Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/LiveInterval.h - Interval representation ---*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the LiveRange and LiveInterval classes.  Given some
     11 // numbering of each the machine instructions an interval [i, j) is said to be a
     12 // live range for register v if there is no instruction with number j' >= j
     13 // such that v is live at j' and there is no instruction with number i' < i such
     14 // that v is live at i'. In this implementation ranges can have holes,
     15 // i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
     16 // individual segment is represented as an instance of LiveRange::Segment,
     17 // and the whole range is represented as an instance of LiveRange.
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #ifndef LLVM_CODEGEN_LIVEINTERVAL_H
     22 #define LLVM_CODEGEN_LIVEINTERVAL_H
     23 
     24 #include "llvm/ADT/IntEqClasses.h"
     25 #include "llvm/CodeGen/SlotIndexes.h"
     26 #include "llvm/Support/AlignOf.h"
     27 #include "llvm/Support/Allocator.h"
     28 #include <cassert>
     29 #include <climits>
     30 
     31 namespace llvm {
     32   class CoalescerPair;
     33   class LiveIntervals;
     34   class MachineInstr;
     35   class MachineRegisterInfo;
     36   class TargetRegisterInfo;
     37   class raw_ostream;
     38   template <typename T, unsigned Small> class SmallPtrSet;
     39 
     40   /// VNInfo - Value Number Information.
     41   /// This class holds information about a machine level values, including
     42   /// definition and use points.
     43   ///
     44   class VNInfo {
     45   public:
     46     typedef BumpPtrAllocator Allocator;
     47 
     48     /// The ID number of this value.
     49     unsigned id;
     50 
     51     /// The index of the defining instruction.
     52     SlotIndex def;
     53 
     54     /// VNInfo constructor.
     55     VNInfo(unsigned i, SlotIndex d)
     56       : id(i), def(d)
     57     { }
     58 
     59     /// VNInfo construtor, copies values from orig, except for the value number.
     60     VNInfo(unsigned i, const VNInfo &orig)
     61       : id(i), def(orig.def)
     62     { }
     63 
     64     /// Copy from the parameter into this VNInfo.
     65     void copyFrom(VNInfo &src) {
     66       def = src.def;
     67     }
     68 
     69     /// Returns true if this value is defined by a PHI instruction (or was,
     70     /// PHI instructions may have been eliminated).
     71     /// PHI-defs begin at a block boundary, all other defs begin at register or
     72     /// EC slots.
     73     bool isPHIDef() const { return def.isBlock(); }
     74 
     75     /// Returns true if this value is unused.
     76     bool isUnused() const { return !def.isValid(); }
     77 
     78     /// Mark this value as unused.
     79     void markUnused() { def = SlotIndex(); }
     80   };
     81 
     82   /// Result of a LiveRange query. This class hides the implementation details
     83   /// of live ranges, and it should be used as the primary interface for
     84   /// examining live ranges around instructions.
     85   class LiveQueryResult {
     86     VNInfo *const EarlyVal;
     87     VNInfo *const LateVal;
     88     const SlotIndex EndPoint;
     89     const bool Kill;
     90 
     91   public:
     92     LiveQueryResult(VNInfo *EarlyVal, VNInfo *LateVal, SlotIndex EndPoint,
     93                     bool Kill)
     94       : EarlyVal(EarlyVal), LateVal(LateVal), EndPoint(EndPoint), Kill(Kill)
     95     {}
     96 
     97     /// Return the value that is live-in to the instruction. This is the value
     98     /// that will be read by the instruction's use operands. Return NULL if no
     99     /// value is live-in.
    100     VNInfo *valueIn() const {
    101       return EarlyVal;
    102     }
    103 
    104     /// Return true if the live-in value is killed by this instruction. This
    105     /// means that either the live range ends at the instruction, or it changes
    106     /// value.
    107     bool isKill() const {
    108       return Kill;
    109     }
    110 
    111     /// Return true if this instruction has a dead def.
    112     bool isDeadDef() const {
    113       return EndPoint.isDead();
    114     }
    115 
    116     /// Return the value leaving the instruction, if any. This can be a
    117     /// live-through value, or a live def. A dead def returns NULL.
    118     VNInfo *valueOut() const {
    119       return isDeadDef() ? nullptr : LateVal;
    120     }
    121 
    122     /// Return the value defined by this instruction, if any. This includes
    123     /// dead defs, it is the value created by the instruction's def operands.
    124     VNInfo *valueDefined() const {
    125       return EarlyVal == LateVal ? nullptr : LateVal;
    126     }
    127 
    128     /// Return the end point of the last live range segment to interact with
    129     /// the instruction, if any.
    130     ///
    131     /// The end point is an invalid SlotIndex only if the live range doesn't
    132     /// intersect the instruction at all.
    133     ///
    134     /// The end point may be at or past the end of the instruction's basic
    135     /// block. That means the value was live out of the block.
    136     SlotIndex endPoint() const {
    137       return EndPoint;
    138     }
    139   };
    140 
    141   /// This class represents the liveness of a register, stack slot, etc.
    142   /// It manages an ordered list of Segment objects.
    143   /// The Segments are organized in a static single assignment form: At places
    144   /// where a new value is defined or different values reach a CFG join a new
    145   /// segment with a new value number is used.
    146   class LiveRange {
    147   public:
    148 
    149     /// This represents a simple continuous liveness interval for a value.
    150     /// The start point is inclusive, the end point exclusive. These intervals
    151     /// are rendered as [start,end).
    152     struct Segment {
    153       SlotIndex start;  // Start point of the interval (inclusive)
    154       SlotIndex end;    // End point of the interval (exclusive)
    155       VNInfo *valno;    // identifier for the value contained in this segment.
    156 
    157       Segment() : valno(nullptr) {}
    158 
    159       Segment(SlotIndex S, SlotIndex E, VNInfo *V)
    160         : start(S), end(E), valno(V) {
    161         assert(S < E && "Cannot create empty or backwards segment");
    162       }
    163 
    164       /// Return true if the index is covered by this segment.
    165       bool contains(SlotIndex I) const {
    166         return start <= I && I < end;
    167       }
    168 
    169       /// Return true if the given interval, [S, E), is covered by this segment.
    170       bool containsInterval(SlotIndex S, SlotIndex E) const {
    171         assert((S < E) && "Backwards interval?");
    172         return (start <= S && S < end) && (start < E && E <= end);
    173       }
    174 
    175       bool operator<(const Segment &Other) const {
    176         return std::tie(start, end) < std::tie(Other.start, Other.end);
    177       }
    178       bool operator==(const Segment &Other) const {
    179         return start == Other.start && end == Other.end;
    180       }
    181 
    182       void dump() const;
    183     };
    184 
    185     typedef SmallVector<Segment,4> Segments;
    186     typedef SmallVector<VNInfo*,4> VNInfoList;
    187 
    188     Segments segments;   // the liveness segments
    189     VNInfoList valnos;   // value#'s
    190 
    191     typedef Segments::iterator iterator;
    192     iterator begin() { return segments.begin(); }
    193     iterator end()   { return segments.end(); }
    194 
    195     typedef Segments::const_iterator const_iterator;
    196     const_iterator begin() const { return segments.begin(); }
    197     const_iterator end() const  { return segments.end(); }
    198 
    199     typedef VNInfoList::iterator vni_iterator;
    200     vni_iterator vni_begin() { return valnos.begin(); }
    201     vni_iterator vni_end()   { return valnos.end(); }
    202 
    203     typedef VNInfoList::const_iterator const_vni_iterator;
    204     const_vni_iterator vni_begin() const { return valnos.begin(); }
    205     const_vni_iterator vni_end() const   { return valnos.end(); }
    206 
    207     /// advanceTo - Advance the specified iterator to point to the Segment
    208     /// containing the specified position, or end() if the position is past the
    209     /// end of the range.  If no Segment contains this position, but the
    210     /// position is in a hole, this method returns an iterator pointing to the
    211     /// Segment immediately after the hole.
    212     iterator advanceTo(iterator I, SlotIndex Pos) {
    213       assert(I != end());
    214       if (Pos >= endIndex())
    215         return end();
    216       while (I->end <= Pos) ++I;
    217       return I;
    218     }
    219 
    220     /// find - Return an iterator pointing to the first segment that ends after
    221     /// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster
    222     /// when searching large ranges.
    223     ///
    224     /// If Pos is contained in a Segment, that segment is returned.
    225     /// If Pos is in a hole, the following Segment is returned.
    226     /// If Pos is beyond endIndex, end() is returned.
    227     iterator find(SlotIndex Pos);
    228 
    229     const_iterator find(SlotIndex Pos) const {
    230       return const_cast<LiveRange*>(this)->find(Pos);
    231     }
    232 
    233     void clear() {
    234       valnos.clear();
    235       segments.clear();
    236     }
    237 
    238     size_t size() const {
    239       return segments.size();
    240     }
    241 
    242     bool hasAtLeastOneValue() const { return !valnos.empty(); }
    243 
    244     bool containsOneValue() const { return valnos.size() == 1; }
    245 
    246     unsigned getNumValNums() const { return (unsigned)valnos.size(); }
    247 
    248     /// getValNumInfo - Returns pointer to the specified val#.
    249     ///
    250     inline VNInfo *getValNumInfo(unsigned ValNo) {
    251       return valnos[ValNo];
    252     }
    253     inline const VNInfo *getValNumInfo(unsigned ValNo) const {
    254       return valnos[ValNo];
    255     }
    256 
    257     /// containsValue - Returns true if VNI belongs to this range.
    258     bool containsValue(const VNInfo *VNI) const {
    259       return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id);
    260     }
    261 
    262     /// getNextValue - Create a new value number and return it.  MIIdx specifies
    263     /// the instruction that defines the value number.
    264     VNInfo *getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator) {
    265       VNInfo *VNI =
    266         new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), def);
    267       valnos.push_back(VNI);
    268       return VNI;
    269     }
    270 
    271     /// createDeadDef - Make sure the range has a value defined at Def.
    272     /// If one already exists, return it. Otherwise allocate a new value and
    273     /// add liveness for a dead def.
    274     VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator);
    275 
    276     /// Create a copy of the given value. The new value will be identical except
    277     /// for the Value number.
    278     VNInfo *createValueCopy(const VNInfo *orig,
    279                             VNInfo::Allocator &VNInfoAllocator) {
    280       VNInfo *VNI =
    281         new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig);
    282       valnos.push_back(VNI);
    283       return VNI;
    284     }
    285 
    286     /// RenumberValues - Renumber all values in order of appearance and remove
    287     /// unused values.
    288     void RenumberValues();
    289 
    290     /// MergeValueNumberInto - This method is called when two value numbers
    291     /// are found to be equivalent.  This eliminates V1, replacing all
    292     /// segments with the V1 value number with the V2 value number.  This can
    293     /// cause merging of V1/V2 values numbers and compaction of the value space.
    294     VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2);
    295 
    296     /// Merge all of the live segments of a specific val# in RHS into this live
    297     /// range as the specified value number. The segments in RHS are allowed
    298     /// to overlap with segments in the current range, it will replace the
    299     /// value numbers of the overlaped live segments with the specified value
    300     /// number.
    301     void MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo);
    302 
    303     /// MergeValueInAsValue - Merge all of the segments of a specific val#
    304     /// in RHS into this live range as the specified value number.
    305     /// The segments in RHS are allowed to overlap with segments in the
    306     /// current range, but only if the overlapping segments have the
    307     /// specified value number.
    308     void MergeValueInAsValue(const LiveRange &RHS,
    309                              const VNInfo *RHSValNo, VNInfo *LHSValNo);
    310 
    311     bool empty() const { return segments.empty(); }
    312 
    313     /// beginIndex - Return the lowest numbered slot covered.
    314     SlotIndex beginIndex() const {
    315       assert(!empty() && "Call to beginIndex() on empty range.");
    316       return segments.front().start;
    317     }
    318 
    319     /// endNumber - return the maximum point of the range of the whole,
    320     /// exclusive.
    321     SlotIndex endIndex() const {
    322       assert(!empty() && "Call to endIndex() on empty range.");
    323       return segments.back().end;
    324     }
    325 
    326     bool expiredAt(SlotIndex index) const {
    327       return index >= endIndex();
    328     }
    329 
    330     bool liveAt(SlotIndex index) const {
    331       const_iterator r = find(index);
    332       return r != end() && r->start <= index;
    333     }
    334 
    335     /// Return the segment that contains the specified index, or null if there
    336     /// is none.
    337     const Segment *getSegmentContaining(SlotIndex Idx) const {
    338       const_iterator I = FindSegmentContaining(Idx);
    339       return I == end() ? nullptr : &*I;
    340     }
    341 
    342     /// Return the live segment that contains the specified index, or null if
    343     /// there is none.
    344     Segment *getSegmentContaining(SlotIndex Idx) {
    345       iterator I = FindSegmentContaining(Idx);
    346       return I == end() ? nullptr : &*I;
    347     }
    348 
    349     /// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
    350     VNInfo *getVNInfoAt(SlotIndex Idx) const {
    351       const_iterator I = FindSegmentContaining(Idx);
    352       return I == end() ? nullptr : I->valno;
    353     }
    354 
    355     /// getVNInfoBefore - Return the VNInfo that is live up to but not
    356     /// necessarilly including Idx, or NULL. Use this to find the reaching def
    357     /// used by an instruction at this SlotIndex position.
    358     VNInfo *getVNInfoBefore(SlotIndex Idx) const {
    359       const_iterator I = FindSegmentContaining(Idx.getPrevSlot());
    360       return I == end() ? nullptr : I->valno;
    361     }
    362 
    363     /// Return an iterator to the segment that contains the specified index, or
    364     /// end() if there is none.
    365     iterator FindSegmentContaining(SlotIndex Idx) {
    366       iterator I = find(Idx);
    367       return I != end() && I->start <= Idx ? I : end();
    368     }
    369 
    370     const_iterator FindSegmentContaining(SlotIndex Idx) const {
    371       const_iterator I = find(Idx);
    372       return I != end() && I->start <= Idx ? I : end();
    373     }
    374 
    375     /// overlaps - Return true if the intersection of the two live ranges is
    376     /// not empty.
    377     bool overlaps(const LiveRange &other) const {
    378       if (other.empty())
    379         return false;
    380       return overlapsFrom(other, other.begin());
    381     }
    382 
    383     /// overlaps - Return true if the two ranges have overlapping segments
    384     /// that are not coalescable according to CP.
    385     ///
    386     /// Overlapping segments where one range is defined by a coalescable
    387     /// copy are allowed.
    388     bool overlaps(const LiveRange &Other, const CoalescerPair &CP,
    389                   const SlotIndexes&) const;
    390 
    391     /// overlaps - Return true if the live range overlaps an interval specified
    392     /// by [Start, End).
    393     bool overlaps(SlotIndex Start, SlotIndex End) const;
    394 
    395     /// overlapsFrom - Return true if the intersection of the two live ranges
    396     /// is not empty.  The specified iterator is a hint that we can begin
    397     /// scanning the Other range starting at I.
    398     bool overlapsFrom(const LiveRange &Other, const_iterator I) const;
    399 
    400     /// Add the specified Segment to this range, merging segments as
    401     /// appropriate.  This returns an iterator to the inserted segment (which
    402     /// may have grown since it was inserted).
    403     iterator addSegment(Segment S) {
    404       return addSegmentFrom(S, segments.begin());
    405     }
    406 
    407     /// extendInBlock - If this range is live before Kill in the basic block
    408     /// that starts at StartIdx, extend it to be live up to Kill, and return
    409     /// the value. If there is no segment before Kill, return NULL.
    410     VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill);
    411 
    412     /// join - Join two live ranges (this, and other) together.  This applies
    413     /// mappings to the value numbers in the LHS/RHS ranges as specified.  If
    414     /// the ranges are not joinable, this aborts.
    415     void join(LiveRange &Other,
    416               const int *ValNoAssignments,
    417               const int *RHSValNoAssignments,
    418               SmallVectorImpl<VNInfo *> &NewVNInfo);
    419 
    420     /// True iff this segment is a single segment that lies between the
    421     /// specified boundaries, exclusively. Vregs live across a backedge are not
    422     /// considered local. The boundaries are expected to lie within an extended
    423     /// basic block, so vregs that are not live out should contain no holes.
    424     bool isLocal(SlotIndex Start, SlotIndex End) const {
    425       return beginIndex() > Start.getBaseIndex() &&
    426         endIndex() < End.getBoundaryIndex();
    427     }
    428 
    429     /// Remove the specified segment from this range.  Note that the segment
    430     /// must be a single Segment in its entirety.
    431     void removeSegment(SlotIndex Start, SlotIndex End,
    432                        bool RemoveDeadValNo = false);
    433 
    434     void removeSegment(Segment S, bool RemoveDeadValNo = false) {
    435       removeSegment(S.start, S.end, RemoveDeadValNo);
    436     }
    437 
    438     /// Query Liveness at Idx.
    439     /// The sub-instruction slot of Idx doesn't matter, only the instruction
    440     /// it refers to is considered.
    441     LiveQueryResult Query(SlotIndex Idx) const {
    442       // Find the segment that enters the instruction.
    443       const_iterator I = find(Idx.getBaseIndex());
    444       const_iterator E = end();
    445       if (I == E)
    446         return LiveQueryResult(nullptr, nullptr, SlotIndex(), false);
    447 
    448       // Is this an instruction live-in segment?
    449       // If Idx is the start index of a basic block, include live-in segments
    450       // that start at Idx.getBaseIndex().
    451       VNInfo *EarlyVal = nullptr;
    452       VNInfo *LateVal  = nullptr;
    453       SlotIndex EndPoint;
    454       bool Kill = false;
    455       if (I->start <= Idx.getBaseIndex()) {
    456         EarlyVal = I->valno;
    457         EndPoint = I->end;
    458         // Move to the potentially live-out segment.
    459         if (SlotIndex::isSameInstr(Idx, I->end)) {
    460           Kill = true;
    461           if (++I == E)
    462             return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
    463         }
    464         // Special case: A PHIDef value can have its def in the middle of a
    465         // segment if the value happens to be live out of the layout
    466         // predecessor.
    467         // Such a value is not live-in.
    468         if (EarlyVal->def == Idx.getBaseIndex())
    469           EarlyVal = nullptr;
    470       }
    471       // I now points to the segment that may be live-through, or defined by
    472       // this instr. Ignore segments starting after the current instr.
    473       if (!SlotIndex::isEarlierInstr(Idx, I->start)) {
    474         LateVal = I->valno;
    475         EndPoint = I->end;
    476       }
    477       return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
    478     }
    479 
    480     /// removeValNo - Remove all the segments defined by the specified value#.
    481     /// Also remove the value# from value# list.
    482     void removeValNo(VNInfo *ValNo);
    483 
    484     /// Returns true if the live range is zero length, i.e. no live segments
    485     /// span instructions. It doesn't pay to spill such a range.
    486     bool isZeroLength(SlotIndexes *Indexes) const {
    487       for (const_iterator i = begin(), e = end(); i != e; ++i)
    488         if (Indexes->getNextNonNullIndex(i->start).getBaseIndex() <
    489             i->end.getBaseIndex())
    490           return false;
    491       return true;
    492     }
    493 
    494     bool operator<(const LiveRange& other) const {
    495       const SlotIndex &thisIndex = beginIndex();
    496       const SlotIndex &otherIndex = other.beginIndex();
    497       return thisIndex < otherIndex;
    498     }
    499 
    500     void print(raw_ostream &OS) const;
    501     void dump() const;
    502 
    503     /// \brief Walk the range and assert if any invariants fail to hold.
    504     ///
    505     /// Note that this is a no-op when asserts are disabled.
    506 #ifdef NDEBUG
    507     void verify() const {}
    508 #else
    509     void verify() const;
    510 #endif
    511 
    512   private:
    513 
    514     iterator addSegmentFrom(Segment S, iterator From);
    515     void extendSegmentEndTo(iterator I, SlotIndex NewEnd);
    516     iterator extendSegmentStartTo(iterator I, SlotIndex NewStr);
    517     void markValNoForDeletion(VNInfo *V);
    518 
    519   };
    520 
    521   inline raw_ostream &operator<<(raw_ostream &OS, const LiveRange &LR) {
    522     LR.print(OS);
    523     return OS;
    524   }
    525 
    526   /// LiveInterval - This class represents the liveness of a register,
    527   /// or stack slot.
    528   class LiveInterval : public LiveRange {
    529   public:
    530     typedef LiveRange super;
    531 
    532     const unsigned reg;  // the register or stack slot of this interval.
    533     float weight;        // weight of this interval
    534 
    535     LiveInterval(unsigned Reg, float Weight)
    536       : reg(Reg), weight(Weight) {}
    537 
    538     /// getSize - Returns the sum of sizes of all the LiveRange's.
    539     ///
    540     unsigned getSize() const;
    541 
    542     /// isSpillable - Can this interval be spilled?
    543     bool isSpillable() const {
    544       return weight != llvm::huge_valf;
    545     }
    546 
    547     /// markNotSpillable - Mark interval as not spillable
    548     void markNotSpillable() {
    549       weight = llvm::huge_valf;
    550     }
    551 
    552     bool operator<(const LiveInterval& other) const {
    553       const SlotIndex &thisIndex = beginIndex();
    554       const SlotIndex &otherIndex = other.beginIndex();
    555       return std::tie(thisIndex, reg) < std::tie(otherIndex, other.reg);
    556     }
    557 
    558     void print(raw_ostream &OS) const;
    559     void dump() const;
    560 
    561   private:
    562     LiveInterval& operator=(const LiveInterval& rhs) LLVM_DELETED_FUNCTION;
    563 
    564   };
    565 
    566   inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) {
    567     LI.print(OS);
    568     return OS;
    569   }
    570 
    571   raw_ostream &operator<<(raw_ostream &OS, const LiveRange::Segment &S);
    572 
    573   inline bool operator<(SlotIndex V, const LiveRange::Segment &S) {
    574     return V < S.start;
    575   }
    576 
    577   inline bool operator<(const LiveRange::Segment &S, SlotIndex V) {
    578     return S.start < V;
    579   }
    580 
    581   /// Helper class for performant LiveRange bulk updates.
    582   ///
    583   /// Calling LiveRange::addSegment() repeatedly can be expensive on large
    584   /// live ranges because segments after the insertion point may need to be
    585   /// shifted. The LiveRangeUpdater class can defer the shifting when adding
    586   /// many segments in order.
    587   ///
    588   /// The LiveRange will be in an invalid state until flush() is called.
    589   class LiveRangeUpdater {
    590     LiveRange *LR;
    591     SlotIndex LastStart;
    592     LiveRange::iterator WriteI;
    593     LiveRange::iterator ReadI;
    594     SmallVector<LiveRange::Segment, 16> Spills;
    595     void mergeSpills();
    596 
    597   public:
    598     /// Create a LiveRangeUpdater for adding segments to LR.
    599     /// LR will temporarily be in an invalid state until flush() is called.
    600     LiveRangeUpdater(LiveRange *lr = nullptr) : LR(lr) {}
    601 
    602     ~LiveRangeUpdater() { flush(); }
    603 
    604     /// Add a segment to LR and coalesce when possible, just like
    605     /// LR.addSegment(). Segments should be added in increasing start order for
    606     /// best performance.
    607     void add(LiveRange::Segment);
    608 
    609     void add(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
    610       add(LiveRange::Segment(Start, End, VNI));
    611     }
    612 
    613     /// Return true if the LR is currently in an invalid state, and flush()
    614     /// needs to be called.
    615     bool isDirty() const { return LastStart.isValid(); }
    616 
    617     /// Flush the updater state to LR so it is valid and contains all added
    618     /// segments.
    619     void flush();
    620 
    621     /// Select a different destination live range.
    622     void setDest(LiveRange *lr) {
    623       if (LR != lr && isDirty())
    624         flush();
    625       LR = lr;
    626     }
    627 
    628     /// Get the current destination live range.
    629     LiveRange *getDest() const { return LR; }
    630 
    631     void dump() const;
    632     void print(raw_ostream&) const;
    633   };
    634 
    635   inline raw_ostream &operator<<(raw_ostream &OS, const LiveRangeUpdater &X) {
    636     X.print(OS);
    637     return OS;
    638   }
    639 
    640   /// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a
    641   /// LiveInterval into equivalence clases of connected components. A
    642   /// LiveInterval that has multiple connected components can be broken into
    643   /// multiple LiveIntervals.
    644   ///
    645   /// Given a LiveInterval that may have multiple connected components, run:
    646   ///
    647   ///   unsigned numComps = ConEQ.Classify(LI);
    648   ///   if (numComps > 1) {
    649   ///     // allocate numComps-1 new LiveIntervals into LIS[1..]
    650   ///     ConEQ.Distribute(LIS);
    651   /// }
    652 
    653   class ConnectedVNInfoEqClasses {
    654     LiveIntervals &LIS;
    655     IntEqClasses EqClass;
    656 
    657     // Note that values a and b are connected.
    658     void Connect(unsigned a, unsigned b);
    659 
    660     unsigned Renumber();
    661 
    662   public:
    663     explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {}
    664 
    665     /// Classify - Classify the values in LI into connected components.
    666     /// Return the number of connected components.
    667     unsigned Classify(const LiveInterval *LI);
    668 
    669     /// getEqClass - Classify creates equivalence classes numbered 0..N. Return
    670     /// the equivalence class assigned the VNI.
    671     unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; }
    672 
    673     /// Distribute - Distribute values in LIV[0] into a separate LiveInterval
    674     /// for each connected component. LIV must have a LiveInterval for each
    675     /// connected component. The LiveIntervals in Liv[1..] must be empty.
    676     /// Instructions using LIV[0] are rewritten.
    677     void Distribute(LiveInterval *LIV[], MachineRegisterInfo &MRI);
    678 
    679   };
    680 
    681 }
    682 #endif
    683