Home | History | Annotate | Download | only in testlibs
      1 /*
      2  * Copyright (C) 2008 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ANDROID_EFFECTSMATH_H_
     18 #define ANDROID_EFFECTSMATH_H_
     19 
     20 #include <stdint.h>
     21 
     22 #if __cplusplus
     23 extern "C" {
     24 #endif
     25 
     26 /** coefs for pan, generates sin, cos */
     27 #define COEFF_PAN_G2    -27146    /* -0.82842712474619 = 2 - 4/sqrt(2) */
     28 #define COEFF_PAN_G0    23170     /* 0.707106781186547 = 1/sqrt(2) */
     29 
     30 /*
     31 coefficients for approximating
     32 2^x = gn2toX0 + gn2toX1*x + gn2toX2*x^2 + gn2toX3*x^3
     33 where x is a int.frac number representing number of octaves.
     34 Actually, we approximate only the 2^(frac) using the power series
     35 and implement the 2^(int) as a shift, so that
     36 2^x == 2^(int.frac) == 2^(int) * 2^(fract)
     37     == (gn2toX0 + gn2toX1*x + gn2toX2*x^2 + gn2toX3*x^3) << (int)
     38 
     39 The gn2toX.. were generated using a best fit for a 3rd
     40 order polynomial, instead of taking the coefficients from
     41 a truncated Taylor (or Maclaurin?) series.
     42 */
     43 
     44 #define GN2_TO_X0    32768    /*    1                    */
     45 #define GN2_TO_X1    22833    /*    0.696807861328125    */
     46 #define GN2_TO_X2    7344    /*    0.22412109375        */
     47 #define GN2_TO_X3    2588    /*    0.0789794921875        */
     48 
     49 /*----------------------------------------------------------------------------
     50  * Fixed Point Math
     51  *----------------------------------------------------------------------------
     52  * These macros are used for fixed point multiplies. If the processor
     53  * supports fixed point multiplies, replace these macros with inline
     54  * assembly code to improve performance.
     55  *----------------------------------------------------------------------------
     56 */
     57 
     58 /* Fixed point multiply 0.15 x 0.15 = 0.15 returned as 32-bits */
     59 #define FMUL_15x15(a,b) \
     60     /*lint -e(704) <avoid multiply for performance>*/ \
     61     (((int32_t)(a) * (int32_t)(b)) >> 15)
     62 
     63 /* Fixed point multiply 0.7 x 0.7 = 0.15 returned as 32-bits */
     64 #define FMUL_7x7(a,b) \
     65     /*lint -e(704) <avoid multiply for performance>*/ \
     66     (((int32_t)(a) * (int32_t)(b) ) << 1)
     67 
     68 /* Fixed point multiply 0.8 x 0.8 = 0.15 returned as 32-bits */
     69 #define FMUL_8x8(a,b) \
     70     /*lint -e(704) <avoid multiply for performance>*/ \
     71     (((int32_t)(a) * (int32_t)(b) ) >> 1)
     72 
     73 /* Fixed point multiply 0.8 x 1.15 = 0.15 returned as 32-bits */
     74 #define FMUL_8x15(a,b) \
     75     /*lint -e(704) <avoid divide for performance>*/ \
     76     (((int32_t)((a) << 7) * (int32_t)(b)) >> 15)
     77 
     78 /* macros for fractional phase accumulator */
     79 /*
     80 Note: changed the _U32 to _I32 on 03/14/02. This should not
     81 affect the phase calculations, and should allow us to reuse these
     82 macros for other audio sample related math.
     83 */
     84 #define HARDWARE_BIT_WIDTH        32
     85 
     86 #define NUM_PHASE_INT_BITS        1
     87 #define NUM_PHASE_FRAC_BITS       15
     88 
     89 #define PHASE_FRAC_MASK           (uint32_t) ((0x1L << NUM_PHASE_FRAC_BITS) -1)
     90 
     91 #define GET_PHASE_INT_PART(x)     (uint32_t)((uint32_t)(x) >> NUM_PHASE_FRAC_BITS)
     92 #define GET_PHASE_FRAC_PART(x)    (uint32_t)((uint32_t)(x) & PHASE_FRAC_MASK)
     93 
     94 #define DEFAULT_PHASE_FRAC        0
     95 #define DEFAULT_PHASE_INT         0
     96 
     97 /*
     98 Linear interpolation calculates:
     99 output = (1-frac) * sample[n] + (frac) * sample[n+1]
    100 
    101 where conceptually    0 <= frac < 1
    102 
    103 For a fixed point implementation, frac is actually an integer value
    104 with an implied binary point one position to the left. The value of
    105 one (unity) is given by PHASE_ONE
    106 one half and one quarter are useful for 4-point linear interp.
    107 */
    108 #define PHASE_ONE                (int32_t) (0x1L << NUM_PHASE_FRAC_BITS)
    109 
    110 /*
    111  Multiply the signed audio sample by the unsigned fraction.
    112 -  a is the signed audio sample
    113 -  b is the unsigned fraction (cast to signed int as long as coef
    114     uses (n-1) or less bits, where n == hardware bit width)
    115 */
    116 #define MULT_AUDIO_COEF(audio,coef)         /*lint -e704 <avoid divide for performance>*/ \
    117             (int32_t)(                                    \
    118             (                                            \
    119                 ((int32_t)(audio)) * ((int32_t)(coef))    \
    120             )                                            \
    121             >> NUM_PHASE_FRAC_BITS                        \
    122                                         )                \
    123                                         /* lint +704 <restore checking>*/
    124 
    125 /* wet / dry calculation macros */
    126 #define NUM_WET_DRY_FRAC_BITS       7    // 15
    127 #define NUM_WET_DRY_INT_BITS        9    // 1
    128 
    129 /* define a 1.0 */
    130 #define WET_DRY_ONE                 (int32_t) ((0x1L << NUM_WET_DRY_FRAC_BITS))
    131 #define WET_DRY_MINUS_ONE           (int32_t) (~WET_DRY_ONE)
    132 #define WET_DRY_FULL_SCALE          (int32_t) (WET_DRY_ONE - 1)
    133 
    134 #define MULT_AUDIO_WET_DRY_COEF(audio,coef) /*lint -e(702) <avoid divide for performance>*/ \
    135             (int32_t)(                                        \
    136             (                                                \
    137                 ((int32_t)(audio)) * ((int32_t)(coef))        \
    138             )                                                \
    139             >> NUM_WET_DRY_FRAC_BITS                        \
    140                                                      )
    141 
    142 /* Envelope 1 (EG1) calculation macros */
    143 #define    NUM_EG1_INT_BITS          1
    144 #define NUM_EG1_FRAC_BITS            15
    145 
    146 /* the max positive gain used in the synth for EG1 */
    147 /* SYNTH_FULL_SCALE_EG1_GAIN must match the value in the dls2eas
    148 converter, otherwise, the values we read from the .eas file are bogus. */
    149 #define SYNTH_FULL_SCALE_EG1_GAIN    (int32_t) ((0x1L << NUM_EG1_FRAC_BITS) -1)
    150 
    151 /* define a 1.0 */
    152 #define EG1_ONE                      (int32_t) ((0x1L << NUM_EG1_FRAC_BITS))
    153 #define EG1_MINUS_ONE                (int32_t) (~SYNTH_FULL_SCALE_EG1_GAIN)
    154 
    155 #define EG1_HALF                     (int32_t) (EG1_ONE/2)
    156 #define EG1_MINUS_HALF               (int32_t) (EG1_MINUS_ONE/2)
    157 
    158 /*
    159 We implement the EG1 using a linear gain value, which means that the
    160 attack segment is handled by incrementing (adding) the linear gain.
    161 However, EG1 treats the Decay, Sustain, and Release differently than
    162 the Attack portion. For Decay, Sustain, and Release, the gain is
    163 linear on dB scale, which is equivalent to exponential damping on
    164 a linear scale. Because we use a linear gain for EG1, we implement
    165 the Decay and Release as multiplication (instead of incrementing
    166 as we did for the attack segment).
    167 Therefore, we need the following macro to implement the multiplication
    168 (i.e., exponential damping) during the Decay and Release segments of
    169 the EG1
    170 */
    171 #define MULT_EG1_EG1(gain,damping)        /*lint -e(704) <avoid divide for performance>*/ \
    172             (int32_t)(                                        \
    173             (                                                \
    174                 ((int32_t)(gain)) * ((int32_t)(damping))    \
    175             )                                                \
    176             >> NUM_EG1_FRAC_BITS                            \
    177                                         )
    178 
    179 // Use the following macro specifically for the filter, when multiplying
    180 // the b1 coefficient. The 0 <= |b1| < 2, which therefore might overflow
    181 // in certain conditions because we store b1 as a 1.15 value.
    182 // Instead, we could store b1 as b1p (b1' == b1 "prime") where
    183 // b1p == b1/2, thus ensuring no potential overflow for b1p because
    184 // 0 <= |b1p| < 1
    185 // However, during the filter calculation, we must account for the fact
    186 // that we are using b1p instead of b1, and thereby multiply by
    187 // an extra factor of 2. Rather than multiply by an extra factor of 2,
    188 // we can instead shift the result right by one less, hence the
    189 // modified shift right value of (NUM_EG1_FRAC_BITS -1)
    190 #define MULT_EG1_EG1_X2(gain,damping)         /*lint -e(702) <avoid divide for performance>*/ \
    191             (int32_t)(                                        \
    192             (                                                \
    193                 ((int32_t)(gain)) * ((int32_t)(damping))    \
    194             )                                                \
    195             >> (NUM_EG1_FRAC_BITS -1)                        \
    196                                         )
    197 
    198 #define SATURATE_EG1(x)        /*lint -e{734} saturation operation */                \
    199     ((int32_t)(x) > SYNTH_FULL_SCALE_EG1_GAIN)    ? (SYNTH_FULL_SCALE_EG1_GAIN) :    \
    200     ((int32_t)(x) < EG1_MINUS_ONE)                ? (EG1_MINUS_ONE) :    (x);
    201 
    202 
    203 /* use "digital cents" == "dents" instead of cents */
    204 /* we coudl re-use the phase frac macros, but if we do,
    205 we must change the phase macros to cast to _I32 instead of _U32,
    206 because using a _U32 cast causes problems when shifting the exponent
    207 for the 2^x calculation, because right shift a negative values MUST
    208 be sign extended, or else the 2^x calculation is wrong */
    209 
    210 /* use "digital cents" == "dents" instead of cents */
    211 #define NUM_DENTS_FRAC_BITS        12
    212 #define NUM_DENTS_INT_BITS         (HARDWARE_BIT_WIDTH - NUM_DENTS_FRAC_BITS)
    213 
    214 #define DENTS_FRAC_MASK            (int32_t) ((0x1L << NUM_DENTS_FRAC_BITS) -1)
    215 
    216 #define GET_DENTS_INT_PART(x)        /*lint -e(704) <avoid divide for performance>*/    \
    217                             (int32_t)((int32_t)(x) >> NUM_DENTS_FRAC_BITS)
    218 
    219 #define GET_DENTS_FRAC_PART(x)     (int32_t)((int32_t)(x) & DENTS_FRAC_MASK)
    220 
    221 #define DENTS_ONE                  (int32_t) (0x1L << NUM_DENTS_FRAC_BITS)
    222 
    223 /* use CENTS_TO_DENTS to convert a value in cents to dents */
    224 #define CENTS_TO_DENTS (int32_t) (DENTS_ONE * (0x1L << NUM_EG1_FRAC_BITS) / 1200L)                            \
    225 
    226 
    227 /*
    228 For gain, the LFO generates a value that modulates in terms
    229 of dB. However, we use a linear gain value, so we must convert
    230 the LFO value in dB to a linear gain. Normally, we would use
    231 linear gain = 10^x, where x = LFO value in dB / 20.
    232 Instead, we implement 10^x using our 2^x approximation.
    233 because
    234 
    235   10^x = 2^(log2(10^x)) = 2^(x * log2(10))
    236 
    237 so we need to multiply by log2(10) which is just a constant.
    238 Ah, but just wait -- our 2^x actually doesn't exactly implement
    239 2^x, but it actually assumes that the input is in cents, and within
    240 the 2^x approximation converts its input from cents to octaves
    241 by dividing its input by 1200.
    242 
    243 So, in order to convert the LFO gain value in dB to something
    244 that our existing 2^x approximation can use, multiply the LFO gain
    245 by log2(10) * 1200 / 20
    246 
    247 The divide by 20 helps convert dB to linear gain, and we might
    248 as well incorporate that operation into this conversion.
    249 Of course, we need to keep some fractional bits, so multiply
    250 the constant by NUM_EG1_FRAC_BITS
    251 */
    252 
    253 /* use LFO_GAIN_TO_CENTS to convert the LFO gain value to cents */
    254 #if 0
    255 #define    DOUBLE_LOG2_10    (double) (3.32192809488736)    /* log2(10) */
    256 
    257 #define    DOUBLE_LFO_GAIN_TO_CENTS    (double)                \
    258     (                                                        \
    259                 (DOUBLE_LOG2_10) *                            \
    260                 1200.0    /                                    \
    261                 20.0                                        \
    262     )
    263 
    264 #define    LFO_GAIN_TO_CENTS    (int32_t)                        \
    265     (                                                        \
    266                 DOUBLE_LFO_GAIN_TO_CENTS *                    \
    267                 (0x1L << NUM_EG1_FRAC_BITS)                    \
    268     )
    269 #endif
    270 
    271 #define LFO_GAIN_TO_CENTS (int32_t) (1671981156L >> (23 - NUM_EG1_FRAC_BITS))
    272 
    273 
    274 #define MULT_DENTS_COEF(dents,coef)     /*lint -e704 <avoid divide for performance>*/    \
    275             (int32_t)(                                    \
    276             (                                            \
    277                 ((int32_t)(dents)) * ((int32_t)(coef))    \
    278             )                                            \
    279             >> NUM_DENTS_FRAC_BITS                        \
    280                                         )                \
    281                                         /* lint +e704 <restore checking>*/
    282 
    283 
    284 /* we use 16-bits in the PC per audio sample */
    285 #define BITS_PER_AUDIO_SAMPLE    16
    286 
    287 /* we define 1 as 1.0 - 1 LSbit */
    288 #define DISTORTION_ONE           (int32_t)((0x1L << (BITS_PER_AUDIO_SAMPLE-1)) -1)
    289 #define DISTORTION_MINUS_ONE     (int32_t)(~DISTORTION_ONE)
    290 
    291 /* drive coef is given as int.frac */
    292 #define NUM_DRIVE_COEF_INT_BITS  1
    293 #define NUM_DRIVE_COEF_FRAC_BITS 4
    294 
    295 #define MULT_AUDIO_DRIVE(audio,drive)         /*lint -e(702) <avoid divide for performance>*/ \
    296             (int32_t)    (                                \
    297             (                                            \
    298                 ((int32_t)(audio)) * ((int32_t)(drive))    \
    299             )                                            \
    300             >> NUM_DRIVE_COEF_FRAC_BITS                    \
    301                                                 )
    302 
    303 #define MULT_AUDIO_AUDIO(audio1,audio2)         /*lint -e(702) <avoid divide for performance>*/ \
    304             (int32_t)    (                                    \
    305             (                                                \
    306                 ((int32_t)(audio1)) * ((int32_t)(audio2))    \
    307             )                                                \
    308             >> (BITS_PER_AUDIO_SAMPLE-1)                    \
    309                                                     )
    310 
    311 #define SATURATE(x)                                                            \
    312     ((((int32_t)(x)) > DISTORTION_ONE)        ? (DISTORTION_ONE) :            \
    313     (((int32_t)(x)) < DISTORTION_MINUS_ONE)    ? (DISTORTION_MINUS_ONE) :    ((int32_t)(x)));
    314 
    315 
    316 /*----------------------------------------------------------------------------
    317  * Effects_log2()
    318  *----------------------------------------------------------------------------
    319  * Purpose:
    320  * Fixed-point log2 function.
    321  *
    322  * Inputs:
    323  * Input is interpreted as an integer (should not be 0).
    324  *
    325  * Outputs:
    326  * Output is in 15-bit precision.
    327  *
    328  * Side Effects:
    329  *
    330  *----------------------------------------------------------------------------
    331 */
    332 int32_t Effects_log2(uint32_t x);
    333 
    334 /*----------------------------------------------------------------------------
    335  * Effects_exp2()
    336  *----------------------------------------------------------------------------
    337  * Purpose:
    338  * Fixed-point radix-2 exponent.
    339  *
    340  * Inputs:
    341  * Input is in 15-bit precision. Must be non-negative and less than 32.
    342  *
    343  * Outputs:
    344  * Output is an integer.
    345  *
    346  * Side Effects:
    347  *
    348  *----------------------------------------------------------------------------
    349 */
    350 uint32_t Effects_exp2(int32_t x);
    351 
    352 /*----------------------------------------------------------------------------
    353  * Effects_MillibelsToLinear16()
    354  *----------------------------------------------------------------------------
    355  * Purpose:
    356  * Transform gain in millibels to linear gain multiplier:
    357  *
    358  * mB = 2000*log(lin/32767)
    359  *    => lin = 2^((mB+2000*log(32767))/2000*log(2))
    360  *    => lin = Effects_exp2(((mB + K1) << 15) / K2)
    361  * with:
    362  *    K1 = 2000*log(32767) and K2 = 2000*log(2)
    363  *
    364  * Inputs:
    365  * nGain - log scale value in millibels.
    366  *
    367  * Outputs:
    368  * Returns a 16-bit linear value approximately equal to 2^(nGain/1024)
    369  *
    370  * Side Effects:
    371  *
    372  *----------------------------------------------------------------------------
    373 */
    374 #define MB_TO_LIN_K1 9031
    375 #define MB_TO_LIN_K2 602
    376 int16_t Effects_MillibelsToLinear16 (int32_t nGain);
    377 
    378 /*----------------------------------------------------------------------------
    379  * Effects_Linear16ToMillibels()
    380  *----------------------------------------------------------------------------
    381  * Purpose:
    382  * Transform linear gain multiplier to millibels
    383  *  mB = 2000*log(lin/32767)
    384  *     = 2000*log(2)*log2(lin)-2000*log(32767)
    385  *    => mB = K1*Effects_log2(lin) + K2
    386  * with:
    387  *    K1 = 2000*log(2) and K2 = -2000*log(32767)
    388  *
    389  * Inputs:
    390  * nGain - linear multiplier ranging form 0 to 32767 (corresponding to [0 1] gain range).
    391  *
    392  * Outputs:
    393  * Returns a 16-bit log value expressed in milllibels.
    394  *
    395  * Side Effects:
    396  *
    397  *----------------------------------------------------------------------------
    398 */
    399 int16_t Effects_Linear16ToMillibels (int32_t nGain);
    400 
    401 /*----------------------------------------------------------------------------
    402  * Effects_Sqrt()
    403  *----------------------------------------------------------------------------
    404  * Purpose:
    405  * Returns the square root of the argument given.
    406  *
    407  * Inputs:
    408  * in - positive number in the range 0 - 2^28
    409  *
    410  * Outputs:
    411  * Returned value: square root of in.
    412  *
    413  * Side Effects:
    414  *
    415  *----------------------------------------------------------------------------
    416 */
    417 int32_t Effects_Sqrt(int32_t in);
    418 
    419 #if __cplusplus
    420 }  // extern "C"
    421 #endif
    422 
    423 #endif /*ANDROID_EFFECTSMATH_H_*/
    424 
    425