Home | History | Annotate | Download | only in AArch64
      1 //=- AArch64PromoteConstant.cpp --- Promote constant to global for AArch64 -==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the AArch64PromoteConstant pass which promotes constants
     11 // to global variables when this is likely to be more efficient. Currently only
     12 // types related to constant vector (i.e., constant vector, array of constant
     13 // vectors, constant structure with a constant vector field, etc.) are promoted
     14 // to global variables. Constant vectors are likely to be lowered in target
     15 // constant pool during instruction selection already; therefore, the access
     16 // will remain the same (memory load), but the structure types are not split
     17 // into different constant pool accesses for each field. A bonus side effect is
     18 // that created globals may be merged by the global merge pass.
     19 //
     20 // FIXME: This pass may be useful for other targets too.
     21 //===----------------------------------------------------------------------===//
     22 
     23 #include "AArch64.h"
     24 #include "llvm/ADT/Statistic.h"
     25 #include "llvm/ADT/DenseMap.h"
     26 #include "llvm/ADT/SmallSet.h"
     27 #include "llvm/ADT/SmallVector.h"
     28 #include "llvm/IR/Constants.h"
     29 #include "llvm/IR/Dominators.h"
     30 #include "llvm/IR/Function.h"
     31 #include "llvm/IR/GlobalVariable.h"
     32 #include "llvm/IR/InlineAsm.h"
     33 #include "llvm/IR/Instructions.h"
     34 #include "llvm/IR/IntrinsicInst.h"
     35 #include "llvm/IR/IRBuilder.h"
     36 #include "llvm/IR/Module.h"
     37 #include "llvm/Pass.h"
     38 #include "llvm/Support/CommandLine.h"
     39 #include "llvm/Support/Debug.h"
     40 
     41 using namespace llvm;
     42 
     43 #define DEBUG_TYPE "aarch64-promote-const"
     44 
     45 // Stress testing mode - disable heuristics.
     46 static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden,
     47                             cl::desc("Promote all vector constants"));
     48 
     49 STATISTIC(NumPromoted, "Number of promoted constants");
     50 STATISTIC(NumPromotedUses, "Number of promoted constants uses");
     51 
     52 //===----------------------------------------------------------------------===//
     53 //                       AArch64PromoteConstant
     54 //===----------------------------------------------------------------------===//
     55 
     56 namespace {
     57 /// Promotes interesting constant into global variables.
     58 /// The motivating example is:
     59 /// static const uint16_t TableA[32] = {
     60 ///   41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768,
     61 ///   31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215,
     62 ///   25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846,
     63 ///   21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725,
     64 /// };
     65 ///
     66 /// uint8x16x4_t LoadStatic(void) {
     67 ///   uint8x16x4_t ret;
     68 ///   ret.val[0] = vld1q_u16(TableA +  0);
     69 ///   ret.val[1] = vld1q_u16(TableA +  8);
     70 ///   ret.val[2] = vld1q_u16(TableA + 16);
     71 ///   ret.val[3] = vld1q_u16(TableA + 24);
     72 ///   return ret;
     73 /// }
     74 ///
     75 /// The constants in this example are folded into the uses. Thus, 4 different
     76 /// constants are created.
     77 ///
     78 /// As their type is vector the cheapest way to create them is to load them
     79 /// for the memory.
     80 ///
     81 /// Therefore the final assembly final has 4 different loads. With this pass
     82 /// enabled, only one load is issued for the constants.
     83 class AArch64PromoteConstant : public ModulePass {
     84 
     85 public:
     86   static char ID;
     87   AArch64PromoteConstant() : ModulePass(ID) {}
     88 
     89   const char *getPassName() const override { return "AArch64 Promote Constant"; }
     90 
     91   /// Iterate over the functions and promote the interesting constants into
     92   /// global variables with module scope.
     93   bool runOnModule(Module &M) override {
     94     DEBUG(dbgs() << getPassName() << '\n');
     95     bool Changed = false;
     96     for (auto &MF : M) {
     97       Changed |= runOnFunction(MF);
     98     }
     99     return Changed;
    100   }
    101 
    102 private:
    103   /// Look for interesting constants used within the given function.
    104   /// Promote them into global variables, load these global variables within
    105   /// the related function, so that the number of inserted load is minimal.
    106   bool runOnFunction(Function &F);
    107 
    108   // This transformation requires dominator info
    109   void getAnalysisUsage(AnalysisUsage &AU) const override {
    110     AU.setPreservesCFG();
    111     AU.addRequired<DominatorTreeWrapperPass>();
    112     AU.addPreserved<DominatorTreeWrapperPass>();
    113   }
    114 
    115   /// Type to store a list of User.
    116   typedef SmallVector<Value::user_iterator, 4> Users;
    117   /// Map an insertion point to all the uses it dominates.
    118   typedef DenseMap<Instruction *, Users> InsertionPoints;
    119   /// Map a function to the required insertion point of load for a
    120   /// global variable.
    121   typedef DenseMap<Function *, InsertionPoints> InsertionPointsPerFunc;
    122 
    123   /// Find the closest point that dominates the given Use.
    124   Instruction *findInsertionPoint(Value::user_iterator &Use);
    125 
    126   /// Check if the given insertion point is dominated by an existing
    127   /// insertion point.
    128   /// If true, the given use is added to the list of dominated uses for
    129   /// the related existing point.
    130   /// \param NewPt the insertion point to be checked
    131   /// \param UseIt the use to be added into the list of dominated uses
    132   /// \param InsertPts existing insertion points
    133   /// \pre NewPt and all instruction in InsertPts belong to the same function
    134   /// \return true if one of the insertion point in InsertPts dominates NewPt,
    135   ///         false otherwise
    136   bool isDominated(Instruction *NewPt, Value::user_iterator &UseIt,
    137                    InsertionPoints &InsertPts);
    138 
    139   /// Check if the given insertion point can be merged with an existing
    140   /// insertion point in a common dominator.
    141   /// If true, the given use is added to the list of the created insertion
    142   /// point.
    143   /// \param NewPt the insertion point to be checked
    144   /// \param UseIt the use to be added into the list of dominated uses
    145   /// \param InsertPts existing insertion points
    146   /// \pre NewPt and all instruction in InsertPts belong to the same function
    147   /// \pre isDominated returns false for the exact same parameters.
    148   /// \return true if it exists an insertion point in InsertPts that could
    149   ///         have been merged with NewPt in a common dominator,
    150   ///         false otherwise
    151   bool tryAndMerge(Instruction *NewPt, Value::user_iterator &UseIt,
    152                    InsertionPoints &InsertPts);
    153 
    154   /// Compute the minimal insertion points to dominates all the interesting
    155   /// uses of value.
    156   /// Insertion points are group per function and each insertion point
    157   /// contains a list of all the uses it dominates within the related function
    158   /// \param Val constant to be examined
    159   /// \param[out] InsPtsPerFunc output storage of the analysis
    160   void computeInsertionPoints(Constant *Val,
    161                               InsertionPointsPerFunc &InsPtsPerFunc);
    162 
    163   /// Insert a definition of a new global variable at each point contained in
    164   /// InsPtsPerFunc and update the related uses (also contained in
    165   /// InsPtsPerFunc).
    166   bool insertDefinitions(Constant *Cst, InsertionPointsPerFunc &InsPtsPerFunc);
    167 
    168   /// Compute the minimal insertion points to dominate all the interesting
    169   /// uses of Val and insert a definition of a new global variable
    170   /// at these points.
    171   /// Also update the uses of Val accordingly.
    172   /// Currently a use of Val is considered interesting if:
    173   /// - Val is not UndefValue
    174   /// - Val is not zeroinitialized
    175   /// - Replacing Val per a load of a global variable is valid.
    176   /// \see shouldConvert for more details
    177   bool computeAndInsertDefinitions(Constant *Val);
    178 
    179   /// Promote the given constant into a global variable if it is expected to
    180   /// be profitable.
    181   /// \return true if Cst has been promoted
    182   bool promoteConstant(Constant *Cst);
    183 
    184   /// Transfer the list of dominated uses of IPI to NewPt in InsertPts.
    185   /// Append UseIt to this list and delete the entry of IPI in InsertPts.
    186   static void appendAndTransferDominatedUses(Instruction *NewPt,
    187                                              Value::user_iterator &UseIt,
    188                                              InsertionPoints::iterator &IPI,
    189                                              InsertionPoints &InsertPts) {
    190     // Record the dominated use.
    191     IPI->second.push_back(UseIt);
    192     // Transfer the dominated uses of IPI to NewPt
    193     // Inserting into the DenseMap may invalidate existing iterator.
    194     // Keep a copy of the key to find the iterator to erase.
    195     Instruction *OldInstr = IPI->first;
    196     InsertPts.insert(InsertionPoints::value_type(NewPt, IPI->second));
    197     // Erase IPI.
    198     IPI = InsertPts.find(OldInstr);
    199     InsertPts.erase(IPI);
    200   }
    201 };
    202 } // end anonymous namespace
    203 
    204 char AArch64PromoteConstant::ID = 0;
    205 
    206 namespace llvm {
    207 void initializeAArch64PromoteConstantPass(PassRegistry &);
    208 }
    209 
    210 INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const",
    211                       "AArch64 Promote Constant Pass", false, false)
    212 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    213 INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const",
    214                     "AArch64 Promote Constant Pass", false, false)
    215 
    216 ModulePass *llvm::createAArch64PromoteConstantPass() {
    217   return new AArch64PromoteConstant();
    218 }
    219 
    220 /// Check if the given type uses a vector type.
    221 static bool isConstantUsingVectorTy(const Type *CstTy) {
    222   if (CstTy->isVectorTy())
    223     return true;
    224   if (CstTy->isStructTy()) {
    225     for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements();
    226          EltIdx < EndEltIdx; ++EltIdx)
    227       if (isConstantUsingVectorTy(CstTy->getStructElementType(EltIdx)))
    228         return true;
    229   } else if (CstTy->isArrayTy())
    230     return isConstantUsingVectorTy(CstTy->getArrayElementType());
    231   return false;
    232 }
    233 
    234 /// Check if the given use (Instruction + OpIdx) of Cst should be converted into
    235 /// a load of a global variable initialized with Cst.
    236 /// A use should be converted if it is legal to do so.
    237 /// For instance, it is not legal to turn the mask operand of a shuffle vector
    238 /// into a load of a global variable.
    239 static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr,
    240                              unsigned OpIdx) {
    241   // shufflevector instruction expects a const for the mask argument, i.e., the
    242   // third argument. Do not promote this use in that case.
    243   if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2)
    244     return false;
    245 
    246   // extractvalue instruction expects a const idx.
    247   if (isa<const ExtractValueInst>(Instr) && OpIdx > 0)
    248     return false;
    249 
    250   // extractvalue instruction expects a const idx.
    251   if (isa<const InsertValueInst>(Instr) && OpIdx > 1)
    252     return false;
    253 
    254   if (isa<const AllocaInst>(Instr) && OpIdx > 0)
    255     return false;
    256 
    257   // Alignment argument must be constant.
    258   if (isa<const LoadInst>(Instr) && OpIdx > 0)
    259     return false;
    260 
    261   // Alignment argument must be constant.
    262   if (isa<const StoreInst>(Instr) && OpIdx > 1)
    263     return false;
    264 
    265   // Index must be constant.
    266   if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0)
    267     return false;
    268 
    269   // Personality function and filters must be constant.
    270   // Give up on that instruction.
    271   if (isa<const LandingPadInst>(Instr))
    272     return false;
    273 
    274   // Switch instruction expects constants to compare to.
    275   if (isa<const SwitchInst>(Instr))
    276     return false;
    277 
    278   // Expected address must be a constant.
    279   if (isa<const IndirectBrInst>(Instr))
    280     return false;
    281 
    282   // Do not mess with intrinsics.
    283   if (isa<const IntrinsicInst>(Instr))
    284     return false;
    285 
    286   // Do not mess with inline asm.
    287   const CallInst *CI = dyn_cast<const CallInst>(Instr);
    288   if (CI && isa<const InlineAsm>(CI->getCalledValue()))
    289     return false;
    290 
    291   return true;
    292 }
    293 
    294 /// Check if the given Cst should be converted into
    295 /// a load of a global variable initialized with Cst.
    296 /// A constant should be converted if it is likely that the materialization of
    297 /// the constant will be tricky. Thus, we give up on zero or undef values.
    298 ///
    299 /// \todo Currently, accept only vector related types.
    300 /// Also we give up on all simple vector type to keep the existing
    301 /// behavior. Otherwise, we should push here all the check of the lowering of
    302 /// BUILD_VECTOR. By giving up, we lose the potential benefit of merging
    303 /// constant via global merge and the fact that the same constant is stored
    304 /// only once with this method (versus, as many function that uses the constant
    305 /// for the regular approach, even for float).
    306 /// Again, the simplest solution would be to promote every
    307 /// constant and rematerialize them when they are actually cheap to create.
    308 static bool shouldConvert(const Constant *Cst) {
    309   if (isa<const UndefValue>(Cst))
    310     return false;
    311 
    312   // FIXME: In some cases, it may be interesting to promote in memory
    313   // a zero initialized constant.
    314   // E.g., when the type of Cst require more instructions than the
    315   // adrp/add/load sequence or when this sequence can be shared by several
    316   // instances of Cst.
    317   // Ideally, we could promote this into a global and rematerialize the constant
    318   // when it was a bad idea.
    319   if (Cst->isZeroValue())
    320     return false;
    321 
    322   if (Stress)
    323     return true;
    324 
    325   // FIXME: see function \todo
    326   if (Cst->getType()->isVectorTy())
    327     return false;
    328   return isConstantUsingVectorTy(Cst->getType());
    329 }
    330 
    331 Instruction *
    332 AArch64PromoteConstant::findInsertionPoint(Value::user_iterator &Use) {
    333   // If this user is a phi, the insertion point is in the related
    334   // incoming basic block.
    335   PHINode *PhiInst = dyn_cast<PHINode>(*Use);
    336   Instruction *InsertionPoint;
    337   if (PhiInst)
    338     InsertionPoint =
    339         PhiInst->getIncomingBlock(Use.getOperandNo())->getTerminator();
    340   else
    341     InsertionPoint = dyn_cast<Instruction>(*Use);
    342   assert(InsertionPoint && "User is not an instruction!");
    343   return InsertionPoint;
    344 }
    345 
    346 bool AArch64PromoteConstant::isDominated(Instruction *NewPt,
    347                                          Value::user_iterator &UseIt,
    348                                          InsertionPoints &InsertPts) {
    349 
    350   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
    351       *NewPt->getParent()->getParent()).getDomTree();
    352 
    353   // Traverse all the existing insertion points and check if one is dominating
    354   // NewPt. If it is, remember that.
    355   for (auto &IPI : InsertPts) {
    356     if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) ||
    357         // When IPI.first is a terminator instruction, DT may think that
    358         // the result is defined on the edge.
    359         // Here we are testing the insertion point, not the definition.
    360         (IPI.first->getParent() != NewPt->getParent() &&
    361          DT.dominates(IPI.first->getParent(), NewPt->getParent()))) {
    362       // No need to insert this point. Just record the dominated use.
    363       DEBUG(dbgs() << "Insertion point dominated by:\n");
    364       DEBUG(IPI.first->print(dbgs()));
    365       DEBUG(dbgs() << '\n');
    366       IPI.second.push_back(UseIt);
    367       return true;
    368     }
    369   }
    370   return false;
    371 }
    372 
    373 bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt,
    374                                          Value::user_iterator &UseIt,
    375                                          InsertionPoints &InsertPts) {
    376   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
    377       *NewPt->getParent()->getParent()).getDomTree();
    378   BasicBlock *NewBB = NewPt->getParent();
    379 
    380   // Traverse all the existing insertion point and check if one is dominated by
    381   // NewPt and thus useless or can be combined with NewPt into a common
    382   // dominator.
    383   for (InsertionPoints::iterator IPI = InsertPts.begin(),
    384                                  EndIPI = InsertPts.end();
    385        IPI != EndIPI; ++IPI) {
    386     BasicBlock *CurBB = IPI->first->getParent();
    387     if (NewBB == CurBB) {
    388       // Instructions are in the same block.
    389       // By construction, NewPt is dominating the other.
    390       // Indeed, isDominated returned false with the exact same arguments.
    391       DEBUG(dbgs() << "Merge insertion point with:\n");
    392       DEBUG(IPI->first->print(dbgs()));
    393       DEBUG(dbgs() << "\nat considered insertion point.\n");
    394       appendAndTransferDominatedUses(NewPt, UseIt, IPI, InsertPts);
    395       return true;
    396     }
    397 
    398     // Look for a common dominator
    399     BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB);
    400     // If none exists, we cannot merge these two points.
    401     if (!CommonDominator)
    402       continue;
    403 
    404     if (CommonDominator != NewBB) {
    405       // By construction, the CommonDominator cannot be CurBB.
    406       assert(CommonDominator != CurBB &&
    407              "Instruction has not been rejected during isDominated check!");
    408       // Take the last instruction of the CommonDominator as insertion point
    409       NewPt = CommonDominator->getTerminator();
    410     }
    411     // else, CommonDominator is the block of NewBB, hence NewBB is the last
    412     // possible insertion point in that block.
    413     DEBUG(dbgs() << "Merge insertion point with:\n");
    414     DEBUG(IPI->first->print(dbgs()));
    415     DEBUG(dbgs() << '\n');
    416     DEBUG(NewPt->print(dbgs()));
    417     DEBUG(dbgs() << '\n');
    418     appendAndTransferDominatedUses(NewPt, UseIt, IPI, InsertPts);
    419     return true;
    420   }
    421   return false;
    422 }
    423 
    424 void AArch64PromoteConstant::computeInsertionPoints(
    425     Constant *Val, InsertionPointsPerFunc &InsPtsPerFunc) {
    426   DEBUG(dbgs() << "** Compute insertion points **\n");
    427   for (Value::user_iterator UseIt = Val->user_begin(),
    428                             EndUseIt = Val->user_end();
    429        UseIt != EndUseIt; ++UseIt) {
    430     // If the user is not an Instruction, we cannot modify it.
    431     if (!isa<Instruction>(*UseIt))
    432       continue;
    433 
    434     // Filter out uses that should not be converted.
    435     if (!shouldConvertUse(Val, cast<Instruction>(*UseIt), UseIt.getOperandNo()))
    436       continue;
    437 
    438     DEBUG(dbgs() << "Considered use, opidx " << UseIt.getOperandNo() << ":\n");
    439     DEBUG((*UseIt)->print(dbgs()));
    440     DEBUG(dbgs() << '\n');
    441 
    442     Instruction *InsertionPoint = findInsertionPoint(UseIt);
    443 
    444     DEBUG(dbgs() << "Considered insertion point:\n");
    445     DEBUG(InsertionPoint->print(dbgs()));
    446     DEBUG(dbgs() << '\n');
    447 
    448     // Check if the current insertion point is useless, i.e., it is dominated
    449     // by another one.
    450     InsertionPoints &InsertPts =
    451         InsPtsPerFunc[InsertionPoint->getParent()->getParent()];
    452     if (isDominated(InsertionPoint, UseIt, InsertPts))
    453       continue;
    454     // This insertion point is useful, check if we can merge some insertion
    455     // point in a common dominator or if NewPt dominates an existing one.
    456     if (tryAndMerge(InsertionPoint, UseIt, InsertPts))
    457       continue;
    458 
    459     DEBUG(dbgs() << "Keep considered insertion point\n");
    460 
    461     // It is definitely useful by its own
    462     InsertPts[InsertionPoint].push_back(UseIt);
    463   }
    464 }
    465 
    466 bool AArch64PromoteConstant::insertDefinitions(
    467     Constant *Cst, InsertionPointsPerFunc &InsPtsPerFunc) {
    468   // We will create one global variable per Module.
    469   DenseMap<Module *, GlobalVariable *> ModuleToMergedGV;
    470   bool HasChanged = false;
    471 
    472   // Traverse all insertion points in all the function.
    473   for (InsertionPointsPerFunc::iterator FctToInstPtsIt = InsPtsPerFunc.begin(),
    474                                         EndIt = InsPtsPerFunc.end();
    475        FctToInstPtsIt != EndIt; ++FctToInstPtsIt) {
    476     InsertionPoints &InsertPts = FctToInstPtsIt->second;
    477 // Do more checking for debug purposes.
    478 #ifndef NDEBUG
    479     DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
    480         *FctToInstPtsIt->first).getDomTree();
    481 #endif
    482     GlobalVariable *PromotedGV;
    483     assert(!InsertPts.empty() && "Empty uses does not need a definition");
    484 
    485     Module *M = FctToInstPtsIt->first->getParent();
    486     DenseMap<Module *, GlobalVariable *>::iterator MapIt =
    487         ModuleToMergedGV.find(M);
    488     if (MapIt == ModuleToMergedGV.end()) {
    489       PromotedGV = new GlobalVariable(
    490           *M, Cst->getType(), true, GlobalValue::InternalLinkage, nullptr,
    491           "_PromotedConst", nullptr, GlobalVariable::NotThreadLocal);
    492       PromotedGV->setInitializer(Cst);
    493       ModuleToMergedGV[M] = PromotedGV;
    494       DEBUG(dbgs() << "Global replacement: ");
    495       DEBUG(PromotedGV->print(dbgs()));
    496       DEBUG(dbgs() << '\n');
    497       ++NumPromoted;
    498       HasChanged = true;
    499     } else {
    500       PromotedGV = MapIt->second;
    501     }
    502 
    503     for (InsertionPoints::iterator IPI = InsertPts.begin(),
    504                                    EndIPI = InsertPts.end();
    505          IPI != EndIPI; ++IPI) {
    506       // Create the load of the global variable.
    507       IRBuilder<> Builder(IPI->first->getParent(), IPI->first);
    508       LoadInst *LoadedCst = Builder.CreateLoad(PromotedGV);
    509       DEBUG(dbgs() << "**********\n");
    510       DEBUG(dbgs() << "New def: ");
    511       DEBUG(LoadedCst->print(dbgs()));
    512       DEBUG(dbgs() << '\n');
    513 
    514       // Update the dominated uses.
    515       Users &DominatedUsers = IPI->second;
    516       for (Value::user_iterator Use : DominatedUsers) {
    517 #ifndef NDEBUG
    518         assert((DT.dominates(LoadedCst, cast<Instruction>(*Use)) ||
    519                 (isa<PHINode>(*Use) &&
    520                  DT.dominates(LoadedCst, findInsertionPoint(Use)))) &&
    521                "Inserted definition does not dominate all its uses!");
    522 #endif
    523         DEBUG(dbgs() << "Use to update " << Use.getOperandNo() << ":");
    524         DEBUG(Use->print(dbgs()));
    525         DEBUG(dbgs() << '\n');
    526         Use->setOperand(Use.getOperandNo(), LoadedCst);
    527         ++NumPromotedUses;
    528       }
    529     }
    530   }
    531   return HasChanged;
    532 }
    533 
    534 bool AArch64PromoteConstant::computeAndInsertDefinitions(Constant *Val) {
    535   InsertionPointsPerFunc InsertPtsPerFunc;
    536   computeInsertionPoints(Val, InsertPtsPerFunc);
    537   return insertDefinitions(Val, InsertPtsPerFunc);
    538 }
    539 
    540 bool AArch64PromoteConstant::promoteConstant(Constant *Cst) {
    541   assert(Cst && "Given variable is not a valid constant.");
    542 
    543   if (!shouldConvert(Cst))
    544     return false;
    545 
    546   DEBUG(dbgs() << "******************************\n");
    547   DEBUG(dbgs() << "Candidate constant: ");
    548   DEBUG(Cst->print(dbgs()));
    549   DEBUG(dbgs() << '\n');
    550 
    551   return computeAndInsertDefinitions(Cst);
    552 }
    553 
    554 bool AArch64PromoteConstant::runOnFunction(Function &F) {
    555   // Look for instructions using constant vector. Promote that constant to a
    556   // global variable. Create as few loads of this variable as possible and
    557   // update the uses accordingly.
    558   bool LocalChange = false;
    559   SmallSet<Constant *, 8> AlreadyChecked;
    560 
    561   for (auto &MBB : F) {
    562     for (auto &MI : MBB) {
    563       // Traverse the operand, looking for constant vectors. Replace them by a
    564       // load of a global variable of constant vector type.
    565       for (unsigned OpIdx = 0, EndOpIdx = MI.getNumOperands();
    566            OpIdx != EndOpIdx; ++OpIdx) {
    567         Constant *Cst = dyn_cast<Constant>(MI.getOperand(OpIdx));
    568         // There is no point in promoting global values as they are already
    569         // global. Do not promote constant expressions either, as they may
    570         // require some code expansion.
    571         if (Cst && !isa<GlobalValue>(Cst) && !isa<ConstantExpr>(Cst) &&
    572             AlreadyChecked.insert(Cst))
    573           LocalChange |= promoteConstant(Cst);
    574       }
    575     }
    576   }
    577   return LocalChange;
    578 }
    579