1 // Internal policy header for unordered_set and unordered_map -*- C++ -*- 2 3 // Copyright (C) 2010-2014 Free Software Foundation, Inc. 4 // 5 // This file is part of the GNU ISO C++ Library. This library is free 6 // software; you can redistribute it and/or modify it under the 7 // terms of the GNU General Public License as published by the 8 // Free Software Foundation; either version 3, or (at your option) 9 // any later version. 10 11 // This library is distributed in the hope that it will be useful, 12 // but WITHOUT ANY WARRANTY; without even the implied warranty of 13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 // GNU General Public License for more details. 15 16 // Under Section 7 of GPL version 3, you are granted additional 17 // permissions described in the GCC Runtime Library Exception, version 18 // 3.1, as published by the Free Software Foundation. 19 20 // You should have received a copy of the GNU General Public License and 21 // a copy of the GCC Runtime Library Exception along with this program; 22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 23 // <http://www.gnu.org/licenses/>. 24 25 /** @file bits/hashtable_policy.h 26 * This is an internal header file, included by other library headers. 27 * Do not attempt to use it directly. 28 * @headername{unordered_map,unordered_set} 29 */ 30 31 #ifndef _HASHTABLE_POLICY_H 32 #define _HASHTABLE_POLICY_H 1 33 34 namespace std _GLIBCXX_VISIBILITY(default) 35 { 36 _GLIBCXX_BEGIN_NAMESPACE_VERSION 37 38 template<typename _Key, typename _Value, typename _Alloc, 39 typename _ExtractKey, typename _Equal, 40 typename _H1, typename _H2, typename _Hash, 41 typename _RehashPolicy, typename _Traits> 42 class _Hashtable; 43 44 _GLIBCXX_END_NAMESPACE_VERSION 45 46 namespace __detail 47 { 48 _GLIBCXX_BEGIN_NAMESPACE_VERSION 49 50 /** 51 * @defgroup hashtable-detail Base and Implementation Classes 52 * @ingroup unordered_associative_containers 53 * @{ 54 */ 55 template<typename _Key, typename _Value, 56 typename _ExtractKey, typename _Equal, 57 typename _H1, typename _H2, typename _Hash, typename _Traits> 58 struct _Hashtable_base; 59 60 // Helper function: return distance(first, last) for forward 61 // iterators, or 0 for input iterators. 62 template<class _Iterator> 63 inline typename std::iterator_traits<_Iterator>::difference_type 64 __distance_fw(_Iterator __first, _Iterator __last, 65 std::input_iterator_tag) 66 { return 0; } 67 68 template<class _Iterator> 69 inline typename std::iterator_traits<_Iterator>::difference_type 70 __distance_fw(_Iterator __first, _Iterator __last, 71 std::forward_iterator_tag) 72 { return std::distance(__first, __last); } 73 74 template<class _Iterator> 75 inline typename std::iterator_traits<_Iterator>::difference_type 76 __distance_fw(_Iterator __first, _Iterator __last) 77 { 78 typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag; 79 return __distance_fw(__first, __last, _Tag()); 80 } 81 82 // Helper type used to detect whether the hash functor is noexcept. 83 template <typename _Key, typename _Hash> 84 struct __is_noexcept_hash : std::integral_constant<bool, 85 noexcept(declval<const _Hash&>()(declval<const _Key&>()))> 86 { }; 87 88 struct _Identity 89 { 90 template<typename _Tp> 91 _Tp&& 92 operator()(_Tp&& __x) const 93 { return std::forward<_Tp>(__x); } 94 }; 95 96 struct _Select1st 97 { 98 template<typename _Tp> 99 auto 100 operator()(_Tp&& __x) const 101 -> decltype(std::get<0>(std::forward<_Tp>(__x))) 102 { return std::get<0>(std::forward<_Tp>(__x)); } 103 }; 104 105 template<typename _NodeAlloc> 106 struct _Hashtable_alloc; 107 108 // Functor recycling a pool of nodes and using allocation once the pool is 109 // empty. 110 template<typename _NodeAlloc> 111 struct _ReuseOrAllocNode 112 { 113 private: 114 using __node_alloc_type = _NodeAlloc; 115 using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>; 116 using __value_alloc_type = typename __hashtable_alloc::__value_alloc_type; 117 using __value_alloc_traits = 118 typename __hashtable_alloc::__value_alloc_traits; 119 using __node_alloc_traits = 120 typename __hashtable_alloc::__node_alloc_traits; 121 using __node_type = typename __hashtable_alloc::__node_type; 122 123 public: 124 _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h) 125 : _M_nodes(__nodes), _M_h(__h) { } 126 _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete; 127 128 ~_ReuseOrAllocNode() 129 { _M_h._M_deallocate_nodes(_M_nodes); } 130 131 template<typename _Arg> 132 __node_type* 133 operator()(_Arg&& __arg) const 134 { 135 if (_M_nodes) 136 { 137 __node_type* __node = _M_nodes; 138 _M_nodes = _M_nodes->_M_next(); 139 __node->_M_nxt = nullptr; 140 __value_alloc_type __a(_M_h._M_node_allocator()); 141 __value_alloc_traits::destroy(__a, __node->_M_valptr()); 142 __try 143 { 144 __value_alloc_traits::construct(__a, __node->_M_valptr(), 145 std::forward<_Arg>(__arg)); 146 } 147 __catch(...) 148 { 149 __node->~__node_type(); 150 __node_alloc_traits::deallocate(_M_h._M_node_allocator(), 151 __node, 1); 152 __throw_exception_again; 153 } 154 return __node; 155 } 156 return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); 157 } 158 159 private: 160 mutable __node_type* _M_nodes; 161 __hashtable_alloc& _M_h; 162 }; 163 164 // Functor similar to the previous one but without any pool of nodes to 165 // recycle. 166 template<typename _NodeAlloc> 167 struct _AllocNode 168 { 169 private: 170 using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>; 171 using __node_type = typename __hashtable_alloc::__node_type; 172 173 public: 174 _AllocNode(__hashtable_alloc& __h) 175 : _M_h(__h) { } 176 177 template<typename _Arg> 178 __node_type* 179 operator()(_Arg&& __arg) const 180 { return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); } 181 182 private: 183 __hashtable_alloc& _M_h; 184 }; 185 186 // Auxiliary types used for all instantiations of _Hashtable nodes 187 // and iterators. 188 189 /** 190 * struct _Hashtable_traits 191 * 192 * Important traits for hash tables. 193 * 194 * @tparam _Cache_hash_code Boolean value. True if the value of 195 * the hash function is stored along with the value. This is a 196 * time-space tradeoff. Storing it may improve lookup speed by 197 * reducing the number of times we need to call the _Equal 198 * function. 199 * 200 * @tparam _Constant_iterators Boolean value. True if iterator and 201 * const_iterator are both constant iterator types. This is true 202 * for unordered_set and unordered_multiset, false for 203 * unordered_map and unordered_multimap. 204 * 205 * @tparam _Unique_keys Boolean value. True if the return value 206 * of _Hashtable::count(k) is always at most one, false if it may 207 * be an arbitrary number. This is true for unordered_set and 208 * unordered_map, false for unordered_multiset and 209 * unordered_multimap. 210 */ 211 template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys> 212 struct _Hashtable_traits 213 { 214 template<bool _Cond> 215 using __bool_constant = integral_constant<bool, _Cond>; 216 217 using __hash_cached = __bool_constant<_Cache_hash_code>; 218 using __constant_iterators = __bool_constant<_Constant_iterators>; 219 using __unique_keys = __bool_constant<_Unique_keys>; 220 }; 221 222 /** 223 * struct _Hash_node_base 224 * 225 * Nodes, used to wrap elements stored in the hash table. A policy 226 * template parameter of class template _Hashtable controls whether 227 * nodes also store a hash code. In some cases (e.g. strings) this 228 * may be a performance win. 229 */ 230 struct _Hash_node_base 231 { 232 _Hash_node_base* _M_nxt; 233 234 _Hash_node_base() noexcept : _M_nxt() { } 235 236 _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { } 237 }; 238 239 /** 240 * struct _Hash_node_value_base 241 * 242 * Node type with the value to store. 243 */ 244 template<typename _Value> 245 struct _Hash_node_value_base : _Hash_node_base 246 { 247 typedef _Value value_type; 248 249 __gnu_cxx::__aligned_buffer<_Value> _M_storage; 250 251 _Value* 252 _M_valptr() noexcept 253 { return _M_storage._M_ptr(); } 254 255 const _Value* 256 _M_valptr() const noexcept 257 { return _M_storage._M_ptr(); } 258 259 _Value& 260 _M_v() noexcept 261 { return *_M_valptr(); } 262 263 const _Value& 264 _M_v() const noexcept 265 { return *_M_valptr(); } 266 }; 267 268 /** 269 * Primary template struct _Hash_node. 270 */ 271 template<typename _Value, bool _Cache_hash_code> 272 struct _Hash_node; 273 274 /** 275 * Specialization for nodes with caches, struct _Hash_node. 276 * 277 * Base class is __detail::_Hash_node_value_base. 278 */ 279 template<typename _Value> 280 struct _Hash_node<_Value, true> : _Hash_node_value_base<_Value> 281 { 282 std::size_t _M_hash_code; 283 284 _Hash_node* 285 _M_next() const noexcept 286 { return static_cast<_Hash_node*>(this->_M_nxt); } 287 }; 288 289 /** 290 * Specialization for nodes without caches, struct _Hash_node. 291 * 292 * Base class is __detail::_Hash_node_value_base. 293 */ 294 template<typename _Value> 295 struct _Hash_node<_Value, false> : _Hash_node_value_base<_Value> 296 { 297 _Hash_node* 298 _M_next() const noexcept 299 { return static_cast<_Hash_node*>(this->_M_nxt); } 300 }; 301 302 /// Base class for node iterators. 303 template<typename _Value, bool _Cache_hash_code> 304 struct _Node_iterator_base 305 { 306 using __node_type = _Hash_node<_Value, _Cache_hash_code>; 307 308 __node_type* _M_cur; 309 310 _Node_iterator_base(__node_type* __p) noexcept 311 : _M_cur(__p) { } 312 313 void 314 _M_incr() noexcept 315 { _M_cur = _M_cur->_M_next(); } 316 }; 317 318 template<typename _Value, bool _Cache_hash_code> 319 inline bool 320 operator==(const _Node_iterator_base<_Value, _Cache_hash_code>& __x, 321 const _Node_iterator_base<_Value, _Cache_hash_code >& __y) 322 noexcept 323 { return __x._M_cur == __y._M_cur; } 324 325 template<typename _Value, bool _Cache_hash_code> 326 inline bool 327 operator!=(const _Node_iterator_base<_Value, _Cache_hash_code>& __x, 328 const _Node_iterator_base<_Value, _Cache_hash_code>& __y) 329 noexcept 330 { return __x._M_cur != __y._M_cur; } 331 332 /// Node iterators, used to iterate through all the hashtable. 333 template<typename _Value, bool __constant_iterators, bool __cache> 334 struct _Node_iterator 335 : public _Node_iterator_base<_Value, __cache> 336 { 337 private: 338 using __base_type = _Node_iterator_base<_Value, __cache>; 339 using __node_type = typename __base_type::__node_type; 340 341 public: 342 typedef _Value value_type; 343 typedef std::ptrdiff_t difference_type; 344 typedef std::forward_iterator_tag iterator_category; 345 346 using pointer = typename std::conditional<__constant_iterators, 347 const _Value*, _Value*>::type; 348 349 using reference = typename std::conditional<__constant_iterators, 350 const _Value&, _Value&>::type; 351 352 _Node_iterator() noexcept 353 : __base_type(0) { } 354 355 explicit 356 _Node_iterator(__node_type* __p) noexcept 357 : __base_type(__p) { } 358 359 reference 360 operator*() const noexcept 361 { return this->_M_cur->_M_v(); } 362 363 pointer 364 operator->() const noexcept 365 { return this->_M_cur->_M_valptr(); } 366 367 _Node_iterator& 368 operator++() noexcept 369 { 370 this->_M_incr(); 371 return *this; 372 } 373 374 _Node_iterator 375 operator++(int) noexcept 376 { 377 _Node_iterator __tmp(*this); 378 this->_M_incr(); 379 return __tmp; 380 } 381 }; 382 383 /// Node const_iterators, used to iterate through all the hashtable. 384 template<typename _Value, bool __constant_iterators, bool __cache> 385 struct _Node_const_iterator 386 : public _Node_iterator_base<_Value, __cache> 387 { 388 private: 389 using __base_type = _Node_iterator_base<_Value, __cache>; 390 using __node_type = typename __base_type::__node_type; 391 392 public: 393 typedef _Value value_type; 394 typedef std::ptrdiff_t difference_type; 395 typedef std::forward_iterator_tag iterator_category; 396 397 typedef const _Value* pointer; 398 typedef const _Value& reference; 399 400 _Node_const_iterator() noexcept 401 : __base_type(0) { } 402 403 explicit 404 _Node_const_iterator(__node_type* __p) noexcept 405 : __base_type(__p) { } 406 407 _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators, 408 __cache>& __x) noexcept 409 : __base_type(__x._M_cur) { } 410 411 reference 412 operator*() const noexcept 413 { return this->_M_cur->_M_v(); } 414 415 pointer 416 operator->() const noexcept 417 { return this->_M_cur->_M_valptr(); } 418 419 _Node_const_iterator& 420 operator++() noexcept 421 { 422 this->_M_incr(); 423 return *this; 424 } 425 426 _Node_const_iterator 427 operator++(int) noexcept 428 { 429 _Node_const_iterator __tmp(*this); 430 this->_M_incr(); 431 return __tmp; 432 } 433 }; 434 435 // Many of class template _Hashtable's template parameters are policy 436 // classes. These are defaults for the policies. 437 438 /// Default range hashing function: use division to fold a large number 439 /// into the range [0, N). 440 struct _Mod_range_hashing 441 { 442 typedef std::size_t first_argument_type; 443 typedef std::size_t second_argument_type; 444 typedef std::size_t result_type; 445 446 result_type 447 operator()(first_argument_type __num, 448 second_argument_type __den) const noexcept 449 { return __num % __den; } 450 }; 451 452 /// Default ranged hash function H. In principle it should be a 453 /// function object composed from objects of type H1 and H2 such that 454 /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of 455 /// h1 and h2. So instead we'll just use a tag to tell class template 456 /// hashtable to do that composition. 457 struct _Default_ranged_hash { }; 458 459 /// Default value for rehash policy. Bucket size is (usually) the 460 /// smallest prime that keeps the load factor small enough. 461 struct _Prime_rehash_policy 462 { 463 _Prime_rehash_policy(float __z = 1.0) 464 : _M_max_load_factor(__z), _M_next_resize(0) { } 465 466 float 467 max_load_factor() const noexcept 468 { return _M_max_load_factor; } 469 470 // Return a bucket size no smaller than n. 471 std::size_t 472 _M_next_bkt(std::size_t __n) const; 473 474 // Return a bucket count appropriate for n elements 475 std::size_t 476 _M_bkt_for_elements(std::size_t __n) const 477 { return __builtin_ceil(__n / (long double)_M_max_load_factor); } 478 479 // __n_bkt is current bucket count, __n_elt is current element count, 480 // and __n_ins is number of elements to be inserted. Do we need to 481 // increase bucket count? If so, return make_pair(true, n), where n 482 // is the new bucket count. If not, return make_pair(false, 0). 483 std::pair<bool, std::size_t> 484 _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, 485 std::size_t __n_ins) const; 486 487 typedef std::size_t _State; 488 489 _State 490 _M_state() const 491 { return _M_next_resize; } 492 493 void 494 _M_reset() noexcept 495 { _M_next_resize = 0; } 496 497 void 498 _M_reset(_State __state) 499 { _M_next_resize = __state; } 500 501 enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 }; 502 503 static const std::size_t _S_growth_factor = 2; 504 505 float _M_max_load_factor; 506 mutable std::size_t _M_next_resize; 507 }; 508 509 // Base classes for std::_Hashtable. We define these base classes 510 // because in some cases we want to do different things depending on 511 // the value of a policy class. In some cases the policy class 512 // affects which member functions and nested typedefs are defined; 513 // we handle that by specializing base class templates. Several of 514 // the base class templates need to access other members of class 515 // template _Hashtable, so we use a variant of the "Curiously 516 // Recurring Template Pattern" (CRTP) technique. 517 518 /** 519 * Primary class template _Map_base. 520 * 521 * If the hashtable has a value type of the form pair<T1, T2> and a 522 * key extraction policy (_ExtractKey) that returns the first part 523 * of the pair, the hashtable gets a mapped_type typedef. If it 524 * satisfies those criteria and also has unique keys, then it also 525 * gets an operator[]. 526 */ 527 template<typename _Key, typename _Value, typename _Alloc, 528 typename _ExtractKey, typename _Equal, 529 typename _H1, typename _H2, typename _Hash, 530 typename _RehashPolicy, typename _Traits, 531 bool _Unique_keys = _Traits::__unique_keys::value> 532 struct _Map_base { }; 533 534 /// Partial specialization, __unique_keys set to false. 535 template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, 536 typename _H1, typename _H2, typename _Hash, 537 typename _RehashPolicy, typename _Traits> 538 struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, 539 _H1, _H2, _Hash, _RehashPolicy, _Traits, false> 540 { 541 using mapped_type = typename std::tuple_element<1, _Pair>::type; 542 }; 543 544 /// Partial specialization, __unique_keys set to true. 545 template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, 546 typename _H1, typename _H2, typename _Hash, 547 typename _RehashPolicy, typename _Traits> 548 struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, 549 _H1, _H2, _Hash, _RehashPolicy, _Traits, true> 550 { 551 private: 552 using __hashtable_base = __detail::_Hashtable_base<_Key, _Pair, 553 _Select1st, 554 _Equal, _H1, _H2, _Hash, 555 _Traits>; 556 557 using __hashtable = _Hashtable<_Key, _Pair, _Alloc, 558 _Select1st, _Equal, 559 _H1, _H2, _Hash, _RehashPolicy, _Traits>; 560 561 using __hash_code = typename __hashtable_base::__hash_code; 562 using __node_type = typename __hashtable_base::__node_type; 563 564 public: 565 using key_type = typename __hashtable_base::key_type; 566 using iterator = typename __hashtable_base::iterator; 567 using mapped_type = typename std::tuple_element<1, _Pair>::type; 568 569 mapped_type& 570 operator[](const key_type& __k); 571 572 mapped_type& 573 operator[](key_type&& __k); 574 575 // _GLIBCXX_RESOLVE_LIB_DEFECTS 576 // DR 761. unordered_map needs an at() member function. 577 mapped_type& 578 at(const key_type& __k); 579 580 const mapped_type& 581 at(const key_type& __k) const; 582 }; 583 584 template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, 585 typename _H1, typename _H2, typename _Hash, 586 typename _RehashPolicy, typename _Traits> 587 typename _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, 588 _H1, _H2, _Hash, _RehashPolicy, _Traits, true> 589 ::mapped_type& 590 _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, 591 _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: 592 operator[](const key_type& __k) 593 { 594 __hashtable* __h = static_cast<__hashtable*>(this); 595 __hash_code __code = __h->_M_hash_code(__k); 596 std::size_t __n = __h->_M_bucket_index(__k, __code); 597 __node_type* __p = __h->_M_find_node(__n, __k, __code); 598 599 if (!__p) 600 { 601 __p = __h->_M_allocate_node(std::piecewise_construct, 602 std::tuple<const key_type&>(__k), 603 std::tuple<>()); 604 return __h->_M_insert_unique_node(__n, __code, __p)->second; 605 } 606 607 return __p->_M_v().second; 608 } 609 610 template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, 611 typename _H1, typename _H2, typename _Hash, 612 typename _RehashPolicy, typename _Traits> 613 typename _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, 614 _H1, _H2, _Hash, _RehashPolicy, _Traits, true> 615 ::mapped_type& 616 _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, 617 _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: 618 operator[](key_type&& __k) 619 { 620 __hashtable* __h = static_cast<__hashtable*>(this); 621 __hash_code __code = __h->_M_hash_code(__k); 622 std::size_t __n = __h->_M_bucket_index(__k, __code); 623 __node_type* __p = __h->_M_find_node(__n, __k, __code); 624 625 if (!__p) 626 { 627 __p = __h->_M_allocate_node(std::piecewise_construct, 628 std::forward_as_tuple(std::move(__k)), 629 std::tuple<>()); 630 return __h->_M_insert_unique_node(__n, __code, __p)->second; 631 } 632 633 return __p->_M_v().second; 634 } 635 636 template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, 637 typename _H1, typename _H2, typename _Hash, 638 typename _RehashPolicy, typename _Traits> 639 typename _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, 640 _H1, _H2, _Hash, _RehashPolicy, _Traits, true> 641 ::mapped_type& 642 _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, 643 _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: 644 at(const key_type& __k) 645 { 646 __hashtable* __h = static_cast<__hashtable*>(this); 647 __hash_code __code = __h->_M_hash_code(__k); 648 std::size_t __n = __h->_M_bucket_index(__k, __code); 649 __node_type* __p = __h->_M_find_node(__n, __k, __code); 650 651 if (!__p) 652 __throw_out_of_range(__N("_Map_base::at")); 653 return __p->_M_v().second; 654 } 655 656 template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, 657 typename _H1, typename _H2, typename _Hash, 658 typename _RehashPolicy, typename _Traits> 659 const typename _Map_base<_Key, _Pair, _Alloc, _Select1st, 660 _Equal, _H1, _H2, _Hash, _RehashPolicy, 661 _Traits, true>::mapped_type& 662 _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, 663 _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: 664 at(const key_type& __k) const 665 { 666 const __hashtable* __h = static_cast<const __hashtable*>(this); 667 __hash_code __code = __h->_M_hash_code(__k); 668 std::size_t __n = __h->_M_bucket_index(__k, __code); 669 __node_type* __p = __h->_M_find_node(__n, __k, __code); 670 671 if (!__p) 672 __throw_out_of_range(__N("_Map_base::at")); 673 return __p->_M_v().second; 674 } 675 676 /** 677 * Primary class template _Insert_base. 678 * 679 * insert member functions appropriate to all _Hashtables. 680 */ 681 template<typename _Key, typename _Value, typename _Alloc, 682 typename _ExtractKey, typename _Equal, 683 typename _H1, typename _H2, typename _Hash, 684 typename _RehashPolicy, typename _Traits> 685 struct _Insert_base 686 { 687 protected: 688 using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, 689 _Equal, _H1, _H2, _Hash, 690 _RehashPolicy, _Traits>; 691 692 using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey, 693 _Equal, _H1, _H2, _Hash, 694 _Traits>; 695 696 using value_type = typename __hashtable_base::value_type; 697 using iterator = typename __hashtable_base::iterator; 698 using const_iterator = typename __hashtable_base::const_iterator; 699 using size_type = typename __hashtable_base::size_type; 700 701 using __unique_keys = typename __hashtable_base::__unique_keys; 702 using __ireturn_type = typename __hashtable_base::__ireturn_type; 703 using __node_type = _Hash_node<_Value, _Traits::__hash_cached::value>; 704 using __node_alloc_type = 705 typename __alloctr_rebind<_Alloc, __node_type>::__type; 706 using __node_gen_type = _AllocNode<__node_alloc_type>; 707 708 __hashtable& 709 _M_conjure_hashtable() 710 { return *(static_cast<__hashtable*>(this)); } 711 712 template<typename _InputIterator, typename _NodeGetter> 713 void 714 _M_insert_range(_InputIterator __first, _InputIterator __last, 715 const _NodeGetter&); 716 717 public: 718 __ireturn_type 719 insert(const value_type& __v) 720 { 721 __hashtable& __h = _M_conjure_hashtable(); 722 __node_gen_type __node_gen(__h); 723 return __h._M_insert(__v, __node_gen, __unique_keys()); 724 } 725 726 iterator 727 insert(const_iterator __hint, const value_type& __v) 728 { 729 __hashtable& __h = _M_conjure_hashtable(); 730 __node_gen_type __node_gen(__h); 731 return __h._M_insert(__hint, __v, __node_gen, __unique_keys()); 732 } 733 734 void 735 insert(initializer_list<value_type> __l) 736 { this->insert(__l.begin(), __l.end()); } 737 738 template<typename _InputIterator> 739 void 740 insert(_InputIterator __first, _InputIterator __last) 741 { 742 __hashtable& __h = _M_conjure_hashtable(); 743 __node_gen_type __node_gen(__h); 744 return _M_insert_range(__first, __last, __node_gen); 745 } 746 }; 747 748 template<typename _Key, typename _Value, typename _Alloc, 749 typename _ExtractKey, typename _Equal, 750 typename _H1, typename _H2, typename _Hash, 751 typename _RehashPolicy, typename _Traits> 752 template<typename _InputIterator, typename _NodeGetter> 753 void 754 _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, 755 _RehashPolicy, _Traits>:: 756 _M_insert_range(_InputIterator __first, _InputIterator __last, 757 const _NodeGetter& __node_gen) 758 { 759 using __rehash_type = typename __hashtable::__rehash_type; 760 using __rehash_state = typename __hashtable::__rehash_state; 761 using pair_type = std::pair<bool, std::size_t>; 762 763 size_type __n_elt = __detail::__distance_fw(__first, __last); 764 765 __hashtable& __h = _M_conjure_hashtable(); 766 __rehash_type& __rehash = __h._M_rehash_policy; 767 const __rehash_state& __saved_state = __rehash._M_state(); 768 pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count, 769 __h._M_element_count, 770 __n_elt); 771 772 if (__do_rehash.first) 773 __h._M_rehash(__do_rehash.second, __saved_state); 774 775 for (; __first != __last; ++__first) 776 __h._M_insert(*__first, __node_gen, __unique_keys()); 777 } 778 779 /** 780 * Primary class template _Insert. 781 * 782 * Select insert member functions appropriate to _Hashtable policy choices. 783 */ 784 template<typename _Key, typename _Value, typename _Alloc, 785 typename _ExtractKey, typename _Equal, 786 typename _H1, typename _H2, typename _Hash, 787 typename _RehashPolicy, typename _Traits, 788 bool _Constant_iterators = _Traits::__constant_iterators::value, 789 bool _Unique_keys = _Traits::__unique_keys::value> 790 struct _Insert; 791 792 /// Specialization. 793 template<typename _Key, typename _Value, typename _Alloc, 794 typename _ExtractKey, typename _Equal, 795 typename _H1, typename _H2, typename _Hash, 796 typename _RehashPolicy, typename _Traits> 797 struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, 798 _RehashPolicy, _Traits, true, true> 799 : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, 800 _H1, _H2, _Hash, _RehashPolicy, _Traits> 801 { 802 using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, 803 _Equal, _H1, _H2, _Hash, 804 _RehashPolicy, _Traits>; 805 using value_type = typename __base_type::value_type; 806 using iterator = typename __base_type::iterator; 807 using const_iterator = typename __base_type::const_iterator; 808 809 using __unique_keys = typename __base_type::__unique_keys; 810 using __hashtable = typename __base_type::__hashtable; 811 using __node_gen_type = typename __base_type::__node_gen_type; 812 813 using __base_type::insert; 814 815 std::pair<iterator, bool> 816 insert(value_type&& __v) 817 { 818 __hashtable& __h = this->_M_conjure_hashtable(); 819 __node_gen_type __node_gen(__h); 820 return __h._M_insert(std::move(__v), __node_gen, __unique_keys()); 821 } 822 823 iterator 824 insert(const_iterator __hint, value_type&& __v) 825 { 826 __hashtable& __h = this->_M_conjure_hashtable(); 827 __node_gen_type __node_gen(__h); 828 return __h._M_insert(__hint, std::move(__v), __node_gen, 829 __unique_keys()); 830 } 831 }; 832 833 /// Specialization. 834 template<typename _Key, typename _Value, typename _Alloc, 835 typename _ExtractKey, typename _Equal, 836 typename _H1, typename _H2, typename _Hash, 837 typename _RehashPolicy, typename _Traits> 838 struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, 839 _RehashPolicy, _Traits, true, false> 840 : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, 841 _H1, _H2, _Hash, _RehashPolicy, _Traits> 842 { 843 using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, 844 _Equal, _H1, _H2, _Hash, 845 _RehashPolicy, _Traits>; 846 using value_type = typename __base_type::value_type; 847 using iterator = typename __base_type::iterator; 848 using const_iterator = typename __base_type::const_iterator; 849 850 using __unique_keys = typename __base_type::__unique_keys; 851 using __hashtable = typename __base_type::__hashtable; 852 using __node_gen_type = typename __base_type::__node_gen_type; 853 854 using __base_type::insert; 855 856 iterator 857 insert(value_type&& __v) 858 { 859 __hashtable& __h = this->_M_conjure_hashtable(); 860 __node_gen_type __node_gen(__h); 861 return __h._M_insert(std::move(__v), __node_gen, __unique_keys()); 862 } 863 864 iterator 865 insert(const_iterator __hint, value_type&& __v) 866 { 867 __hashtable& __h = this->_M_conjure_hashtable(); 868 __node_gen_type __node_gen(__h); 869 return __h._M_insert(__hint, std::move(__v), __node_gen, 870 __unique_keys()); 871 } 872 }; 873 874 /// Specialization. 875 template<typename _Key, typename _Value, typename _Alloc, 876 typename _ExtractKey, typename _Equal, 877 typename _H1, typename _H2, typename _Hash, 878 typename _RehashPolicy, typename _Traits, bool _Unique_keys> 879 struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, 880 _RehashPolicy, _Traits, false, _Unique_keys> 881 : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, 882 _H1, _H2, _Hash, _RehashPolicy, _Traits> 883 { 884 using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, 885 _Equal, _H1, _H2, _Hash, 886 _RehashPolicy, _Traits>; 887 using value_type = typename __base_type::value_type; 888 using iterator = typename __base_type::iterator; 889 using const_iterator = typename __base_type::const_iterator; 890 891 using __unique_keys = typename __base_type::__unique_keys; 892 using __hashtable = typename __base_type::__hashtable; 893 using __ireturn_type = typename __base_type::__ireturn_type; 894 895 using __base_type::insert; 896 897 template<typename _Pair> 898 using __is_cons = std::is_constructible<value_type, _Pair&&>; 899 900 template<typename _Pair> 901 using _IFcons = std::enable_if<__is_cons<_Pair>::value>; 902 903 template<typename _Pair> 904 using _IFconsp = typename _IFcons<_Pair>::type; 905 906 template<typename _Pair, typename = _IFconsp<_Pair>> 907 __ireturn_type 908 insert(_Pair&& __v) 909 { 910 __hashtable& __h = this->_M_conjure_hashtable(); 911 return __h._M_emplace(__unique_keys(), std::forward<_Pair>(__v)); 912 } 913 914 template<typename _Pair, typename = _IFconsp<_Pair>> 915 iterator 916 insert(const_iterator __hint, _Pair&& __v) 917 { 918 __hashtable& __h = this->_M_conjure_hashtable(); 919 return __h._M_emplace(__hint, __unique_keys(), 920 std::forward<_Pair>(__v)); 921 } 922 }; 923 924 /** 925 * Primary class template _Rehash_base. 926 * 927 * Give hashtable the max_load_factor functions and reserve iff the 928 * rehash policy is _Prime_rehash_policy. 929 */ 930 template<typename _Key, typename _Value, typename _Alloc, 931 typename _ExtractKey, typename _Equal, 932 typename _H1, typename _H2, typename _Hash, 933 typename _RehashPolicy, typename _Traits> 934 struct _Rehash_base; 935 936 /// Specialization. 937 template<typename _Key, typename _Value, typename _Alloc, 938 typename _ExtractKey, typename _Equal, 939 typename _H1, typename _H2, typename _Hash, typename _Traits> 940 struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, 941 _H1, _H2, _Hash, _Prime_rehash_policy, _Traits> 942 { 943 using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, 944 _Equal, _H1, _H2, _Hash, 945 _Prime_rehash_policy, _Traits>; 946 947 float 948 max_load_factor() const noexcept 949 { 950 const __hashtable* __this = static_cast<const __hashtable*>(this); 951 return __this->__rehash_policy().max_load_factor(); 952 } 953 954 void 955 max_load_factor(float __z) 956 { 957 __hashtable* __this = static_cast<__hashtable*>(this); 958 __this->__rehash_policy(_Prime_rehash_policy(__z)); 959 } 960 961 void 962 reserve(std::size_t __n) 963 { 964 __hashtable* __this = static_cast<__hashtable*>(this); 965 __this->rehash(__builtin_ceil(__n / max_load_factor())); 966 } 967 }; 968 969 /** 970 * Primary class template _Hashtable_ebo_helper. 971 * 972 * Helper class using EBO when it is not forbidden (the type is not 973 * final) and when it is worth it (the type is empty.) 974 */ 975 template<int _Nm, typename _Tp, 976 bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)> 977 struct _Hashtable_ebo_helper; 978 979 /// Specialization using EBO. 980 template<int _Nm, typename _Tp> 981 struct _Hashtable_ebo_helper<_Nm, _Tp, true> 982 : private _Tp 983 { 984 _Hashtable_ebo_helper() = default; 985 986 template<typename _OtherTp> 987 _Hashtable_ebo_helper(_OtherTp&& __tp) 988 : _Tp(std::forward<_OtherTp>(__tp)) 989 { } 990 991 static const _Tp& 992 _S_cget(const _Hashtable_ebo_helper& __eboh) 993 { return static_cast<const _Tp&>(__eboh); } 994 995 static _Tp& 996 _S_get(_Hashtable_ebo_helper& __eboh) 997 { return static_cast<_Tp&>(__eboh); } 998 }; 999 1000 /// Specialization not using EBO. 1001 template<int _Nm, typename _Tp> 1002 struct _Hashtable_ebo_helper<_Nm, _Tp, false> 1003 { 1004 _Hashtable_ebo_helper() = default; 1005 1006 template<typename _OtherTp> 1007 _Hashtable_ebo_helper(_OtherTp&& __tp) 1008 : _M_tp(std::forward<_OtherTp>(__tp)) 1009 { } 1010 1011 static const _Tp& 1012 _S_cget(const _Hashtable_ebo_helper& __eboh) 1013 { return __eboh._M_tp; } 1014 1015 static _Tp& 1016 _S_get(_Hashtable_ebo_helper& __eboh) 1017 { return __eboh._M_tp; } 1018 1019 private: 1020 _Tp _M_tp; 1021 }; 1022 1023 /** 1024 * Primary class template _Local_iterator_base. 1025 * 1026 * Base class for local iterators, used to iterate within a bucket 1027 * but not between buckets. 1028 */ 1029 template<typename _Key, typename _Value, typename _ExtractKey, 1030 typename _H1, typename _H2, typename _Hash, 1031 bool __cache_hash_code> 1032 struct _Local_iterator_base; 1033 1034 /** 1035 * Primary class template _Hash_code_base. 1036 * 1037 * Encapsulates two policy issues that aren't quite orthogonal. 1038 * (1) the difference between using a ranged hash function and using 1039 * the combination of a hash function and a range-hashing function. 1040 * In the former case we don't have such things as hash codes, so 1041 * we have a dummy type as placeholder. 1042 * (2) Whether or not we cache hash codes. Caching hash codes is 1043 * meaningless if we have a ranged hash function. 1044 * 1045 * We also put the key extraction objects here, for convenience. 1046 * Each specialization derives from one or more of the template 1047 * parameters to benefit from Ebo. This is important as this type 1048 * is inherited in some cases by the _Local_iterator_base type used 1049 * to implement local_iterator and const_local_iterator. As with 1050 * any iterator type we prefer to make it as small as possible. 1051 * 1052 * Primary template is unused except as a hook for specializations. 1053 */ 1054 template<typename _Key, typename _Value, typename _ExtractKey, 1055 typename _H1, typename _H2, typename _Hash, 1056 bool __cache_hash_code> 1057 struct _Hash_code_base; 1058 1059 /// Specialization: ranged hash function, no caching hash codes. H1 1060 /// and H2 are provided but ignored. We define a dummy hash code type. 1061 template<typename _Key, typename _Value, typename _ExtractKey, 1062 typename _H1, typename _H2, typename _Hash> 1063 struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false> 1064 : private _Hashtable_ebo_helper<0, _ExtractKey>, 1065 private _Hashtable_ebo_helper<1, _Hash> 1066 { 1067 private: 1068 using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>; 1069 using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>; 1070 1071 protected: 1072 typedef void* __hash_code; 1073 typedef _Hash_node<_Value, false> __node_type; 1074 1075 // We need the default constructor for the local iterators. 1076 _Hash_code_base() = default; 1077 1078 _Hash_code_base(const _ExtractKey& __ex, const _H1&, const _H2&, 1079 const _Hash& __h) 1080 : __ebo_extract_key(__ex), __ebo_hash(__h) { } 1081 1082 __hash_code 1083 _M_hash_code(const _Key& __key) const 1084 { return 0; } 1085 1086 std::size_t 1087 _M_bucket_index(const _Key& __k, __hash_code, std::size_t __n) const 1088 { return _M_ranged_hash()(__k, __n); } 1089 1090 std::size_t 1091 _M_bucket_index(const __node_type* __p, std::size_t __n) const 1092 noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>(), 1093 (std::size_t)0)) ) 1094 { return _M_ranged_hash()(_M_extract()(__p->_M_v()), __n); } 1095 1096 void 1097 _M_store_code(__node_type*, __hash_code) const 1098 { } 1099 1100 void 1101 _M_copy_code(__node_type*, const __node_type*) const 1102 { } 1103 1104 void 1105 _M_swap(_Hash_code_base& __x) 1106 { 1107 std::swap(_M_extract(), __x._M_extract()); 1108 std::swap(_M_ranged_hash(), __x._M_ranged_hash()); 1109 } 1110 1111 const _ExtractKey& 1112 _M_extract() const { return __ebo_extract_key::_S_cget(*this); } 1113 1114 _ExtractKey& 1115 _M_extract() { return __ebo_extract_key::_S_get(*this); } 1116 1117 const _Hash& 1118 _M_ranged_hash() const { return __ebo_hash::_S_cget(*this); } 1119 1120 _Hash& 1121 _M_ranged_hash() { return __ebo_hash::_S_get(*this); } 1122 }; 1123 1124 // No specialization for ranged hash function while caching hash codes. 1125 // That combination is meaningless, and trying to do it is an error. 1126 1127 /// Specialization: ranged hash function, cache hash codes. This 1128 /// combination is meaningless, so we provide only a declaration 1129 /// and no definition. 1130 template<typename _Key, typename _Value, typename _ExtractKey, 1131 typename _H1, typename _H2, typename _Hash> 1132 struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>; 1133 1134 /// Specialization: hash function and range-hashing function, no 1135 /// caching of hash codes. 1136 /// Provides typedef and accessor required by C++ 11. 1137 template<typename _Key, typename _Value, typename _ExtractKey, 1138 typename _H1, typename _H2> 1139 struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, 1140 _Default_ranged_hash, false> 1141 : private _Hashtable_ebo_helper<0, _ExtractKey>, 1142 private _Hashtable_ebo_helper<1, _H1>, 1143 private _Hashtable_ebo_helper<2, _H2> 1144 { 1145 private: 1146 using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>; 1147 using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>; 1148 using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>; 1149 1150 // Gives the local iterator implementation access to _M_bucket_index(). 1151 friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, 1152 _Default_ranged_hash, false>; 1153 1154 public: 1155 typedef _H1 hasher; 1156 1157 hasher 1158 hash_function() const 1159 { return _M_h1(); } 1160 1161 protected: 1162 typedef std::size_t __hash_code; 1163 typedef _Hash_node<_Value, false> __node_type; 1164 1165 // We need the default constructor for the local iterators. 1166 _Hash_code_base() = default; 1167 1168 _Hash_code_base(const _ExtractKey& __ex, 1169 const _H1& __h1, const _H2& __h2, 1170 const _Default_ranged_hash&) 1171 : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { } 1172 1173 __hash_code 1174 _M_hash_code(const _Key& __k) const 1175 { return _M_h1()(__k); } 1176 1177 std::size_t 1178 _M_bucket_index(const _Key&, __hash_code __c, std::size_t __n) const 1179 { return _M_h2()(__c, __n); } 1180 1181 std::size_t 1182 _M_bucket_index(const __node_type* __p, std::size_t __n) const 1183 noexcept( noexcept(declval<const _H1&>()(declval<const _Key&>())) 1184 && noexcept(declval<const _H2&>()((__hash_code)0, 1185 (std::size_t)0)) ) 1186 { return _M_h2()(_M_h1()(_M_extract()(__p->_M_v())), __n); } 1187 1188 void 1189 _M_store_code(__node_type*, __hash_code) const 1190 { } 1191 1192 void 1193 _M_copy_code(__node_type*, const __node_type*) const 1194 { } 1195 1196 void 1197 _M_swap(_Hash_code_base& __x) 1198 { 1199 std::swap(_M_extract(), __x._M_extract()); 1200 std::swap(_M_h1(), __x._M_h1()); 1201 std::swap(_M_h2(), __x._M_h2()); 1202 } 1203 1204 const _ExtractKey& 1205 _M_extract() const { return __ebo_extract_key::_S_cget(*this); } 1206 1207 _ExtractKey& 1208 _M_extract() { return __ebo_extract_key::_S_get(*this); } 1209 1210 const _H1& 1211 _M_h1() const { return __ebo_h1::_S_cget(*this); } 1212 1213 _H1& 1214 _M_h1() { return __ebo_h1::_S_get(*this); } 1215 1216 const _H2& 1217 _M_h2() const { return __ebo_h2::_S_cget(*this); } 1218 1219 _H2& 1220 _M_h2() { return __ebo_h2::_S_get(*this); } 1221 }; 1222 1223 /// Specialization: hash function and range-hashing function, 1224 /// caching hash codes. H is provided but ignored. Provides 1225 /// typedef and accessor required by C++ 11. 1226 template<typename _Key, typename _Value, typename _ExtractKey, 1227 typename _H1, typename _H2> 1228 struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, 1229 _Default_ranged_hash, true> 1230 : private _Hashtable_ebo_helper<0, _ExtractKey>, 1231 private _Hashtable_ebo_helper<1, _H1>, 1232 private _Hashtable_ebo_helper<2, _H2> 1233 { 1234 private: 1235 // Gives the local iterator implementation access to _M_h2(). 1236 friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, 1237 _Default_ranged_hash, true>; 1238 1239 using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>; 1240 using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>; 1241 using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>; 1242 1243 public: 1244 typedef _H1 hasher; 1245 1246 hasher 1247 hash_function() const 1248 { return _M_h1(); } 1249 1250 protected: 1251 typedef std::size_t __hash_code; 1252 typedef _Hash_node<_Value, true> __node_type; 1253 1254 _Hash_code_base(const _ExtractKey& __ex, 1255 const _H1& __h1, const _H2& __h2, 1256 const _Default_ranged_hash&) 1257 : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { } 1258 1259 __hash_code 1260 _M_hash_code(const _Key& __k) const 1261 { return _M_h1()(__k); } 1262 1263 std::size_t 1264 _M_bucket_index(const _Key&, __hash_code __c, 1265 std::size_t __n) const 1266 { return _M_h2()(__c, __n); } 1267 1268 std::size_t 1269 _M_bucket_index(const __node_type* __p, std::size_t __n) const 1270 noexcept( noexcept(declval<const _H2&>()((__hash_code)0, 1271 (std::size_t)0)) ) 1272 { return _M_h2()(__p->_M_hash_code, __n); } 1273 1274 void 1275 _M_store_code(__node_type* __n, __hash_code __c) const 1276 { __n->_M_hash_code = __c; } 1277 1278 void 1279 _M_copy_code(__node_type* __to, const __node_type* __from) const 1280 { __to->_M_hash_code = __from->_M_hash_code; } 1281 1282 void 1283 _M_swap(_Hash_code_base& __x) 1284 { 1285 std::swap(_M_extract(), __x._M_extract()); 1286 std::swap(_M_h1(), __x._M_h1()); 1287 std::swap(_M_h2(), __x._M_h2()); 1288 } 1289 1290 const _ExtractKey& 1291 _M_extract() const { return __ebo_extract_key::_S_cget(*this); } 1292 1293 _ExtractKey& 1294 _M_extract() { return __ebo_extract_key::_S_get(*this); } 1295 1296 const _H1& 1297 _M_h1() const { return __ebo_h1::_S_cget(*this); } 1298 1299 _H1& 1300 _M_h1() { return __ebo_h1::_S_get(*this); } 1301 1302 const _H2& 1303 _M_h2() const { return __ebo_h2::_S_cget(*this); } 1304 1305 _H2& 1306 _M_h2() { return __ebo_h2::_S_get(*this); } 1307 }; 1308 1309 /** 1310 * Primary class template _Equal_helper. 1311 * 1312 */ 1313 template <typename _Key, typename _Value, typename _ExtractKey, 1314 typename _Equal, typename _HashCodeType, 1315 bool __cache_hash_code> 1316 struct _Equal_helper; 1317 1318 /// Specialization. 1319 template<typename _Key, typename _Value, typename _ExtractKey, 1320 typename _Equal, typename _HashCodeType> 1321 struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, true> 1322 { 1323 static bool 1324 _S_equals(const _Equal& __eq, const _ExtractKey& __extract, 1325 const _Key& __k, _HashCodeType __c, _Hash_node<_Value, true>* __n) 1326 { return __c == __n->_M_hash_code && __eq(__k, __extract(__n->_M_v())); } 1327 }; 1328 1329 /// Specialization. 1330 template<typename _Key, typename _Value, typename _ExtractKey, 1331 typename _Equal, typename _HashCodeType> 1332 struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, false> 1333 { 1334 static bool 1335 _S_equals(const _Equal& __eq, const _ExtractKey& __extract, 1336 const _Key& __k, _HashCodeType, _Hash_node<_Value, false>* __n) 1337 { return __eq(__k, __extract(__n->_M_v())); } 1338 }; 1339 1340 1341 /// Partial specialization used when nodes contain a cached hash code. 1342 template<typename _Key, typename _Value, typename _ExtractKey, 1343 typename _H1, typename _H2, typename _Hash> 1344 struct _Local_iterator_base<_Key, _Value, _ExtractKey, 1345 _H1, _H2, _Hash, true> 1346 : private _Hashtable_ebo_helper<0, _H2> 1347 { 1348 protected: 1349 using __base_type = _Hashtable_ebo_helper<0, _H2>; 1350 using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, 1351 _H1, _H2, _Hash, true>; 1352 1353 _Local_iterator_base() = default; 1354 _Local_iterator_base(const __hash_code_base& __base, 1355 _Hash_node<_Value, true>* __p, 1356 std::size_t __bkt, std::size_t __bkt_count) 1357 : __base_type(__base._M_h2()), 1358 _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { } 1359 1360 void 1361 _M_incr() 1362 { 1363 _M_cur = _M_cur->_M_next(); 1364 if (_M_cur) 1365 { 1366 std::size_t __bkt 1367 = __base_type::_S_get(*this)(_M_cur->_M_hash_code, 1368 _M_bucket_count); 1369 if (__bkt != _M_bucket) 1370 _M_cur = nullptr; 1371 } 1372 } 1373 1374 _Hash_node<_Value, true>* _M_cur; 1375 std::size_t _M_bucket; 1376 std::size_t _M_bucket_count; 1377 1378 public: 1379 const void* 1380 _M_curr() const { return _M_cur; } // for equality ops 1381 1382 std::size_t 1383 _M_get_bucket() const { return _M_bucket; } // for debug mode 1384 }; 1385 1386 // Uninitialized storage for a _Hash_code_base. 1387 // This type is DefaultConstructible and Assignable even if the 1388 // _Hash_code_base type isn't, so that _Local_iterator_base<..., false> 1389 // can be DefaultConstructible and Assignable. 1390 template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value> 1391 struct _Hash_code_storage 1392 { 1393 __gnu_cxx::__aligned_buffer<_Tp> _M_storage; 1394 1395 _Tp* 1396 _M_h() { return _M_storage._M_ptr(); } 1397 1398 const _Tp* 1399 _M_h() const { return _M_storage._M_ptr(); } 1400 }; 1401 1402 // Empty partial specialization for empty _Hash_code_base types. 1403 template<typename _Tp> 1404 struct _Hash_code_storage<_Tp, true> 1405 { 1406 static_assert( std::is_empty<_Tp>::value, "Type must be empty" ); 1407 1408 // As _Tp is an empty type there will be no bytes written/read through 1409 // the cast pointer, so no strict-aliasing violation. 1410 _Tp* 1411 _M_h() { return reinterpret_cast<_Tp*>(this); } 1412 1413 const _Tp* 1414 _M_h() const { return reinterpret_cast<const _Tp*>(this); } 1415 }; 1416 1417 template<typename _Key, typename _Value, typename _ExtractKey, 1418 typename _H1, typename _H2, typename _Hash> 1419 using __hash_code_for_local_iter 1420 = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey, 1421 _H1, _H2, _Hash, false>>; 1422 1423 // Partial specialization used when hash codes are not cached 1424 template<typename _Key, typename _Value, typename _ExtractKey, 1425 typename _H1, typename _H2, typename _Hash> 1426 struct _Local_iterator_base<_Key, _Value, _ExtractKey, 1427 _H1, _H2, _Hash, false> 1428 : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _H1, _H2, _Hash> 1429 { 1430 protected: 1431 using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, 1432 _H1, _H2, _Hash, false>; 1433 1434 _Local_iterator_base() : _M_bucket_count(-1) { } 1435 1436 _Local_iterator_base(const __hash_code_base& __base, 1437 _Hash_node<_Value, false>* __p, 1438 std::size_t __bkt, std::size_t __bkt_count) 1439 : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) 1440 { _M_init(__base); } 1441 1442 ~_Local_iterator_base() 1443 { 1444 if (_M_bucket_count != -1) 1445 _M_destroy(); 1446 } 1447 1448 _Local_iterator_base(const _Local_iterator_base& __iter) 1449 : _M_cur(__iter._M_cur), _M_bucket(__iter._M_bucket), 1450 _M_bucket_count(__iter._M_bucket_count) 1451 { 1452 if (_M_bucket_count != -1) 1453 _M_init(*__iter._M_h()); 1454 } 1455 1456 _Local_iterator_base& 1457 operator=(const _Local_iterator_base& __iter) 1458 { 1459 if (_M_bucket_count != -1) 1460 _M_destroy(); 1461 _M_cur = __iter._M_cur; 1462 _M_bucket = __iter._M_bucket; 1463 _M_bucket_count = __iter._M_bucket_count; 1464 if (_M_bucket_count != -1) 1465 _M_init(*__iter._M_h()); 1466 return *this; 1467 } 1468 1469 void 1470 _M_incr() 1471 { 1472 _M_cur = _M_cur->_M_next(); 1473 if (_M_cur) 1474 { 1475 std::size_t __bkt = this->_M_h()->_M_bucket_index(_M_cur, 1476 _M_bucket_count); 1477 if (__bkt != _M_bucket) 1478 _M_cur = nullptr; 1479 } 1480 } 1481 1482 _Hash_node<_Value, false>* _M_cur; 1483 std::size_t _M_bucket; 1484 std::size_t _M_bucket_count; 1485 1486 void 1487 _M_init(const __hash_code_base& __base) 1488 { ::new(this->_M_h()) __hash_code_base(__base); } 1489 1490 void 1491 _M_destroy() { this->_M_h()->~__hash_code_base(); } 1492 1493 public: 1494 const void* 1495 _M_curr() const { return _M_cur; } // for equality ops and debug mode 1496 1497 std::size_t 1498 _M_get_bucket() const { return _M_bucket; } // for debug mode 1499 }; 1500 1501 template<typename _Key, typename _Value, typename _ExtractKey, 1502 typename _H1, typename _H2, typename _Hash, bool __cache> 1503 inline bool 1504 operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey, 1505 _H1, _H2, _Hash, __cache>& __x, 1506 const _Local_iterator_base<_Key, _Value, _ExtractKey, 1507 _H1, _H2, _Hash, __cache>& __y) 1508 { return __x._M_curr() == __y._M_curr(); } 1509 1510 template<typename _Key, typename _Value, typename _ExtractKey, 1511 typename _H1, typename _H2, typename _Hash, bool __cache> 1512 inline bool 1513 operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey, 1514 _H1, _H2, _Hash, __cache>& __x, 1515 const _Local_iterator_base<_Key, _Value, _ExtractKey, 1516 _H1, _H2, _Hash, __cache>& __y) 1517 { return __x._M_curr() != __y._M_curr(); } 1518 1519 /// local iterators 1520 template<typename _Key, typename _Value, typename _ExtractKey, 1521 typename _H1, typename _H2, typename _Hash, 1522 bool __constant_iterators, bool __cache> 1523 struct _Local_iterator 1524 : public _Local_iterator_base<_Key, _Value, _ExtractKey, 1525 _H1, _H2, _Hash, __cache> 1526 { 1527 private: 1528 using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey, 1529 _H1, _H2, _Hash, __cache>; 1530 using __hash_code_base = typename __base_type::__hash_code_base; 1531 public: 1532 typedef _Value value_type; 1533 typedef typename std::conditional<__constant_iterators, 1534 const _Value*, _Value*>::type 1535 pointer; 1536 typedef typename std::conditional<__constant_iterators, 1537 const _Value&, _Value&>::type 1538 reference; 1539 typedef std::ptrdiff_t difference_type; 1540 typedef std::forward_iterator_tag iterator_category; 1541 1542 _Local_iterator() = default; 1543 1544 _Local_iterator(const __hash_code_base& __base, 1545 _Hash_node<_Value, __cache>* __p, 1546 std::size_t __bkt, std::size_t __bkt_count) 1547 : __base_type(__base, __p, __bkt, __bkt_count) 1548 { } 1549 1550 reference 1551 operator*() const 1552 { return this->_M_cur->_M_v(); } 1553 1554 pointer 1555 operator->() const 1556 { return this->_M_cur->_M_valptr(); } 1557 1558 _Local_iterator& 1559 operator++() 1560 { 1561 this->_M_incr(); 1562 return *this; 1563 } 1564 1565 _Local_iterator 1566 operator++(int) 1567 { 1568 _Local_iterator __tmp(*this); 1569 this->_M_incr(); 1570 return __tmp; 1571 } 1572 }; 1573 1574 /// local const_iterators 1575 template<typename _Key, typename _Value, typename _ExtractKey, 1576 typename _H1, typename _H2, typename _Hash, 1577 bool __constant_iterators, bool __cache> 1578 struct _Local_const_iterator 1579 : public _Local_iterator_base<_Key, _Value, _ExtractKey, 1580 _H1, _H2, _Hash, __cache> 1581 { 1582 private: 1583 using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey, 1584 _H1, _H2, _Hash, __cache>; 1585 using __hash_code_base = typename __base_type::__hash_code_base; 1586 1587 public: 1588 typedef _Value value_type; 1589 typedef const _Value* pointer; 1590 typedef const _Value& reference; 1591 typedef std::ptrdiff_t difference_type; 1592 typedef std::forward_iterator_tag iterator_category; 1593 1594 _Local_const_iterator() = default; 1595 1596 _Local_const_iterator(const __hash_code_base& __base, 1597 _Hash_node<_Value, __cache>* __p, 1598 std::size_t __bkt, std::size_t __bkt_count) 1599 : __base_type(__base, __p, __bkt, __bkt_count) 1600 { } 1601 1602 _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey, 1603 _H1, _H2, _Hash, 1604 __constant_iterators, 1605 __cache>& __x) 1606 : __base_type(__x) 1607 { } 1608 1609 reference 1610 operator*() const 1611 { return this->_M_cur->_M_v(); } 1612 1613 pointer 1614 operator->() const 1615 { return this->_M_cur->_M_valptr(); } 1616 1617 _Local_const_iterator& 1618 operator++() 1619 { 1620 this->_M_incr(); 1621 return *this; 1622 } 1623 1624 _Local_const_iterator 1625 operator++(int) 1626 { 1627 _Local_const_iterator __tmp(*this); 1628 this->_M_incr(); 1629 return __tmp; 1630 } 1631 }; 1632 1633 /** 1634 * Primary class template _Hashtable_base. 1635 * 1636 * Helper class adding management of _Equal functor to 1637 * _Hash_code_base type. 1638 * 1639 * Base class templates are: 1640 * - __detail::_Hash_code_base 1641 * - __detail::_Hashtable_ebo_helper 1642 */ 1643 template<typename _Key, typename _Value, 1644 typename _ExtractKey, typename _Equal, 1645 typename _H1, typename _H2, typename _Hash, typename _Traits> 1646 struct _Hashtable_base 1647 : public _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, 1648 _Traits::__hash_cached::value>, 1649 private _Hashtable_ebo_helper<0, _Equal> 1650 { 1651 public: 1652 typedef _Key key_type; 1653 typedef _Value value_type; 1654 typedef _Equal key_equal; 1655 typedef std::size_t size_type; 1656 typedef std::ptrdiff_t difference_type; 1657 1658 using __traits_type = _Traits; 1659 using __hash_cached = typename __traits_type::__hash_cached; 1660 using __constant_iterators = typename __traits_type::__constant_iterators; 1661 using __unique_keys = typename __traits_type::__unique_keys; 1662 1663 using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, 1664 _H1, _H2, _Hash, 1665 __hash_cached::value>; 1666 1667 using __hash_code = typename __hash_code_base::__hash_code; 1668 using __node_type = typename __hash_code_base::__node_type; 1669 1670 using iterator = __detail::_Node_iterator<value_type, 1671 __constant_iterators::value, 1672 __hash_cached::value>; 1673 1674 using const_iterator = __detail::_Node_const_iterator<value_type, 1675 __constant_iterators::value, 1676 __hash_cached::value>; 1677 1678 using local_iterator = __detail::_Local_iterator<key_type, value_type, 1679 _ExtractKey, _H1, _H2, _Hash, 1680 __constant_iterators::value, 1681 __hash_cached::value>; 1682 1683 using const_local_iterator = __detail::_Local_const_iterator<key_type, 1684 value_type, 1685 _ExtractKey, _H1, _H2, _Hash, 1686 __constant_iterators::value, 1687 __hash_cached::value>; 1688 1689 using __ireturn_type = typename std::conditional<__unique_keys::value, 1690 std::pair<iterator, bool>, 1691 iterator>::type; 1692 private: 1693 using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>; 1694 using _EqualHelper = _Equal_helper<_Key, _Value, _ExtractKey, _Equal, 1695 __hash_code, __hash_cached::value>; 1696 1697 protected: 1698 _Hashtable_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2, 1699 const _Hash& __hash, const _Equal& __eq) 1700 : __hash_code_base(__ex, __h1, __h2, __hash), _EqualEBO(__eq) 1701 { } 1702 1703 bool 1704 _M_equals(const _Key& __k, __hash_code __c, __node_type* __n) const 1705 { 1706 return _EqualHelper::_S_equals(_M_eq(), this->_M_extract(), 1707 __k, __c, __n); 1708 } 1709 1710 void 1711 _M_swap(_Hashtable_base& __x) 1712 { 1713 __hash_code_base::_M_swap(__x); 1714 std::swap(_M_eq(), __x._M_eq()); 1715 } 1716 1717 const _Equal& 1718 _M_eq() const { return _EqualEBO::_S_cget(*this); } 1719 1720 _Equal& 1721 _M_eq() { return _EqualEBO::_S_get(*this); } 1722 }; 1723 1724 /** 1725 * struct _Equality_base. 1726 * 1727 * Common types and functions for class _Equality. 1728 */ 1729 struct _Equality_base 1730 { 1731 protected: 1732 template<typename _Uiterator> 1733 static bool 1734 _S_is_permutation(_Uiterator, _Uiterator, _Uiterator); 1735 }; 1736 1737 // See std::is_permutation in N3068. 1738 template<typename _Uiterator> 1739 bool 1740 _Equality_base:: 1741 _S_is_permutation(_Uiterator __first1, _Uiterator __last1, 1742 _Uiterator __first2) 1743 { 1744 for (; __first1 != __last1; ++__first1, ++__first2) 1745 if (!(*__first1 == *__first2)) 1746 break; 1747 1748 if (__first1 == __last1) 1749 return true; 1750 1751 _Uiterator __last2 = __first2; 1752 std::advance(__last2, std::distance(__first1, __last1)); 1753 1754 for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1) 1755 { 1756 _Uiterator __tmp = __first1; 1757 while (__tmp != __it1 && !bool(*__tmp == *__it1)) 1758 ++__tmp; 1759 1760 // We've seen this one before. 1761 if (__tmp != __it1) 1762 continue; 1763 1764 std::ptrdiff_t __n2 = 0; 1765 for (__tmp = __first2; __tmp != __last2; ++__tmp) 1766 if (*__tmp == *__it1) 1767 ++__n2; 1768 1769 if (!__n2) 1770 return false; 1771 1772 std::ptrdiff_t __n1 = 0; 1773 for (__tmp = __it1; __tmp != __last1; ++__tmp) 1774 if (*__tmp == *__it1) 1775 ++__n1; 1776 1777 if (__n1 != __n2) 1778 return false; 1779 } 1780 return true; 1781 } 1782 1783 /** 1784 * Primary class template _Equality. 1785 * 1786 * This is for implementing equality comparison for unordered 1787 * containers, per N3068, by John Lakos and Pablo Halpern. 1788 * Algorithmically, we follow closely the reference implementations 1789 * therein. 1790 */ 1791 template<typename _Key, typename _Value, typename _Alloc, 1792 typename _ExtractKey, typename _Equal, 1793 typename _H1, typename _H2, typename _Hash, 1794 typename _RehashPolicy, typename _Traits, 1795 bool _Unique_keys = _Traits::__unique_keys::value> 1796 struct _Equality; 1797 1798 /// Specialization. 1799 template<typename _Key, typename _Value, typename _Alloc, 1800 typename _ExtractKey, typename _Equal, 1801 typename _H1, typename _H2, typename _Hash, 1802 typename _RehashPolicy, typename _Traits> 1803 struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1804 _H1, _H2, _Hash, _RehashPolicy, _Traits, true> 1805 { 1806 using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1807 _H1, _H2, _Hash, _RehashPolicy, _Traits>; 1808 1809 bool 1810 _M_equal(const __hashtable&) const; 1811 }; 1812 1813 template<typename _Key, typename _Value, typename _Alloc, 1814 typename _ExtractKey, typename _Equal, 1815 typename _H1, typename _H2, typename _Hash, 1816 typename _RehashPolicy, typename _Traits> 1817 bool 1818 _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1819 _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: 1820 _M_equal(const __hashtable& __other) const 1821 { 1822 const __hashtable* __this = static_cast<const __hashtable*>(this); 1823 1824 if (__this->size() != __other.size()) 1825 return false; 1826 1827 for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx) 1828 { 1829 const auto __ity = __other.find(_ExtractKey()(*__itx)); 1830 if (__ity == __other.end() || !bool(*__ity == *__itx)) 1831 return false; 1832 } 1833 return true; 1834 } 1835 1836 /// Specialization. 1837 template<typename _Key, typename _Value, typename _Alloc, 1838 typename _ExtractKey, typename _Equal, 1839 typename _H1, typename _H2, typename _Hash, 1840 typename _RehashPolicy, typename _Traits> 1841 struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1842 _H1, _H2, _Hash, _RehashPolicy, _Traits, false> 1843 : public _Equality_base 1844 { 1845 using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1846 _H1, _H2, _Hash, _RehashPolicy, _Traits>; 1847 1848 bool 1849 _M_equal(const __hashtable&) const; 1850 }; 1851 1852 template<typename _Key, typename _Value, typename _Alloc, 1853 typename _ExtractKey, typename _Equal, 1854 typename _H1, typename _H2, typename _Hash, 1855 typename _RehashPolicy, typename _Traits> 1856 bool 1857 _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1858 _H1, _H2, _Hash, _RehashPolicy, _Traits, false>:: 1859 _M_equal(const __hashtable& __other) const 1860 { 1861 const __hashtable* __this = static_cast<const __hashtable*>(this); 1862 1863 if (__this->size() != __other.size()) 1864 return false; 1865 1866 for (auto __itx = __this->begin(); __itx != __this->end();) 1867 { 1868 const auto __xrange = __this->equal_range(_ExtractKey()(*__itx)); 1869 const auto __yrange = __other.equal_range(_ExtractKey()(*__itx)); 1870 1871 if (std::distance(__xrange.first, __xrange.second) 1872 != std::distance(__yrange.first, __yrange.second)) 1873 return false; 1874 1875 if (!_S_is_permutation(__xrange.first, __xrange.second, 1876 __yrange.first)) 1877 return false; 1878 1879 __itx = __xrange.second; 1880 } 1881 return true; 1882 } 1883 1884 /** 1885 * This type deals with all allocation and keeps an allocator instance through 1886 * inheritance to benefit from EBO when possible. 1887 */ 1888 template<typename _NodeAlloc> 1889 struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc> 1890 { 1891 private: 1892 using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>; 1893 public: 1894 using __node_type = typename _NodeAlloc::value_type; 1895 using __node_alloc_type = _NodeAlloc; 1896 // Use __gnu_cxx to benefit from _S_always_equal and al. 1897 using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>; 1898 1899 using __value_type = typename __node_type::value_type; 1900 using __value_alloc_type = 1901 typename __alloctr_rebind<__node_alloc_type, __value_type>::__type; 1902 using __value_alloc_traits = std::allocator_traits<__value_alloc_type>; 1903 1904 using __node_base = __detail::_Hash_node_base; 1905 using __bucket_type = __node_base*; 1906 using __bucket_alloc_type = 1907 typename __alloctr_rebind<__node_alloc_type, __bucket_type>::__type; 1908 using __bucket_alloc_traits = std::allocator_traits<__bucket_alloc_type>; 1909 1910 _Hashtable_alloc(const _Hashtable_alloc&) = default; 1911 _Hashtable_alloc(_Hashtable_alloc&&) = default; 1912 1913 template<typename _Alloc> 1914 _Hashtable_alloc(_Alloc&& __a) 1915 : __ebo_node_alloc(std::forward<_Alloc>(__a)) 1916 { } 1917 1918 __node_alloc_type& 1919 _M_node_allocator() 1920 { return __ebo_node_alloc::_S_get(*this); } 1921 1922 const __node_alloc_type& 1923 _M_node_allocator() const 1924 { return __ebo_node_alloc::_S_cget(*this); } 1925 1926 template<typename... _Args> 1927 __node_type* 1928 _M_allocate_node(_Args&&... __args); 1929 1930 void 1931 _M_deallocate_node(__node_type* __n); 1932 1933 // Deallocate the linked list of nodes pointed to by __n 1934 void 1935 _M_deallocate_nodes(__node_type* __n); 1936 1937 __bucket_type* 1938 _M_allocate_buckets(std::size_t __n); 1939 1940 void 1941 _M_deallocate_buckets(__bucket_type*, std::size_t __n); 1942 }; 1943 1944 // Definitions of class template _Hashtable_alloc's out-of-line member 1945 // functions. 1946 template<typename _NodeAlloc> 1947 template<typename... _Args> 1948 typename _Hashtable_alloc<_NodeAlloc>::__node_type* 1949 _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args) 1950 { 1951 auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1); 1952 __node_type* __n = std::__addressof(*__nptr); 1953 __try 1954 { 1955 __value_alloc_type __a(_M_node_allocator()); 1956 ::new ((void*)__n) __node_type; 1957 __value_alloc_traits::construct(__a, __n->_M_valptr(), 1958 std::forward<_Args>(__args)...); 1959 return __n; 1960 } 1961 __catch(...) 1962 { 1963 __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1); 1964 __throw_exception_again; 1965 } 1966 } 1967 1968 template<typename _NodeAlloc> 1969 void 1970 _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_type* __n) 1971 { 1972 typedef typename __node_alloc_traits::pointer _Ptr; 1973 auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n); 1974 __value_alloc_type __a(_M_node_allocator()); 1975 __value_alloc_traits::destroy(__a, __n->_M_valptr()); 1976 __n->~__node_type(); 1977 __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1); 1978 } 1979 1980 template<typename _NodeAlloc> 1981 void 1982 _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_type* __n) 1983 { 1984 while (__n) 1985 { 1986 __node_type* __tmp = __n; 1987 __n = __n->_M_next(); 1988 _M_deallocate_node(__tmp); 1989 } 1990 } 1991 1992 template<typename _NodeAlloc> 1993 typename _Hashtable_alloc<_NodeAlloc>::__bucket_type* 1994 _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __n) 1995 { 1996 __bucket_alloc_type __alloc(_M_node_allocator()); 1997 1998 auto __ptr = __bucket_alloc_traits::allocate(__alloc, __n); 1999 __bucket_type* __p = std::__addressof(*__ptr); 2000 __builtin_memset(__p, 0, __n * sizeof(__bucket_type)); 2001 return __p; 2002 } 2003 2004 template<typename _NodeAlloc> 2005 void 2006 _Hashtable_alloc<_NodeAlloc>::_M_deallocate_buckets(__bucket_type* __bkts, 2007 std::size_t __n) 2008 { 2009 typedef typename __bucket_alloc_traits::pointer _Ptr; 2010 auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts); 2011 __bucket_alloc_type __alloc(_M_node_allocator()); 2012 __bucket_alloc_traits::deallocate(__alloc, __ptr, __n); 2013 } 2014 2015 //@} hashtable-detail 2016 _GLIBCXX_END_NAMESPACE_VERSION 2017 } // namespace __detail 2018 } // namespace std 2019 2020 #endif // _HASHTABLE_POLICY_H 2021