Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombine.h - Main InstCombine pass definition ---------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #ifndef INSTCOMBINE_INSTCOMBINE_H
     11 #define INSTCOMBINE_INSTCOMBINE_H
     12 
     13 #include "InstCombineWorklist.h"
     14 #include "llvm/Analysis/TargetFolder.h"
     15 #include "llvm/Analysis/ValueTracking.h"
     16 #include "llvm/IR/IRBuilder.h"
     17 #include "llvm/IR/InstVisitor.h"
     18 #include "llvm/IR/IntrinsicInst.h"
     19 #include "llvm/IR/Operator.h"
     20 #include "llvm/Pass.h"
     21 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
     22 
     23 #define DEBUG_TYPE "instcombine"
     24 
     25 namespace llvm {
     26 class CallSite;
     27 class DataLayout;
     28 class TargetLibraryInfo;
     29 class DbgDeclareInst;
     30 class MemIntrinsic;
     31 class MemSetInst;
     32 
     33 /// SelectPatternFlavor - We can match a variety of different patterns for
     34 /// select operations.
     35 enum SelectPatternFlavor {
     36   SPF_UNKNOWN = 0,
     37   SPF_SMIN,
     38   SPF_UMIN,
     39   SPF_SMAX,
     40   SPF_UMAX,
     41   SPF_ABS,
     42   SPF_NABS
     43 };
     44 
     45 /// getComplexity:  Assign a complexity or rank value to LLVM Values...
     46 ///   0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
     47 static inline unsigned getComplexity(Value *V) {
     48   if (isa<Instruction>(V)) {
     49     if (BinaryOperator::isNeg(V) || BinaryOperator::isFNeg(V) ||
     50         BinaryOperator::isNot(V))
     51       return 3;
     52     return 4;
     53   }
     54   if (isa<Argument>(V))
     55     return 3;
     56   return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
     57 }
     58 
     59 /// AddOne - Add one to a Constant
     60 static inline Constant *AddOne(Constant *C) {
     61   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
     62 }
     63 /// SubOne - Subtract one from a Constant
     64 static inline Constant *SubOne(Constant *C) {
     65   return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
     66 }
     67 
     68 /// InstCombineIRInserter - This is an IRBuilder insertion helper that works
     69 /// just like the normal insertion helper, but also adds any new instructions
     70 /// to the instcombine worklist.
     71 class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter
     72     : public IRBuilderDefaultInserter<true> {
     73   InstCombineWorklist &Worklist;
     74 
     75 public:
     76   InstCombineIRInserter(InstCombineWorklist &WL) : Worklist(WL) {}
     77 
     78   void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
     79                     BasicBlock::iterator InsertPt) const {
     80     IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
     81     Worklist.Add(I);
     82   }
     83 };
     84 
     85 /// InstCombiner - The -instcombine pass.
     86 class LLVM_LIBRARY_VISIBILITY InstCombiner
     87     : public FunctionPass,
     88       public InstVisitor<InstCombiner, Instruction *> {
     89   const DataLayout *DL;
     90   TargetLibraryInfo *TLI;
     91   bool MadeIRChange;
     92   LibCallSimplifier *Simplifier;
     93   bool MinimizeSize;
     94 
     95 public:
     96   /// Worklist - All of the instructions that need to be simplified.
     97   InstCombineWorklist Worklist;
     98 
     99   /// Builder - This is an IRBuilder that automatically inserts new
    100   /// instructions into the worklist when they are created.
    101   typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy;
    102   BuilderTy *Builder;
    103 
    104   static char ID; // Pass identification, replacement for typeid
    105   InstCombiner() : FunctionPass(ID), DL(nullptr), Builder(nullptr) {
    106     MinimizeSize = false;
    107     initializeInstCombinerPass(*PassRegistry::getPassRegistry());
    108   }
    109 
    110 public:
    111   bool runOnFunction(Function &F) override;
    112 
    113   bool DoOneIteration(Function &F, unsigned ItNum);
    114 
    115   void getAnalysisUsage(AnalysisUsage &AU) const override;
    116 
    117   const DataLayout *getDataLayout() const { return DL; }
    118 
    119   TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
    120 
    121   // Visitation implementation - Implement instruction combining for different
    122   // instruction types.  The semantics are as follows:
    123   // Return Value:
    124   //    null        - No change was made
    125   //     I          - Change was made, I is still valid, I may be dead though
    126   //   otherwise    - Change was made, replace I with returned instruction
    127   //
    128   Instruction *visitAdd(BinaryOperator &I);
    129   Instruction *visitFAdd(BinaryOperator &I);
    130   Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
    131   Instruction *visitSub(BinaryOperator &I);
    132   Instruction *visitFSub(BinaryOperator &I);
    133   Instruction *visitMul(BinaryOperator &I);
    134   Value *foldFMulConst(Instruction *FMulOrDiv, Constant *C,
    135                        Instruction *InsertBefore);
    136   Instruction *visitFMul(BinaryOperator &I);
    137   Instruction *visitURem(BinaryOperator &I);
    138   Instruction *visitSRem(BinaryOperator &I);
    139   Instruction *visitFRem(BinaryOperator &I);
    140   bool SimplifyDivRemOfSelect(BinaryOperator &I);
    141   Instruction *commonRemTransforms(BinaryOperator &I);
    142   Instruction *commonIRemTransforms(BinaryOperator &I);
    143   Instruction *commonDivTransforms(BinaryOperator &I);
    144   Instruction *commonIDivTransforms(BinaryOperator &I);
    145   Instruction *visitUDiv(BinaryOperator &I);
    146   Instruction *visitSDiv(BinaryOperator &I);
    147   Instruction *visitFDiv(BinaryOperator &I);
    148   Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS);
    149   Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
    150   Instruction *visitAnd(BinaryOperator &I);
    151   Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS);
    152   Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
    153   Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op, Value *A,
    154                                    Value *B, Value *C);
    155   Instruction *visitOr(BinaryOperator &I);
    156   Instruction *visitXor(BinaryOperator &I);
    157   Instruction *visitShl(BinaryOperator &I);
    158   Instruction *visitAShr(BinaryOperator &I);
    159   Instruction *visitLShr(BinaryOperator &I);
    160   Instruction *commonShiftTransforms(BinaryOperator &I);
    161   Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
    162                                     Constant *RHSC);
    163   Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
    164                                             GlobalVariable *GV, CmpInst &ICI,
    165                                             ConstantInt *AndCst = nullptr);
    166   Instruction *visitFCmpInst(FCmpInst &I);
    167   Instruction *visitICmpInst(ICmpInst &I);
    168   Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
    169   Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI, Instruction *LHS,
    170                                               ConstantInt *RHS);
    171   Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
    172                               ConstantInt *DivRHS);
    173   Instruction *FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *DivI,
    174                               ConstantInt *DivRHS);
    175   Instruction *FoldICmpAddOpCst(Instruction &ICI, Value *X, ConstantInt *CI,
    176                                 ICmpInst::Predicate Pred);
    177   Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
    178                            ICmpInst::Predicate Cond, Instruction &I);
    179   Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
    180                                    BinaryOperator &I);
    181   Instruction *commonCastTransforms(CastInst &CI);
    182   Instruction *commonPointerCastTransforms(CastInst &CI);
    183   Instruction *visitTrunc(TruncInst &CI);
    184   Instruction *visitZExt(ZExtInst &CI);
    185   Instruction *visitSExt(SExtInst &CI);
    186   Instruction *visitFPTrunc(FPTruncInst &CI);
    187   Instruction *visitFPExt(CastInst &CI);
    188   Instruction *visitFPToUI(FPToUIInst &FI);
    189   Instruction *visitFPToSI(FPToSIInst &FI);
    190   Instruction *visitUIToFP(CastInst &CI);
    191   Instruction *visitSIToFP(CastInst &CI);
    192   Instruction *visitPtrToInt(PtrToIntInst &CI);
    193   Instruction *visitIntToPtr(IntToPtrInst &CI);
    194   Instruction *visitBitCast(BitCastInst &CI);
    195   Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
    196   Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
    197   Instruction *FoldSelectIntoOp(SelectInst &SI, Value *, Value *);
    198   Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
    199                             Value *A, Value *B, Instruction &Outer,
    200                             SelectPatternFlavor SPF2, Value *C);
    201   Instruction *visitSelectInst(SelectInst &SI);
    202   Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
    203   Instruction *visitCallInst(CallInst &CI);
    204   Instruction *visitInvokeInst(InvokeInst &II);
    205 
    206   Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
    207   Instruction *visitPHINode(PHINode &PN);
    208   Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
    209   Instruction *visitAllocaInst(AllocaInst &AI);
    210   Instruction *visitAllocSite(Instruction &FI);
    211   Instruction *visitFree(CallInst &FI);
    212   Instruction *visitLoadInst(LoadInst &LI);
    213   Instruction *visitStoreInst(StoreInst &SI);
    214   Instruction *visitBranchInst(BranchInst &BI);
    215   Instruction *visitSwitchInst(SwitchInst &SI);
    216   Instruction *visitInsertValueInst(InsertValueInst &IV);
    217   Instruction *visitInsertElementInst(InsertElementInst &IE);
    218   Instruction *visitExtractElementInst(ExtractElementInst &EI);
    219   Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
    220   Instruction *visitExtractValueInst(ExtractValueInst &EV);
    221   Instruction *visitLandingPadInst(LandingPadInst &LI);
    222 
    223   // visitInstruction - Specify what to return for unhandled instructions...
    224   Instruction *visitInstruction(Instruction &I) { return nullptr; }
    225 
    226 private:
    227   bool ShouldChangeType(Type *From, Type *To) const;
    228   Value *dyn_castNegVal(Value *V) const;
    229   Value *dyn_castFNegVal(Value *V, bool NoSignedZero = false) const;
    230   Type *FindElementAtOffset(Type *PtrTy, int64_t Offset,
    231                             SmallVectorImpl<Value *> &NewIndices);
    232   Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
    233 
    234   /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
    235   /// results in any code being generated and is interesting to optimize out. If
    236   /// the cast can be eliminated by some other simple transformation, we prefer
    237   /// to do the simplification first.
    238   bool ShouldOptimizeCast(Instruction::CastOps opcode, const Value *V,
    239                           Type *Ty);
    240 
    241   Instruction *visitCallSite(CallSite CS);
    242   Instruction *tryOptimizeCall(CallInst *CI, const DataLayout *DL);
    243   bool transformConstExprCastCall(CallSite CS);
    244   Instruction *transformCallThroughTrampoline(CallSite CS,
    245                                               IntrinsicInst *Tramp);
    246   Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
    247                                  bool DoXform = true);
    248   Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
    249   bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
    250   bool WillNotOverflowUnsignedAdd(Value *LHS, Value *RHS);
    251   Value *EmitGEPOffset(User *GEP);
    252   Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
    253   Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask);
    254 
    255 public:
    256   // InsertNewInstBefore - insert an instruction New before instruction Old
    257   // in the program.  Add the new instruction to the worklist.
    258   //
    259   Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
    260     assert(New && !New->getParent() &&
    261            "New instruction already inserted into a basic block!");
    262     BasicBlock *BB = Old.getParent();
    263     BB->getInstList().insert(&Old, New); // Insert inst
    264     Worklist.Add(New);
    265     return New;
    266   }
    267 
    268   // InsertNewInstWith - same as InsertNewInstBefore, but also sets the
    269   // debug loc.
    270   //
    271   Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
    272     New->setDebugLoc(Old.getDebugLoc());
    273     return InsertNewInstBefore(New, Old);
    274   }
    275 
    276   // ReplaceInstUsesWith - This method is to be used when an instruction is
    277   // found to be dead, replacable with another preexisting expression.  Here
    278   // we add all uses of I to the worklist, replace all uses of I with the new
    279   // value, then return I, so that the inst combiner will know that I was
    280   // modified.
    281   //
    282   Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
    283     Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
    284 
    285     // If we are replacing the instruction with itself, this must be in a
    286     // segment of unreachable code, so just clobber the instruction.
    287     if (&I == V)
    288       V = UndefValue::get(I.getType());
    289 
    290     DEBUG(dbgs() << "IC: Replacing " << I << "\n"
    291                     "    with " << *V << '\n');
    292 
    293     I.replaceAllUsesWith(V);
    294     return &I;
    295   }
    296 
    297   // EraseInstFromFunction - When dealing with an instruction that has side
    298   // effects or produces a void value, we can't rely on DCE to delete the
    299   // instruction.  Instead, visit methods should return the value returned by
    300   // this function.
    301   Instruction *EraseInstFromFunction(Instruction &I) {
    302     DEBUG(dbgs() << "IC: ERASE " << I << '\n');
    303 
    304     assert(I.use_empty() && "Cannot erase instruction that is used!");
    305     // Make sure that we reprocess all operands now that we reduced their
    306     // use counts.
    307     if (I.getNumOperands() < 8) {
    308       for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
    309         if (Instruction *Op = dyn_cast<Instruction>(*i))
    310           Worklist.Add(Op);
    311     }
    312     Worklist.Remove(&I);
    313     I.eraseFromParent();
    314     MadeIRChange = true;
    315     return nullptr; // Don't do anything with FI
    316   }
    317 
    318   void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
    319                         unsigned Depth = 0) const {
    320     return llvm::computeKnownBits(V, KnownZero, KnownOne, DL, Depth);
    321   }
    322 
    323   bool MaskedValueIsZero(Value *V, const APInt &Mask,
    324                          unsigned Depth = 0) const {
    325     return llvm::MaskedValueIsZero(V, Mask, DL, Depth);
    326   }
    327   unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
    328     return llvm::ComputeNumSignBits(Op, DL, Depth);
    329   }
    330 
    331 private:
    332   /// SimplifyAssociativeOrCommutative - This performs a few simplifications for
    333   /// operators which are associative or commutative.
    334   bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
    335 
    336   /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
    337   /// which some other binary operation distributes over either by factorizing
    338   /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
    339   /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
    340   /// a win).  Returns the simplified value, or null if it didn't simplify.
    341   Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
    342 
    343   /// SimplifyDemandedUseBits - Attempts to replace V with a simpler value
    344   /// based on the demanded bits.
    345   Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, APInt &KnownZero,
    346                                  APInt &KnownOne, unsigned Depth);
    347   bool SimplifyDemandedBits(Use &U, APInt DemandedMask, APInt &KnownZero,
    348                             APInt &KnownOne, unsigned Depth = 0);
    349   /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
    350   /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
    351   Value *SimplifyShrShlDemandedBits(Instruction *Lsr, Instruction *Sftl,
    352                                     APInt DemandedMask, APInt &KnownZero,
    353                                     APInt &KnownOne);
    354 
    355   /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
    356   /// SimplifyDemandedBits knows about.  See if the instruction has any
    357   /// properties that allow us to simplify its operands.
    358   bool SimplifyDemandedInstructionBits(Instruction &Inst);
    359 
    360   Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
    361                                     APInt &UndefElts, unsigned Depth = 0);
    362 
    363   Value *SimplifyVectorOp(BinaryOperator &Inst);
    364 
    365   // FoldOpIntoPhi - Given a binary operator, cast instruction, or select
    366   // which has a PHI node as operand #0, see if we can fold the instruction
    367   // into the PHI (which is only possible if all operands to the PHI are
    368   // constants).
    369   //
    370   Instruction *FoldOpIntoPhi(Instruction &I);
    371 
    372   // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
    373   // operator and they all are only used by the PHI, PHI together their
    374   // inputs, and do the operation once, to the result of the PHI.
    375   Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
    376   Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
    377   Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
    378   Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
    379 
    380   Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
    381                         ConstantInt *AndRHS, BinaryOperator &TheAnd);
    382 
    383   Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
    384                             bool isSub, Instruction &I);
    385   Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, bool isSigned,
    386                          bool Inside);
    387   Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
    388   Instruction *MatchBSwap(BinaryOperator &I);
    389   bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
    390   Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
    391   Instruction *SimplifyMemSet(MemSetInst *MI);
    392 
    393   Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
    394 
    395   /// Descale - Return a value X such that Val = X * Scale, or null if none.  If
    396   /// the multiplication is known not to overflow then NoSignedWrap is set.
    397   Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
    398 };
    399 
    400 } // end namespace llvm.
    401 
    402 #undef DEBUG_TYPE
    403 
    404 #endif
    405