StringRef fnName) {
   1826   if (!fn) {
   1827     llvm::FunctionType *fnType =
   1828       llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
   1829     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
   1830   }
   1831 
   1832   // Cast the argument to 'id*'.
   1833   llvm::Type *origType = addr->getType();
   1834   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
   1835 
   1836   // Call the function.
   1837   llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr);
   1838 
   1839   // Cast the result back to a dereference of the original type.
   1840   if (origType != CGF.Int8PtrPtrTy)
   1841     result = CGF.Builder.CreateBitCast(result,
   1842                         cast<llvm::PointerType>(origType)->getElementType());
   1843 
   1844   return result;
   1845 }
   1846 
   1847 /// Perform an operation having the following signature:
   1848 ///   i8* (i8**, i8*)
   1849 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
   1850                                           llvm::Value *addr,
   1851                                           llvm::Value *value,
   1852                                           llvm::Constant *&fn,
   1853                                           StringRef fnName,
   1854                                           bool ignored) {
   1855   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
   1856            == value->getType());
   1857 
   1858   if (!fn) {
   1859     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
   1860 
   1861     llvm::FunctionType *fnType
   1862       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
   1863     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
   1864   }
   1865 
   1866   llvm::Type *origType = value->getType();
   1867 
   1868   llvm::Value *args[] = {
   1869     CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy),
   1870     CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
   1871   };
   1872   llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
   1873 
   1874   if (ignored) return nullptr;
   1875 
   1876   return CGF.Builder.CreateBitCast(result, origType);
   1877 }
   1878 
   1879 /// Perform an operation having the following signature:
   1880 ///   void (i8**, i8**)
   1881 static void emitARCCopyOperation(CodeGenFunction &CGF,
   1882                                  llvm::Value *dst,
   1883                                  llvm::Value *src,
   1884                                  llvm::Constant *&fn,
   1885                                  StringRef fnName) {
   1886   assert(dst->getType() == src->getType());
   1887 
   1888   if (!fn) {
   1889     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
   1890 
   1891     llvm::FunctionType *fnType
   1892       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
   1893     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
   1894   }
   1895 
   1896   llvm::Value *args[] = {
   1897     CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy),
   1898     CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy)
   1899   };
   1900   CGF.EmitNounwindRuntimeCall(fn, args);
   1901 }
   1902 
   1903 /// Produce the code to do a retain.  Based on the type, calls one of:
   1904 ///   call i8* \@objc_retain(i8* %value)
   1905 ///   call i8* \@objc_retainBlock(i8* %value)
   1906 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
   1907   if (type->isBlockPointerType())
   1908     return EmitARCRetainBlock(value, /*mandatory*/ false);
   1909   else
   1910     return EmitARCRetainNonBlock(value);
   1911 }
   1912 
   1913 /// Retain the given object, with normal retain semantics.
   1914 ///   call i8* \@objc_retain(i8* %value)
   1915 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
   1916   return emitARCValueOperation(*this, value,
   1917                                CGM.getARCEntrypoints().objc_retain,
   1918                                "objc_retain");
   1919 }
   1920 
   1921 /// Retain the given block, with _Block_copy semantics.
   1922 ///   call i8* \@objc_retainBlock(i8* %value)
   1923 ///
   1924 /// \param mandatory - If false, emit the call with metadata
   1925 /// indicating that it's okay for the optimizer to eliminate this call
   1926 /// if it can prove that the block never escapes except down the stack.
   1927 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
   1928                                                  bool mandatory) {
   1929   llvm::Value *result
   1930     = emitARCValueOperation(*this, value,
   1931                             CGM.getARCEntrypoints().objc_retainBlock,
   1932                             "objc_retainBlock");
   1933 
   1934   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
   1935   // tell the optimizer that it doesn't need to do this copy if the
   1936   // block doesn't escape, where being passed as an argument doesn't
   1937   // count as escaping.
   1938   if (!mandatory && isa<llvm::Instruction>(result)) {
   1939     llvm::CallInst *call
   1940       = cast<llvm::CallInst>(result->stripPointerCasts());
   1941     assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
   1942 
   1943     SmallVector<llvm::Value*,1> args;
   1944     call->setMetadata("clang.arc.copy_on_escape",
   1945                       llvm::MDNode::get(Builder.getContext(), args));
   1946   }
   1947 
   1948   return result;
   1949 }
   1950 
   1951 /// Retain the given object which is the result of a function call.
   1952 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
   1953 ///
   1954 /// Yes, this function name is one character away from a different
   1955 /// call with completely different semantics.
   1956 llvm::Value *
   1957 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
   1958   // Fetch the void(void) inline asm which marks that we're going to
   1959   // retain the autoreleased return value.
   1960   llvm::InlineAsm *&marker
   1961     = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
   1962   if (!marker) {
   1963     StringRef assembly
   1964       = CGM.getTargetCodeGenInfo()
   1965            .getARCRetainAutoreleasedReturnValueMarker();
   1966 
   1967     // If we have an empty assembly string, there's nothing to do.
   1968     if (assembly.empty()) {
   1969 
   1970     // Otherwise, at -O0, build an inline asm that we're going to call
   1971     // in a moment.
   1972     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
   1973       llvm::FunctionType *type =
   1974         llvm::FunctionType::get(VoidTy, /*variadic*/false);
   1975 
   1976       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
   1977 
   1978     // If we're at -O1 and above, we don't want to litter the code
   1979     // with this marker yet, so leave a breadcrumb for the ARC
   1980     // optimizer to pick up.
   1981     } else {
   1982       llvm::NamedMDNode *metadata =
   1983         CGM.getModule().getOrInsertNamedMetadata(
   1984                             "clang.arc.retainAutoreleasedReturnValueMarker");
   1985       assert(metadata->getNumOperands() <= 1);
   1986       if (metadata->getNumOperands() == 0) {
   1987         llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
   1988         metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
   1989       }
   1990     }
   1991   }
   1992 
   1993   // Call the marker asm if we made one, which we do only at -O0.
   1994   if (marker) Builder.CreateCall(marker);
   1995 
   1996   return emitARCValueOperation(*this, value,
   1997                      CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
   1998                                "objc_retainAutoreleasedReturnValue");
   1999 }
   2000 
   2001 /// Release the given object.
   2002 ///   call void \@objc_release(i8* %value)
   2003 void CodeGenFunction::EmitARCRelease(llvm::Value *value,
   2004                                      ARCPreciseLifetime_t precise) {
   2005   if (isa<llvm::ConstantPointerNull>(value)) return;
   2006 
   2007   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
   2008   if (!fn) {
   2009     llvm::FunctionType *fnType =
   2010       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
   2011     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
   2012   }
   2013 
   2014   // Cast the argument to 'id'.
   2015   value = Builder.CreateBitCast(value, Int8PtrTy);
   2016 
   2017   // Call objc_release.
   2018   llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
   2019 
   2020   if (precise == ARCImpreciseLifetime) {
   2021     SmallVector<llvm::Value*,1> args;
   2022     call->setMetadata("clang.imprecise_release",
   2023                       llvm::MDNode::get(Builder.getContext(), args));
   2024   }
   2025 }
   2026 
   2027 /// Destroy a __strong variable.
   2028 ///
   2029 /// At -O0, emit a call to store 'null' into the address;
   2030 /// instrumenting tools prefer this because the address is exposed,
   2031 /// but it's relatively cumbersome to optimize.
   2032 ///
   2033 /// At -O1 and above, just load and call objc_release.
   2034 ///
   2035 ///   call void \@objc_storeStrong(i8** %addr, i8* null)
   2036 void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr,
   2037                                            ARCPreciseLifetime_t precise) {
   2038   if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
   2039     llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType());
   2040     llvm::Value *null = llvm::ConstantPointerNull::get(
   2041                           cast<llvm::PointerType>(addrTy->getElementType()));
   2042     EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
   2043     return;
   2044   }
   2045 
   2046   llvm::Value *value = Builder.CreateLoad(addr);
   2047   EmitARCRelease(value, precise);
   2048 }
   2049 
   2050 /// Store into a strong object.  Always calls this:
   2051 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
   2052 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
   2053                                                      llvm::Value *value,
   2054                                                      bool ignored) {
   2055   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
   2056            == value->getType());
   2057 
   2058   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
   2059   if (!fn) {
   2060     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
   2061     llvm::FunctionType *fnType
   2062       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
   2063     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
   2064   }
   2065 
   2066   llvm::Value *args[] = {
   2067     Builder.CreateBitCast(addr, Int8PtrPtrTy),
   2068     Builder.CreateBitCast(value, Int8PtrTy)
   2069   };
   2070   EmitNounwindRuntimeCall(fn, args);
   2071 
   2072   if (ignored) return nullptr;
   2073   return value;
   2074 }
   2075 
   2076 /// Store into a strong object.  Sometimes calls this:
   2077 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
   2078 /// Other times, breaks it down into components.
   2079 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
   2080                                                  llvm::Value *newValue,
   2081                                                  bool ignored) {
   2082   QualType type = dst.getType();
   2083   bool isBlock = type->isBlockPointerType();
   2084 
   2085   // Use a store barrier at -O0 unless this is a block type or the
   2086   // lvalue is inadequately aligned.
   2087   if (shouldUseFusedARCCalls() &&
   2088       !isBlock &&
   2089       (dst.getAlignment().isZero() ||
   2090        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
   2091     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
   2092   }
   2093 
   2094   // Otherwise, split it out.
   2095 
   2096   // Retain the new value.
   2097   newValue = EmitARCRetain(type, newValue);
   2098 
   2099   // Read the old value.
   2100   llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
   2101 
   2102   // Store.  We do this before the release so that any deallocs won't
   2103   // see the old value.
   2104   EmitStoreOfScalar(newValue, dst);
   2105 
   2106   // Finally, release the old value.
   2107   EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
   2108 
   2109   return newValue;
   2110 }
   2111 
   2112 /// Autorelease the given object.
   2113 ///   call i8* \@objc_autorelease(i8* %value)
   2114 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
   2115   return emitARCValueOperation(*this, value,
   2116                                CGM.getARCEntrypoints().objc_autorelease,
   2117                                "objc_autorelease");
   2118 }
   2119 
   2120 /// Autorelease the given object.
   2121 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
   2122 llvm::Value *
   2123 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
   2124   return emitARCValueOperation(*this, value,
   2125                             CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
   2126                                "objc_autoreleaseReturnValue",
   2127                                /*isTailCall*/ true);
   2128 }
   2129 
   2130 /// Do a fused retain/autorelease of the given object.
   2131 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
   2132 llvm::Value *
   2133 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
   2134   return emitARCValueOperation(*this, value,
   2135                      CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
   2136                                "objc_retainAutoreleaseReturnValue",
   2137                                /*isTailCall*/ true);
   2138 }
   2139 
   2140 /// Do a fused retain/autorelease of the given object.
   2141 ///   call i8* \@objc_retainAutorelease(i8* %value)
   2142 /// or
   2143 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
   2144 ///   call i8* \@objc_autorelease(i8* %retain)
   2145 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
   2146                                                        llvm::Value *value) {
   2147   if (!type->isBlockPointerType())
   2148     return EmitARCRetainAutoreleaseNonBlock(value);
   2149 
   2150   if (isa<llvm::ConstantPointerNull>(value)) return value;
   2151 
   2152   llvm::Type *origType = value->getType();
   2153   value = Builder.CreateBitCast(value, Int8PtrTy);
   2154   value = EmitARCRetainBlock(value, /*mandatory*/ true);
   2155   value = EmitARCAutorelease(value);
   2156   return Builder.CreateBitCast(value, origType);
   2157 }
   2158 
   2159 /// Do a fused retain/autorelease of the given object.
   2160 ///   call i8* \@objc_retainAutorelease(i8* %value)
   2161 llvm::Value *
   2162 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
   2163   return emitARCValueOperation(*this, value,
   2164                                CGM.getARCEntrypoints().objc_retainAutorelease,
   2165                                "objc_retainAutorelease");
   2166 }
   2167 
   2168 /// i8* \@objc_loadWeak(i8** %addr)
   2169 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
   2170 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
   2171   return emitARCLoadOperation(*this, addr,
   2172                               CGM.getARCEntrypoints().objc_loadWeak,
   2173                               "objc_loadWeak");
   2174 }
   2175 
   2176 /// i8* \@objc_loadWeakRetained(i8** %addr)
   2177 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
   2178   return emitARCLoadOperation(*this, addr,
   2179                               CGM.getARCEntrypoints().objc_loadWeakRetained,
   2180                               "objc_loadWeakRetained");
   2181 }
   2182 
   2183 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
   2184 /// Returns %value.
   2185 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
   2186                                                llvm::Value *value,
   2187                                                bool ignored) {
   2188   return emitARCStoreOperation(*this, addr, value,
   2189                                CGM.getARCEntrypoints().objc_storeWeak,
   2190                                "objc_storeWeak", ignored);
   2191 }
   2192 
   2193 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
   2194 /// Returns %value.  %addr is known to not have a current weak entry.
   2195 /// Essentially equivalent to:
   2196 ///   *addr = nil; objc_storeWeak(addr, value);
   2197 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
   2198   // If we're initializing to null, just write null to memory; no need
   2199   // to get the runtime involved.  But don't do this if optimization
   2200   // is enabled, because accounting for this would make the optimizer
   2201   // much more complicated.
   2202   if (isa<llvm::ConstantPointerNull>(value) &&
   2203       CGM.getCodeGenOpts().OptimizationLevel == 0) {
   2204     Builder.CreateStore(value, addr);
   2205     return;
   2206   }
   2207 
   2208   emitARCStoreOperation(*this, addr, value,
   2209                         CGM.getARCEntrypoints().objc_initWeak,
   2210                         "objc_initWeak", /*ignored*/ true);
   2211 }
   2212 
   2213 /// void \@objc_destroyWeak(i8** %addr)
   2214 /// Essentially objc_storeWeak(addr, nil).
   2215 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
   2216   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
   2217   if (!fn) {
   2218     llvm::FunctionType *fnType =
   2219       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
   2220     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
   2221   }
   2222 
   2223   // Cast the argument to 'id*'.
   2224   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
   2225 
   2226   EmitNounwindRuntimeCall(fn, addr);
   2227 }
   2228 
   2229 /// void \@objc_moveWeak(i8** %dest, i8** %src)
   2230 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
   2231 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
   2232 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
   2233   emitARCCopyOperation(*this, dst, src,
   2234                        CGM.getARCEntrypoints().objc_moveWeak,
   2235                        "objc_moveWeak");
   2236 }
   2237 
   2238 /// void \@objc_copyWeak(i8** %dest, i8** %src)
   2239 /// Disregards the current value in %dest.  Essentially
   2240 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
   2241 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
   2242   emitARCCopyOperation(*this, dst, src,
   2243                        CGM.getARCEntrypoints().objc_copyWeak,
   2244                        "objc_copyWeak");
   2245 }
   2246 
   2247 /// Produce the code to do a objc_autoreleasepool_push.
   2248 ///   call i8* \@objc_autoreleasePoolPush(void)
   2249 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
   2250   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
   2251   if (!fn) {
   2252     llvm::FunctionType *fnType =
   2253       llvm::FunctionType::get(Int8PtrTy, false);
   2254     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
   2255   }
   2256 
   2257   return EmitNounwindRuntimeCall(fn);
   2258 }
   2259 
   2260 /// Produce the code to do a primitive release.
   2261 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
   2262 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
   2263   assert(value->getType() == Int8PtrTy);
   2264 
   2265   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
   2266   if (!fn) {
   2267     llvm::FunctionType *fnType =
   2268       llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
   2269 
   2270     // We don't want to use a weak import here; instead we should not
   2271     // fall into this path.
   2272     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
   2273   }
   2274 
   2275   // objc_autoreleasePoolPop can throw.
   2276   EmitRuntimeCallOrInvoke(fn, value);
   2277 }
   2278 
   2279 /// Produce the code to do an MRR version objc_autoreleasepool_push.
   2280 /// Which is: [[NSAutoreleasePool alloc] init];
   2281 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
   2282 /// init is declared as: - (id) init; in its NSObject super class.
   2283 ///
   2284 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
   2285   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
   2286   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
   2287   // [NSAutoreleasePool alloc]
   2288   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
   2289   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
   2290   CallArgList Args;
   2291   RValue AllocRV =
   2292     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
   2293                                 getContext().getObjCIdType(),
   2294                                 AllocSel, Receiver, Args);
   2295 
   2296   // [Receiver init]
   2297   Receiver = AllocRV.getScalarVal();
   2298   II = &CGM.getContext().Idents.get("init");
   2299   Selector InitSel = getContext().Selectors.getSelector(0, &II);
   2300   RValue InitRV =
   2301     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
   2302                                 getContext().getObjCIdType(),
   2303                                 InitSel, Receiver, Args);
   2304   return InitRV.getScalarVal();
   2305 }
   2306 
   2307 /// Produce the code to do a primitive release.
   2308 /// [tmp drain];
   2309 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
   2310   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
   2311   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
   2312   CallArgList Args;
   2313   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
   2314                               getContext().VoidTy, DrainSel, Arg, Args);
   2315 }
   2316 
   2317 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
   2318                                               llvm::Value *addr,
   2319                                               QualType type) {
   2320   CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
   2321 }
   2322 
   2323 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
   2324                                                 llvm::Value *addr,
   2325                                                 QualType type) {
   2326   CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
   2327 }
   2328 
   2329 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
   2330                                      llvm::Value *addr,
   2331                                      QualType type) {
   2332   CGF.EmitARCDestroyWeak(addr);
   2333 }
   2334 
   2335 namespace {
   2336   struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
   2337     llvm::Value *Token;
   2338 
   2339     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
   2340 
   2341     void Emit(CodeGenFunction &CGF, Flags flags) override {
   2342       CGF.EmitObjCAutoreleasePoolPop(Token);
   2343     }
   2344   };
   2345   struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
   2346     llvm::Value *Token;
   2347 
   2348     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
   2349 
   2350     void Emit(CodeGenFunction &CGF, Flags flags) override {
   2351       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
   2352     }
   2353   };
   2354 }
   2355 
   2356 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
   2357   if (CGM.getLangOpts().ObjCAutoRefCount)
   2358     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
   2359   else
   2360     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
   2361 }
   2362 
   2363 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
   2364                                                   LValue lvalue,
   2365                                                   QualType type) {
   2366   switch (type.getObjCLifetime()) {
   2367   case Qualifiers::OCL_None:
   2368   case Qualifiers::OCL_ExplicitNone:
   2369   case Qualifiers::OCL_Strong:
   2370   case Qualifiers::OCL_Autoreleasing:
   2371     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue,
   2372                                               SourceLocation()).getScalarVal(),
   2373                          false);
   2374 
   2375   case Qualifiers::OCL_Weak:
   2376     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
   2377                          true);
   2378   }
   2379 
   2380   llvm_unreachable("impossible lifetime!");
   2381 }
   2382 
   2383 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
   2384                                                   const Expr *e) {
   2385   e = e->IgnoreParens();
   2386   QualType type = e->getType();
   2387 
   2388   // If we're loading retained from a __strong xvalue, we can avoid
   2389   // an extra retain/release pair by zeroing out the source of this
   2390   // "move" operation.
   2391   if (e->isXValue() &&
   2392       !type.isConstQualified() &&
   2393       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
   2394     // Emit the lvalue.
   2395     LValue lv = CGF.EmitLValue(e);
   2396 
   2397     // Load the object pointer.
   2398     llvm::Value *result = CGF.EmitLoadOfLValue(lv,
   2399                                                SourceLocation()).getScalarVal();
   2400 
   2401     // Set the source pointer to NULL.
   2402     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
   2403 
   2404     return TryEmitResult(result, true);
   2405   }
   2406 
   2407   // As a very special optimization, in ARC++, if the l-value is the
   2408   // result of a non-volatile assignment, do a simple retain of the
   2409   // result of the call to objc_storeWeak instead of reloading.
   2410   if (CGF.getLangOpts().CPlusPlus &&
   2411       !type.isVolatileQualified() &&
   2412       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
   2413       isa<BinaryOperator>(e) &&
   2414       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
   2415     return TryEmitResult(CGF.EmitScalarExpr(e), false);
   2416 
   2417   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
   2418 }
   2419 
   2420 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
   2421                                            llvm::Value *value);
   2422 
   2423 /// Given that the given expression is some sort of call (which does
   2424 /// not return retained), emit a retain following it.
   2425 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
   2426   llvm::Value *value = CGF.EmitScalarExpr(e);
   2427   return emitARCRetainAfterCall(CGF, value);
   2428 }
   2429 
   2430 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
   2431                                            llvm::Value *value) {
   2432   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
   2433     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
   2434 
   2435     // Place the retain immediately following the call.
   2436     CGF.Builder.SetInsertPoint(call->getParent(),
   2437                                ++llvm::BasicBlock::iterator(call));
   2438     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
   2439 
   2440     CGF.Builder.restoreIP(ip);
   2441     return value;
   2442   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
   2443     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
   2444 
   2445     // Place the retain at the beginning of the normal destination block.
   2446     llvm::BasicBlock *BB = invoke->getNormalDest();
   2447     CGF.Builder.SetInsertPoint(BB, BB->begin());
   2448     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
   2449 
   2450     CGF.Builder.restoreIP(ip);
   2451     return value;
   2452 
   2453   // Bitcasts can arise because of related-result returns.  Rewrite
   2454   // the operand.
   2455   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
   2456     llvm::Value *operand = bitcast->getOperand(0);
   2457     operand = emitARCRetainAfterCall(CGF, operand);
   2458     bitcast->setOperand(0, operand);
   2459     return bitcast;
   2460 
   2461   // Generic fall-back case.
   2462   } else {
   2463     // Retain using the non-block variant: we never need to do a copy
   2464     // of a block that's been returned to us.
   2465     return CGF.EmitARCRetainNonBlock(value);
   2466   }
   2467 }
   2468 
   2469 /// Determine whether it might be important to emit a separate
   2470 /// objc_retain_block on the result of the given expression, or
   2471 /// whether it's okay to just emit it in a +1 context.
   2472 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
   2473   assert(e->getType()->isBlockPointerType());
   2474   e = e->IgnoreParens();
   2475 
   2476   // For future goodness, emit block expressions directly in +1
   2477   // contexts if we can.
   2478   if (isa<BlockExpr>(e))
   2479     return false;
   2480 
   2481   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
   2482     switch (cast->getCastKind()) {
   2483     // Emitting these operations in +1 contexts is goodness.
   2484     case CK_LValueToRValue:
   2485     case CK_ARCReclaimReturnedObject:
   2486     case CK_ARCConsumeObject:
   2487     case CK_ARCProduceObject:
   2488       return false;
   2489 
   2490     // These operations preserve a block type.
   2491     case CK_NoOp:
   2492     case CK_BitCast:
   2493       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
   2494 
   2495     // These operations are known to be bad (or haven't been considered).
   2496     case CK_AnyPointerToBlockPointerCast:
   2497     default:
   2498       return true;
   2499     }
   2500   }
   2501 
   2502   return true;
   2503 }
   2504 
   2505 /// Try to emit a PseudoObjectExpr at +1.
   2506 ///
   2507 /// This massively duplicates emitPseudoObjectRValue.
   2508 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
   2509                                                   const PseudoObjectExpr *E) {
   2510   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
   2511 
   2512   // Find the result expression.
   2513   const Expr *resultExpr = E->getResultExpr();
   2514   assert(resultExpr);
   2515   TryEmitResult result;
   2516 
   2517   for (PseudoObjectExpr::const_semantics_iterator
   2518          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
   2519     const Expr *semantic = *i;
   2520 
   2521     // If this semantic expression is an opaque value, bind it
   2522     // to the result of its source expression.
   2523     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
   2524       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
   2525       OVMA opaqueData;
   2526 
   2527       // If this semantic is the result of the pseudo-object
   2528       // expression, try to evaluate the source as +1.
   2529       if (ov == resultExpr) {
   2530         assert(!OVMA::shouldBindAsLValue(ov));
   2531         result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
   2532         opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
   2533 
   2534       // Otherwise, just bind it.
   2535       } else {
   2536         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
   2537       }
   2538       opaques.push_back(opaqueData);
   2539 
   2540     // Otherwise, if the expression is the result, evaluate it
   2541     // and remember the result.
   2542     } else if (semantic == resultExpr) {
   2543       result = tryEmitARCRetainScalarExpr(CGF, semantic);
   2544 
   2545     // Otherwise, evaluate the expression in an ignored context.
   2546     } else {
   2547       CGF.EmitIgnoredExpr(semantic);
   2548     }
   2549   }
   2550 
   2551   // Unbind all the opaques now.
   2552   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
   2553     opaques[i].unbind(CGF);
   2554 
   2555   return result;
   2556 }
   2557 
   2558 static TryEmitResult
   2559 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
   2560   // We should *never* see a nested full-expression here, because if
   2561   // we fail to emit at +1, our caller must not retain after we close
   2562   // out the full-expression.
   2563   assert(!isa<ExprWithCleanups>(e));
   2564 
   2565   // The desired result type, if it differs from the type of the
   2566   // ultimate opaque expression.
   2567   llvm::Type *resultType = nullptr;
   2568 
   2569   while (true) {
   2570     e = e->IgnoreParens();
   2571 
   2572     // There's a break at the end of this if-chain;  anything
   2573     // that wants to keep looping has to explicitly continue.
   2574     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
   2575       switch (ce->getCastKind()) {
   2576       // No-op casts don't change the type, so we just ignore them.
   2577       case CK_NoOp:
   2578         e = ce->getSubExpr();
   2579         continue;
   2580 
   2581       case CK_LValueToRValue: {
   2582         TryEmitResult loadResult
   2583           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
   2584         if (resultType) {
   2585           llvm::Value *value = loadResult.getPointer();
   2586           value = CGF.Builder.CreateBitCast(value, resultType);
   2587           loadResult.setPointer(value);
   2588         }
   2589         return loadResult;
   2590       }
   2591 
   2592       // These casts can change the type, so remember that and
   2593       // soldier on.  We only need to remember the outermost such
   2594       // cast, though.
   2595       case CK_CPointerToObjCPointerCast:
   2596       case CK_BlockPointerToObjCPointerCast:
   2597       case CK_AnyPointerToBlockPointerCast:
   2598       case CK_BitCast:
   2599         if (!resultType)
   2600           resultType = CGF.ConvertType(ce->getType());
   2601         e = ce->getSubExpr();
   2602         assert(e->getType()->hasPointerRepresentation());
   2603         continue;
   2604 
   2605       // For consumptions, just emit the subexpression and thus elide
   2606       // the retain/release pair.
   2607       case CK_ARCConsumeObject: {
   2608         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
   2609         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2610         return TryEmitResult(result, true);
   2611       }
   2612 
   2613       // Block extends are net +0.  Naively, we could just recurse on
   2614       // the subexpression, but actually we need to ensure that the
   2615       // value is copied as a block, so there's a little filter here.
   2616       case CK_ARCExtendBlockObject: {
   2617         llvm::Value *result; // will be a +0 value
   2618 
   2619         // If we can't safely assume the sub-expression will produce a
   2620         // block-copied value, emit the sub-expression at +0.
   2621         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
   2622           result = CGF.EmitScalarExpr(ce->getSubExpr());
   2623 
   2624         // Otherwise, try to emit the sub-expression at +1 recursively.
   2625         } else {
   2626           TryEmitResult subresult
   2627             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
   2628           result = subresult.getPointer();
   2629 
   2630           // If that produced a retained value, just use that,
   2631           // possibly casting down.
   2632           if (subresult.getInt()) {
   2633             if (resultType)
   2634               result = CGF.Builder.CreateBitCast(result, resultType);
   2635             return TryEmitResult(result, true);
   2636           }
   2637 
   2638           // Otherwise it's +0.
   2639         }
   2640 
   2641         // Retain the object as a block, then cast down.
   2642         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
   2643         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2644         return TryEmitResult(result, true);
   2645       }
   2646 
   2647       // For reclaims, emit the subexpression as a retained call and
   2648       // skip the consumption.
   2649       case CK_ARCReclaimReturnedObject: {
   2650         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
   2651         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2652         return TryEmitResult(result, true);
   2653       }
   2654 
   2655       default:
   2656         break;
   2657       }
   2658 
   2659     // Skip __extension__.
   2660     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
   2661       if (op->getOpcode() == UO_Extension) {
   2662         e = op->getSubExpr();
   2663         continue;
   2664       }
   2665 
   2666     // For calls and message sends, use the retained-call logic.
   2667     // Delegate inits are a special case in that they're the only
   2668     // returns-retained expression that *isn't* surrounded by
   2669     // a consume.
   2670     } else if (isa<CallExpr>(e) ||
   2671                (isa<ObjCMessageExpr>(e) &&
   2672                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
   2673       llvm::Value *result = emitARCRetainCall(CGF, e);
   2674       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2675       return TryEmitResult(result, true);
   2676 
   2677     // Look through pseudo-object expressions.
   2678     } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
   2679       TryEmitResult result
   2680         = tryEmitARCRetainPseudoObject(CGF, pseudo);
   2681       if (resultType) {
   2682         llvm::Value *value = result.getPointer();
   2683         value = CGF.Builder.CreateBitCast(value, resultType);
   2684         result.setPointer(value);
   2685       }
   2686       return result;
   2687     }
   2688 
   2689     // Conservatively halt the search at any other expression kind.
   2690     break;
   2691   }
   2692 
   2693   // We didn't find an obvious production, so emit what we've got and
   2694   // tell the caller that we didn't manage to retain.
   2695   llvm::Value *result = CGF.EmitScalarExpr(e);
   2696   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2697   return TryEmitResult(result, false);
   2698 }
   2699 
   2700 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
   2701                                                 LValue lvalue,
   2702                                                 QualType type) {
   2703   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
   2704   llvm::Value *value = result.getPointer();
   2705   if (!result.getInt())
   2706     value = CGF.EmitARCRetain(type, value);
   2707   return value;
   2708 }
   2709 
   2710 /// EmitARCRetainScalarExpr - Semantically equivalent to
   2711 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
   2712 /// best-effort attempt to peephole expressions that naturally produce
   2713 /// retained objects.
   2714 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
   2715   // The retain needs to happen within the full-expression.
   2716   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
   2717     enterFullExpression(cleanups);
   2718     RunCleanupsScope scope(*this);
   2719     return EmitARCRetainScalarExpr(cleanups->getSubExpr());
   2720   }
   2721 
   2722   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
   2723   llvm::Value *value = result.getPointer();
   2724   if (!result.getInt())
   2725     value = EmitARCRetain(e->getType(), value);
   2726   return value;
   2727 }
   2728 
   2729 llvm::Value *
   2730 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
   2731   // The retain needs to happen within the full-expression.
   2732   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
   2733     enterFullExpression(cleanups);
   2734     RunCleanupsScope scope(*this);
   2735     return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
   2736   }
   2737 
   2738   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
   2739   llvm::Value *value = result.getPointer();
   2740   if (result.getInt())
   2741     value = EmitARCAutorelease(value);
   2742   else
   2743     value = EmitARCRetainAutorelease(e->getType(), value);
   2744   return value;
   2745 }
   2746 
   2747 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
   2748   llvm::Value *result;
   2749   bool doRetain;
   2750 
   2751   if (shouldEmitSeparateBlockRetain(e)) {
   2752     result = EmitScalarExpr(e);
   2753     doRetain = true;
   2754   } else {
   2755     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
   2756     result = subresult.getPointer();
   2757     doRetain = !subresult.getInt();
   2758   }
   2759 
   2760   if (doRetain)
   2761     result = EmitARCRetainBlock(result, /*mandatory*/ true);
   2762   return EmitObjCConsumeObject(e->getType(), result);
   2763 }
   2764 
   2765 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
   2766   // In ARC, retain and autorelease the expression.
   2767   if (getLangOpts().ObjCAutoRefCount) {
   2768     // Do so before running any cleanups for the full-expression.
   2769     // EmitARCRetainAutoreleaseScalarExpr does this for us.
   2770     return EmitARCRetainAutoreleaseScalarExpr(expr);
   2771   }
   2772 
   2773   // Otherwise, use the normal scalar-expression emission.  The
   2774   // exception machinery doesn't do anything special with the
   2775   // exception like retaining it, so there's no safety associated with
   2776   // only running cleanups after the throw has started, and when it
   2777   // matters it tends to be substantially inferior code.
   2778   return EmitScalarExpr(expr);
   2779 }
   2780 
   2781 std::pair<LValue,llvm::Value*>
   2782 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
   2783                                     bool ignored) {
   2784   // Evaluate the RHS first.
   2785   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
   2786   llvm::Value *value = result.getPointer();
   2787 
   2788   bool hasImmediateRetain = result.getInt();
   2789 
   2790   // If we didn't emit a retained object, and the l-value is of block
   2791   // type, then we need to emit the block-retain immediately in case
   2792   // it invalidates the l-value.
   2793   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
   2794     value = EmitARCRetainBlock(value, /*mandatory*/ false);
   2795     hasImmediateRetain = true;
   2796   }
   2797 
   2798   LValue lvalue = EmitLValue(e->getLHS());
   2799 
   2800   // If the RHS was emitted retained, expand this.
   2801   if (hasImmediateRetain) {
   2802     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
   2803     EmitStoreOfScalar(value, lvalue);
   2804     EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
   2805   } else {
   2806     value = EmitARCStoreStrong(lvalue, value, ignored);
   2807   }
   2808 
   2809   return std::pair<LValue,llvm::Value*>(lvalue, value);
   2810 }
   2811 
   2812 std::pair<LValue,llvm::Value*>
   2813 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
   2814   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
   2815   LValue lvalue = EmitLValue(e->getLHS());
   2816 
   2817   EmitStoreOfScalar(value, lvalue);
   2818 
   2819   return std::pair<LValue,llvm::Value*>(lvalue, value);
   2820 }
   2821 
   2822 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
   2823                                           const ObjCAutoreleasePoolStmt &ARPS) {
   2824   const Stmt *subStmt = ARPS.getSubStmt();
   2825   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
   2826 
   2827   CGDebugInfo *DI = getDebugInfo();
   2828   if (DI)
   2829     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
   2830 
   2831   // Keep track of the current cleanup stack depth.
   2832   RunCleanupsScope Scope(*this);
   2833   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
   2834     llvm::Value *token = EmitObjCAutoreleasePoolPush();
   2835     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
   2836   } else {
   2837     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
   2838     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
   2839   }
   2840 
   2841   for (const auto *I : S.body())
   2842     EmitStmt(I);
   2843 
   2844   if (DI)
   2845     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
   2846 }
   2847 
   2848 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
   2849 /// make sure it survives garbage collection until this point.
   2850 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
   2851   // We just use an inline assembly.
   2852   llvm::FunctionType *extenderType
   2853     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
   2854   llvm::Value *extender
   2855     = llvm::InlineAsm::get(extenderType,
   2856                            /* assembly */ "",
   2857                            /* constraints */ "r",
   2858                            /* side effects */ true);
   2859 
   2860   object = Builder.CreateBitCast(object, VoidPtrTy);
   2861   EmitNounwindRuntimeCall(extender, object);
   2862 }
   2863 
   2864 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
   2865 /// non-trivial copy assignment function, produce following helper function.
   2866 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
   2867 ///
   2868 llvm::Constant *
   2869 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
   2870                                         const ObjCPropertyImplDecl *PID) {
   2871   if (!getLangOpts().CPlusPlus ||
   2872       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
   2873     return nullptr;
   2874   QualType Ty = PID->getPropertyIvarDecl()->getType();
   2875   if (!Ty->isRecordType())
   2876     return nullptr;
   2877   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
   2878   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
   2879     return nullptr;
   2880   llvm::Constant *HelperFn = nullptr;
   2881   if (hasTrivialSetExpr(PID))
   2882     return nullptr;
   2883   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
   2884   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
   2885     return HelperFn;
   2886 
   2887   ASTContext &C = getContext();
   2888   IdentifierInfo *II
   2889     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
   2890   FunctionDecl *FD = FunctionDecl::Create(C,
   2891                                           C.getTranslationUnitDecl(),
   2892                                           SourceLocation(),
   2893                                           SourceLocation(), II, C.VoidTy,
   2894                                           nullptr, SC_Static,
   2895                                           false,
   2896                                           false);
   2897 
   2898   QualType DestTy = C.getPointerType(Ty);
   2899   QualType SrcTy = Ty;
   2900   SrcTy.addConst();
   2901   SrcTy = C.getPointerType(SrcTy);
   2902 
   2903   FunctionArgList args;
   2904   ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
   2905   args.push_back(&dstDecl);
   2906   ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
   2907   args.push_back(&srcDecl);
   2908 
   2909   const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
   2910       C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All);
   2911 
   2912   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
   2913 
   2914   llvm::Function *Fn =
   2915     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
   2916                            "__assign_helper_atomic_property_",
   2917                            &CGM.getModule());
   2918 
   2919   StartFunction(FD, C.VoidTy, Fn, FI, args);
   2920 
   2921   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
   2922                       VK_RValue, SourceLocation());
   2923   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
   2924                     VK_LValue, OK_Ordinary, SourceLocation());
   2925 
   2926   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
   2927                       VK_RValue, SourceLocation());
   2928   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
   2929                     VK_LValue, OK_Ordinary, SourceLocation());
   2930 
   2931   Expr *Args[2] = { &DST, &SRC };
   2932   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
   2933   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
   2934                               Args, DestTy->getPointeeType(),
   2935                               VK_LValue, SourceLocation(), false);
   2936 
   2937   EmitStmt(&TheCall);
   2938 
   2939   FinishFunction();
   2940   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
   2941   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
   2942   return HelperFn;
   2943 }
   2944 
   2945 llvm::Constant *
   2946 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
   2947                                             const ObjCPropertyImplDecl *PID) {
   2948   if (!getLangOpts().CPlusPlus ||
   2949       !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
   2950     return nullptr;
   2951   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
   2952   QualType Ty = PD->getType();
   2953   if (!Ty->isRecordType())
   2954     return nullptr;
   2955   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
   2956     return nullptr;
   2957   llvm::Constant *HelperFn = nullptr;
   2958 
   2959   if (hasTrivialGetExpr(PID))
   2960     return nullptr;
   2961   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
   2962   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
   2963     return HelperFn;
   2964 
   2965 
   2966   ASTContext &C = getContext();
   2967   IdentifierInfo *II
   2968   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
   2969   FunctionDecl *FD = FunctionDecl::Create(C,
   2970                                           C.getTranslationUnitDecl(),
   2971                                           SourceLocation(),
   2972                                           SourceLocation(), II, C.VoidTy,
   2973                                           nullptr, SC_Static,
   2974                                           false,
   2975                                           false);
   2976 
   2977   QualType DestTy = C.getPointerType(Ty);
   2978   QualType SrcTy = Ty;
   2979   SrcTy.addConst();
   2980   SrcTy = C.getPointerType(SrcTy);
   2981 
   2982   FunctionArgList args;
   2983   ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy);
   2984   args.push_back(&dstDecl);
   2985   ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy);
   2986   args.push_back(&srcDecl);
   2987 
   2988   const CGFunctionInfo &FI = CGM.getTypes().arrangeFreeFunctionDeclaration(
   2989       C.VoidTy, args, FunctionType::ExtInfo(), RequiredArgs::All);
   2990 
   2991   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
   2992 
   2993   llvm::Function *Fn =
   2994   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
   2995                          "__copy_helper_atomic_property_", &CGM.getModule());
   2996 
   2997   StartFunction(FD, C.VoidTy, Fn, FI, args);
   2998 
   2999   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
   3000                       VK_RValue, SourceLocation());
   3001 
   3002   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
   3003                     VK_LValue, OK_Ordinary, SourceLocation());
   3004 
   3005   CXXConstructExpr *CXXConstExpr =
   3006     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
   3007 
   3008   SmallVector<Expr*, 4> ConstructorArgs;
   3009   ConstructorArgs.push_back(&SRC);
   3010   CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
   3011   ++A;
   3012 
   3013   for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
   3014        A != AEnd; ++A)
   3015     ConstructorArgs.push_back(*A);
   3016 
   3017   CXXConstructExpr *TheCXXConstructExpr =
   3018     CXXConstructExpr::Create(C, Ty, SourceLocation(),
   3019                              CXXConstExpr->getConstructor(),
   3020                              CXXConstExpr->isElidable(),
   3021                              ConstructorArgs,
   3022                              CXXConstExpr->hadMultipleCandidates(),
   3023                              CXXConstExpr->isListInitialization(),
   3024                              CXXConstExpr->requiresZeroInitialization(),
   3025                              CXXConstExpr->getConstructionKind(),
   3026                              SourceRange());
   3027 
   3028   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
   3029                       VK_RValue, SourceLocation());
   3030 
   3031   RValue DV = EmitAnyExpr(&DstExpr);
   3032   CharUnits Alignment
   3033     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
   3034   EmitAggExpr(TheCXXConstructExpr,
   3035               AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
   3036                                     AggValueSlot::IsDestructed,
   3037                                     AggValueSlot::DoesNotNeedGCBarriers,
   3038                                     AggValueSlot::IsNotAliased));
   3039 
   3040   FinishFunction();
   3041   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
   3042   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
   3043   return HelperFn;
   3044 }
   3045 
   3046 llvm::Value *
   3047 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
   3048   // Get selectors for retain/autorelease.
   3049   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
   3050   Selector CopySelector =
   3051       getContext().Selectors.getNullarySelector(CopyID);
   3052   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
   3053   Selector AutoreleaseSelector =
   3054       getContext().Selectors.getNullarySelector(AutoreleaseID);
   3055 
   3056   // Emit calls to retain/autorelease.
   3057   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
   3058   llvm::Value *Val = Block;
   3059   RValue Result;
   3060   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
   3061                                        Ty, CopySelector,
   3062                                        Val, CallArgList(), nullptr, nullptr);
   3063   Val = Result.getScalarVal();
   3064   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
   3065                                        Ty, AutoreleaseSelector,
   3066                                        Val, CallArgList(), nullptr, nullptr);
   3067   Val = Result.getScalarVal();
   3068   return Val;
   3069 }
   3070 
   3071 
   3072 CGObjCRuntime::~CGObjCRuntime() {}
   3073