Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "nodes.h"
     18 #include "ssa_builder.h"
     19 #include "utils/growable_array.h"
     20 
     21 namespace art {
     22 
     23 void HGraph::AddBlock(HBasicBlock* block) {
     24   block->SetBlockId(blocks_.Size());
     25   blocks_.Add(block);
     26 }
     27 
     28 void HGraph::FindBackEdges(ArenaBitVector* visited) {
     29   ArenaBitVector visiting(arena_, blocks_.Size(), false);
     30   VisitBlockForBackEdges(entry_block_, visited, &visiting);
     31 }
     32 
     33 void HGraph::RemoveDeadBlocks(const ArenaBitVector& visited) const {
     34   for (size_t i = 0; i < blocks_.Size(); ++i) {
     35     if (!visited.IsBitSet(i)) {
     36       HBasicBlock* block = blocks_.Get(i);
     37       for (size_t j = 0; j < block->GetSuccessors().Size(); ++j) {
     38         block->GetSuccessors().Get(j)->RemovePredecessor(block);
     39       }
     40       for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
     41         block->RemovePhi(it.Current()->AsPhi());
     42       }
     43       for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
     44         block->RemoveInstruction(it.Current());
     45       }
     46     }
     47   }
     48 }
     49 
     50 void HGraph::VisitBlockForBackEdges(HBasicBlock* block,
     51                                     ArenaBitVector* visited,
     52                                     ArenaBitVector* visiting) {
     53   int id = block->GetBlockId();
     54   if (visited->IsBitSet(id)) return;
     55 
     56   visited->SetBit(id);
     57   visiting->SetBit(id);
     58   for (size_t i = 0; i < block->GetSuccessors().Size(); i++) {
     59     HBasicBlock* successor = block->GetSuccessors().Get(i);
     60     if (visiting->IsBitSet(successor->GetBlockId())) {
     61       successor->AddBackEdge(block);
     62     } else {
     63       VisitBlockForBackEdges(successor, visited, visiting);
     64     }
     65   }
     66   visiting->ClearBit(id);
     67 }
     68 
     69 void HGraph::BuildDominatorTree() {
     70   ArenaBitVector visited(arena_, blocks_.Size(), false);
     71 
     72   // (1) Find the back edges in the graph doing a DFS traversal.
     73   FindBackEdges(&visited);
     74 
     75   // (2) Remove blocks not visited during the initial DFS.
     76   //     Step (3) requires dead blocks to be removed from the
     77   //     predecessors list of live blocks.
     78   RemoveDeadBlocks(visited);
     79 
     80   // (3) Simplify the CFG now, so that we don't need to recompute
     81   //     dominators and the reverse post order.
     82   SimplifyCFG();
     83 
     84   // (4) Compute the immediate dominator of each block. We visit
     85   //     the successors of a block only when all its forward branches
     86   //     have been processed.
     87   GrowableArray<size_t> visits(arena_, blocks_.Size());
     88   visits.SetSize(blocks_.Size());
     89   reverse_post_order_.Add(entry_block_);
     90   for (size_t i = 0; i < entry_block_->GetSuccessors().Size(); i++) {
     91     VisitBlockForDominatorTree(entry_block_->GetSuccessors().Get(i), entry_block_, &visits);
     92   }
     93 }
     94 
     95 HBasicBlock* HGraph::FindCommonDominator(HBasicBlock* first, HBasicBlock* second) const {
     96   ArenaBitVector visited(arena_, blocks_.Size(), false);
     97   // Walk the dominator tree of the first block and mark the visited blocks.
     98   while (first != nullptr) {
     99     visited.SetBit(first->GetBlockId());
    100     first = first->GetDominator();
    101   }
    102   // Walk the dominator tree of the second block until a marked block is found.
    103   while (second != nullptr) {
    104     if (visited.IsBitSet(second->GetBlockId())) {
    105       return second;
    106     }
    107     second = second->GetDominator();
    108   }
    109   LOG(ERROR) << "Could not find common dominator";
    110   return nullptr;
    111 }
    112 
    113 void HGraph::VisitBlockForDominatorTree(HBasicBlock* block,
    114                                         HBasicBlock* predecessor,
    115                                         GrowableArray<size_t>* visits) {
    116   if (block->GetDominator() == nullptr) {
    117     block->SetDominator(predecessor);
    118   } else {
    119     block->SetDominator(FindCommonDominator(block->GetDominator(), predecessor));
    120   }
    121 
    122   visits->Increment(block->GetBlockId());
    123   // Once all the forward edges have been visited, we know the immediate
    124   // dominator of the block. We can then start visiting its successors.
    125   if (visits->Get(block->GetBlockId()) ==
    126       block->GetPredecessors().Size() - block->NumberOfBackEdges()) {
    127     reverse_post_order_.Add(block);
    128     for (size_t i = 0; i < block->GetSuccessors().Size(); i++) {
    129       VisitBlockForDominatorTree(block->GetSuccessors().Get(i), block, visits);
    130     }
    131   }
    132 }
    133 
    134 void HGraph::TransformToSSA() {
    135   DCHECK(!reverse_post_order_.IsEmpty());
    136   SsaBuilder ssa_builder(this);
    137   ssa_builder.BuildSsa();
    138 }
    139 
    140 void HGraph::SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor) {
    141   // Insert a new node between `block` and `successor` to split the
    142   // critical edge.
    143   HBasicBlock* new_block = new (arena_) HBasicBlock(this);
    144   AddBlock(new_block);
    145   new_block->AddInstruction(new (arena_) HGoto());
    146   block->ReplaceSuccessor(successor, new_block);
    147   new_block->AddSuccessor(successor);
    148   if (successor->IsLoopHeader()) {
    149     // If we split at a back edge boundary, make the new block the back edge.
    150     HLoopInformation* info = successor->GetLoopInformation();
    151     if (info->IsBackEdge(block)) {
    152       info->RemoveBackEdge(block);
    153       info->AddBackEdge(new_block);
    154     }
    155   }
    156 }
    157 
    158 void HGraph::SimplifyLoop(HBasicBlock* header) {
    159   HLoopInformation* info = header->GetLoopInformation();
    160 
    161   // If there are more than one back edge, make them branch to the same block that
    162   // will become the only back edge. This simplifies finding natural loops in the
    163   // graph.
    164   if (info->NumberOfBackEdges() > 1) {
    165     HBasicBlock* new_back_edge = new (arena_) HBasicBlock(this);
    166     AddBlock(new_back_edge);
    167     new_back_edge->AddInstruction(new (arena_) HGoto());
    168     for (size_t pred = 0, e = info->GetBackEdges().Size(); pred < e; ++pred) {
    169       HBasicBlock* back_edge = info->GetBackEdges().Get(pred);
    170       back_edge->ReplaceSuccessor(header, new_back_edge);
    171     }
    172     info->ClearBackEdges();
    173     info->AddBackEdge(new_back_edge);
    174     new_back_edge->AddSuccessor(header);
    175   }
    176 
    177   // Make sure the loop has only one pre header. This simplifies SSA building by having
    178   // to just look at the pre header to know which locals are initialized at entry of the
    179   // loop.
    180   size_t number_of_incomings = header->GetPredecessors().Size() - info->NumberOfBackEdges();
    181   if (number_of_incomings != 1) {
    182     HBasicBlock* pre_header = new (arena_) HBasicBlock(this);
    183     AddBlock(pre_header);
    184     pre_header->AddInstruction(new (arena_) HGoto());
    185 
    186     ArenaBitVector back_edges(arena_, GetBlocks().Size(), false);
    187     HBasicBlock* back_edge = info->GetBackEdges().Get(0);
    188     for (size_t pred = 0; pred < header->GetPredecessors().Size(); ++pred) {
    189       HBasicBlock* predecessor = header->GetPredecessors().Get(pred);
    190       if (predecessor != back_edge) {
    191         predecessor->ReplaceSuccessor(header, pre_header);
    192         pred--;
    193       }
    194     }
    195     pre_header->AddSuccessor(header);
    196   }
    197 }
    198 
    199 void HGraph::SimplifyCFG() {
    200   // Simplify the CFG for future analysis, and code generation:
    201   // (1): Split critical edges.
    202   // (2): Simplify loops by having only one back edge, and one preheader.
    203   for (size_t i = 0; i < blocks_.Size(); ++i) {
    204     HBasicBlock* block = blocks_.Get(i);
    205     if (block->GetSuccessors().Size() > 1) {
    206       for (size_t j = 0; j < block->GetSuccessors().Size(); ++j) {
    207         HBasicBlock* successor = block->GetSuccessors().Get(j);
    208         if (successor->GetPredecessors().Size() > 1) {
    209           SplitCriticalEdge(block, successor);
    210           --j;
    211         }
    212       }
    213     }
    214     if (block->IsLoopHeader()) {
    215       SimplifyLoop(block);
    216     }
    217   }
    218 }
    219 
    220 bool HGraph::FindNaturalLoops() const {
    221   for (size_t i = 0; i < blocks_.Size(); ++i) {
    222     HBasicBlock* block = blocks_.Get(i);
    223     if (block->IsLoopHeader()) {
    224       HLoopInformation* info = block->GetLoopInformation();
    225       if (!info->Populate()) {
    226         // Abort if the loop is non natural. We currently bailout in such cases.
    227         return false;
    228       }
    229     }
    230   }
    231   return true;
    232 }
    233 
    234 void HLoopInformation::PopulateRecursive(HBasicBlock* block) {
    235   if (blocks_.IsBitSet(block->GetBlockId())) {
    236     return;
    237   }
    238 
    239   blocks_.SetBit(block->GetBlockId());
    240   block->SetInLoop(this);
    241   for (size_t i = 0, e = block->GetPredecessors().Size(); i < e; ++i) {
    242     PopulateRecursive(block->GetPredecessors().Get(i));
    243   }
    244 }
    245 
    246 bool HLoopInformation::Populate() {
    247   DCHECK_EQ(GetBackEdges().Size(), 1u);
    248   HBasicBlock* back_edge = GetBackEdges().Get(0);
    249   DCHECK(back_edge->GetDominator() != nullptr);
    250   if (!header_->Dominates(back_edge)) {
    251     // This loop is not natural. Do not bother going further.
    252     return false;
    253   }
    254 
    255   // Populate this loop: starting with the back edge, recursively add predecessors
    256   // that are not already part of that loop. Set the header as part of the loop
    257   // to end the recursion.
    258   // This is a recursive implementation of the algorithm described in
    259   // "Advanced Compiler Design & Implementation" (Muchnick) p192.
    260   blocks_.SetBit(header_->GetBlockId());
    261   PopulateRecursive(back_edge);
    262   return true;
    263 }
    264 
    265 HBasicBlock* HLoopInformation::GetPreHeader() const {
    266   DCHECK_EQ(header_->GetPredecessors().Size(), 2u);
    267   return header_->GetDominator();
    268 }
    269 
    270 bool HLoopInformation::Contains(const HBasicBlock& block) const {
    271   return blocks_.IsBitSet(block.GetBlockId());
    272 }
    273 
    274 bool HLoopInformation::IsIn(const HLoopInformation& other) const {
    275   return other.blocks_.IsBitSet(header_->GetBlockId());
    276 }
    277 
    278 bool HBasicBlock::Dominates(HBasicBlock* other) const {
    279   // Walk up the dominator tree from `other`, to find out if `this`
    280   // is an ancestor.
    281   HBasicBlock* current = other;
    282   while (current != nullptr) {
    283     if (current == this) {
    284       return true;
    285     }
    286     current = current->GetDominator();
    287   }
    288   return false;
    289 }
    290 
    291 void HBasicBlock::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
    292   DCHECK(cursor->AsPhi() == nullptr);
    293   DCHECK(instruction->AsPhi() == nullptr);
    294   DCHECK_EQ(instruction->GetId(), -1);
    295   DCHECK_NE(cursor->GetId(), -1);
    296   DCHECK_EQ(cursor->GetBlock(), this);
    297   DCHECK(!instruction->IsControlFlow());
    298   instruction->next_ = cursor;
    299   instruction->previous_ = cursor->previous_;
    300   cursor->previous_ = instruction;
    301   if (GetFirstInstruction() == cursor) {
    302     instructions_.first_instruction_ = instruction;
    303   } else {
    304     instruction->previous_->next_ = instruction;
    305   }
    306   instruction->SetBlock(this);
    307   instruction->SetId(GetGraph()->GetNextInstructionId());
    308 }
    309 
    310 static void Add(HInstructionList* instruction_list,
    311                 HBasicBlock* block,
    312                 HInstruction* instruction) {
    313   DCHECK(instruction->GetBlock() == nullptr);
    314   DCHECK_EQ(instruction->GetId(), -1);
    315   instruction->SetBlock(block);
    316   instruction->SetId(block->GetGraph()->GetNextInstructionId());
    317   instruction_list->AddInstruction(instruction);
    318 }
    319 
    320 void HBasicBlock::AddInstruction(HInstruction* instruction) {
    321   Add(&instructions_, this, instruction);
    322 }
    323 
    324 void HBasicBlock::AddPhi(HPhi* phi) {
    325   Add(&phis_, this, phi);
    326 }
    327 
    328 static void Remove(HInstructionList* instruction_list,
    329                    HBasicBlock* block,
    330                    HInstruction* instruction) {
    331   DCHECK_EQ(block, instruction->GetBlock());
    332   DCHECK(instruction->GetUses() == nullptr);
    333   DCHECK(instruction->GetEnvUses() == nullptr);
    334   instruction->SetBlock(nullptr);
    335   instruction_list->RemoveInstruction(instruction);
    336 
    337   for (size_t i = 0; i < instruction->InputCount(); i++) {
    338     instruction->InputAt(i)->RemoveUser(instruction, i);
    339   }
    340 }
    341 
    342 void HBasicBlock::RemoveInstruction(HInstruction* instruction) {
    343   Remove(&instructions_, this, instruction);
    344 }
    345 
    346 void HBasicBlock::RemovePhi(HPhi* phi) {
    347   Remove(&phis_, this, phi);
    348 }
    349 
    350 void HInstruction::RemoveUser(HInstruction* user, size_t input_index) {
    351   HUseListNode<HInstruction>* previous = nullptr;
    352   HUseListNode<HInstruction>* current = uses_;
    353   while (current != nullptr) {
    354     if (current->GetUser() == user && current->GetIndex() == input_index) {
    355       if (previous == NULL) {
    356         uses_ = current->GetTail();
    357       } else {
    358         previous->SetTail(current->GetTail());
    359       }
    360     }
    361     previous = current;
    362     current = current->GetTail();
    363   }
    364 }
    365 
    366 void HInstructionList::AddInstruction(HInstruction* instruction) {
    367   if (first_instruction_ == nullptr) {
    368     DCHECK(last_instruction_ == nullptr);
    369     first_instruction_ = last_instruction_ = instruction;
    370   } else {
    371     last_instruction_->next_ = instruction;
    372     instruction->previous_ = last_instruction_;
    373     last_instruction_ = instruction;
    374   }
    375   for (size_t i = 0; i < instruction->InputCount(); i++) {
    376     instruction->InputAt(i)->AddUseAt(instruction, i);
    377   }
    378 }
    379 
    380 void HInstructionList::RemoveInstruction(HInstruction* instruction) {
    381   if (instruction->previous_ != nullptr) {
    382     instruction->previous_->next_ = instruction->next_;
    383   }
    384   if (instruction->next_ != nullptr) {
    385     instruction->next_->previous_ = instruction->previous_;
    386   }
    387   if (instruction == first_instruction_) {
    388     first_instruction_ = instruction->next_;
    389   }
    390   if (instruction == last_instruction_) {
    391     last_instruction_ = instruction->previous_;
    392   }
    393 }
    394 
    395 void HInstruction::ReplaceWith(HInstruction* other) {
    396   DCHECK(other != nullptr);
    397   for (HUseIterator<HInstruction> it(GetUses()); !it.Done(); it.Advance()) {
    398     HUseListNode<HInstruction>* current = it.Current();
    399     HInstruction* user = current->GetUser();
    400     size_t input_index = current->GetIndex();
    401     user->SetRawInputAt(input_index, other);
    402     other->AddUseAt(user, input_index);
    403   }
    404 
    405   for (HUseIterator<HEnvironment> it(GetEnvUses()); !it.Done(); it.Advance()) {
    406     HUseListNode<HEnvironment>* current = it.Current();
    407     HEnvironment* user = current->GetUser();
    408     size_t input_index = current->GetIndex();
    409     user->SetRawEnvAt(input_index, other);
    410     other->AddEnvUseAt(user, input_index);
    411   }
    412 
    413   uses_ = nullptr;
    414   env_uses_ = nullptr;
    415 }
    416 
    417 void HPhi::AddInput(HInstruction* input) {
    418   DCHECK(input->GetBlock() != nullptr);
    419   inputs_.Add(input);
    420   input->AddUseAt(this, inputs_.Size() - 1);
    421 }
    422 
    423 #define DEFINE_ACCEPT(name)                                                    \
    424 void H##name::Accept(HGraphVisitor* visitor) {                                 \
    425   visitor->Visit##name(this);                                                  \
    426 }
    427 
    428 FOR_EACH_INSTRUCTION(DEFINE_ACCEPT)
    429 
    430 #undef DEFINE_ACCEPT
    431 
    432 void HGraphVisitor::VisitInsertionOrder() {
    433   const GrowableArray<HBasicBlock*>& blocks = graph_->GetBlocks();
    434   for (size_t i = 0 ; i < blocks.Size(); i++) {
    435     VisitBasicBlock(blocks.Get(i));
    436   }
    437 }
    438 
    439 void HGraphVisitor::VisitBasicBlock(HBasicBlock* block) {
    440   for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
    441     it.Current()->Accept(this);
    442   }
    443   for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
    444     it.Current()->Accept(this);
    445   }
    446 }
    447 
    448 
    449 bool HCondition::NeedsMaterialization() const {
    450   if (!HasOnlyOneUse()) {
    451     return true;
    452   }
    453   HUseListNode<HInstruction>* uses = GetUses();
    454   HInstruction* user = uses->GetUser();
    455   if (!user->IsIf()) {
    456     return true;
    457   }
    458 
    459   // TODO: should we allow intervening instructions with no side-effect between this condition
    460   // and the If instruction?
    461   if (GetNext() != user) {
    462     return true;
    463   }
    464   return false;
    465 }
    466 
    467 }  // namespace art
    468