Home | History | Annotate | Download | only in surfaceflinger
      1 /*
      2  * Copyright (C) 2013 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
     18 
     19 // This is needed for stdint.h to define INT64_MAX in C++
     20 #define __STDC_LIMIT_MACROS
     21 
     22 #include <math.h>
     23 
     24 #include <cutils/log.h>
     25 
     26 #include <ui/Fence.h>
     27 
     28 #include <utils/String8.h>
     29 #include <utils/Thread.h>
     30 #include <utils/Trace.h>
     31 #include <utils/Vector.h>
     32 
     33 #include "DispSync.h"
     34 #include "EventLog/EventLog.h"
     35 
     36 namespace android {
     37 
     38 // Setting this to true enables verbose tracing that can be used to debug
     39 // vsync event model or phase issues.
     40 static const bool kTraceDetailedInfo = false;
     41 
     42 // This is the threshold used to determine when hardware vsync events are
     43 // needed to re-synchronize the software vsync model with the hardware.  The
     44 // error metric used is the mean of the squared difference between each
     45 // present time and the nearest software-predicted vsync.
     46 static const nsecs_t kErrorThreshold = 160000000000;    // 400 usec squared
     47 
     48 // This is the offset from the present fence timestamps to the corresponding
     49 // vsync event.
     50 static const int64_t kPresentTimeOffset = PRESENT_TIME_OFFSET_FROM_VSYNC_NS;
     51 
     52 class DispSyncThread: public Thread {
     53 public:
     54 
     55     DispSyncThread():
     56             mStop(false),
     57             mPeriod(0),
     58             mPhase(0),
     59             mWakeupLatency(0) {
     60     }
     61 
     62     virtual ~DispSyncThread() {}
     63 
     64     void updateModel(nsecs_t period, nsecs_t phase) {
     65         Mutex::Autolock lock(mMutex);
     66         mPeriod = period;
     67         mPhase = phase;
     68         mCond.signal();
     69     }
     70 
     71     void stop() {
     72         Mutex::Autolock lock(mMutex);
     73         mStop = true;
     74         mCond.signal();
     75     }
     76 
     77     virtual bool threadLoop() {
     78         status_t err;
     79         nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
     80         nsecs_t nextEventTime = 0;
     81 
     82         while (true) {
     83             Vector<CallbackInvocation> callbackInvocations;
     84 
     85             nsecs_t targetTime = 0;
     86 
     87             { // Scope for lock
     88                 Mutex::Autolock lock(mMutex);
     89 
     90                 if (mStop) {
     91                     return false;
     92                 }
     93 
     94                 if (mPeriod == 0) {
     95                     err = mCond.wait(mMutex);
     96                     if (err != NO_ERROR) {
     97                         ALOGE("error waiting for new events: %s (%d)",
     98                                 strerror(-err), err);
     99                         return false;
    100                     }
    101                     continue;
    102                 }
    103 
    104                 nextEventTime = computeNextEventTimeLocked(now);
    105                 targetTime = nextEventTime;
    106 
    107                 bool isWakeup = false;
    108 
    109                 if (now < targetTime) {
    110                     err = mCond.waitRelative(mMutex, targetTime - now);
    111 
    112                     if (err == TIMED_OUT) {
    113                         isWakeup = true;
    114                     } else if (err != NO_ERROR) {
    115                         ALOGE("error waiting for next event: %s (%d)",
    116                                 strerror(-err), err);
    117                         return false;
    118                     }
    119                 }
    120 
    121                 now = systemTime(SYSTEM_TIME_MONOTONIC);
    122 
    123                 if (isWakeup) {
    124                     mWakeupLatency = ((mWakeupLatency * 63) +
    125                             (now - targetTime)) / 64;
    126                     if (mWakeupLatency > 500000) {
    127                         // Don't correct by more than 500 us
    128                         mWakeupLatency = 500000;
    129                     }
    130                     if (kTraceDetailedInfo) {
    131                         ATRACE_INT64("DispSync:WakeupLat", now - nextEventTime);
    132                         ATRACE_INT64("DispSync:AvgWakeupLat", mWakeupLatency);
    133                     }
    134                 }
    135 
    136                 callbackInvocations = gatherCallbackInvocationsLocked(now);
    137             }
    138 
    139             if (callbackInvocations.size() > 0) {
    140                 fireCallbackInvocations(callbackInvocations);
    141             }
    142         }
    143 
    144         return false;
    145     }
    146 
    147     status_t addEventListener(nsecs_t phase, const sp<DispSync::Callback>& callback) {
    148         Mutex::Autolock lock(mMutex);
    149 
    150         for (size_t i = 0; i < mEventListeners.size(); i++) {
    151             if (mEventListeners[i].mCallback == callback) {
    152                 return BAD_VALUE;
    153             }
    154         }
    155 
    156         EventListener listener;
    157         listener.mPhase = phase;
    158         listener.mCallback = callback;
    159 
    160         // We want to allow the firstmost future event to fire without
    161         // allowing any past events to fire.  Because
    162         // computeListenerNextEventTimeLocked filters out events within a half
    163         // a period of the last event time, we need to initialize the last
    164         // event time to a half a period in the past.
    165         listener.mLastEventTime = systemTime(SYSTEM_TIME_MONOTONIC) - mPeriod / 2;
    166 
    167         mEventListeners.push(listener);
    168 
    169         mCond.signal();
    170 
    171         return NO_ERROR;
    172     }
    173 
    174     status_t removeEventListener(const sp<DispSync::Callback>& callback) {
    175         Mutex::Autolock lock(mMutex);
    176 
    177         for (size_t i = 0; i < mEventListeners.size(); i++) {
    178             if (mEventListeners[i].mCallback == callback) {
    179                 mEventListeners.removeAt(i);
    180                 mCond.signal();
    181                 return NO_ERROR;
    182             }
    183         }
    184 
    185         return BAD_VALUE;
    186     }
    187 
    188     // This method is only here to handle the kIgnorePresentFences case.
    189     bool hasAnyEventListeners() {
    190         Mutex::Autolock lock(mMutex);
    191         return !mEventListeners.empty();
    192     }
    193 
    194 private:
    195 
    196     struct EventListener {
    197         nsecs_t mPhase;
    198         nsecs_t mLastEventTime;
    199         sp<DispSync::Callback> mCallback;
    200     };
    201 
    202     struct CallbackInvocation {
    203         sp<DispSync::Callback> mCallback;
    204         nsecs_t mEventTime;
    205     };
    206 
    207     nsecs_t computeNextEventTimeLocked(nsecs_t now) {
    208         nsecs_t nextEventTime = INT64_MAX;
    209         for (size_t i = 0; i < mEventListeners.size(); i++) {
    210             nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i],
    211                     now);
    212 
    213             if (t < nextEventTime) {
    214                 nextEventTime = t;
    215             }
    216         }
    217 
    218         return nextEventTime;
    219     }
    220 
    221     Vector<CallbackInvocation> gatherCallbackInvocationsLocked(nsecs_t now) {
    222         Vector<CallbackInvocation> callbackInvocations;
    223         nsecs_t ref = now - mPeriod;
    224 
    225         for (size_t i = 0; i < mEventListeners.size(); i++) {
    226             nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i],
    227                     ref);
    228 
    229             if (t < now) {
    230                 CallbackInvocation ci;
    231                 ci.mCallback = mEventListeners[i].mCallback;
    232                 ci.mEventTime = t;
    233                 callbackInvocations.push(ci);
    234                 mEventListeners.editItemAt(i).mLastEventTime = t;
    235             }
    236         }
    237 
    238         return callbackInvocations;
    239     }
    240 
    241     nsecs_t computeListenerNextEventTimeLocked(const EventListener& listener,
    242             nsecs_t ref) {
    243 
    244         nsecs_t lastEventTime = listener.mLastEventTime;
    245         if (ref < lastEventTime) {
    246             ref = lastEventTime;
    247         }
    248 
    249         nsecs_t phase = mPhase + listener.mPhase;
    250         nsecs_t t = (((ref - phase) / mPeriod) + 1) * mPeriod + phase;
    251 
    252         if (t - listener.mLastEventTime < mPeriod / 2) {
    253             t += mPeriod;
    254         }
    255 
    256         return t;
    257     }
    258 
    259     void fireCallbackInvocations(const Vector<CallbackInvocation>& callbacks) {
    260         for (size_t i = 0; i < callbacks.size(); i++) {
    261             callbacks[i].mCallback->onDispSyncEvent(callbacks[i].mEventTime);
    262         }
    263     }
    264 
    265     bool mStop;
    266 
    267     nsecs_t mPeriod;
    268     nsecs_t mPhase;
    269     nsecs_t mWakeupLatency;
    270 
    271     Vector<EventListener> mEventListeners;
    272 
    273     Mutex mMutex;
    274     Condition mCond;
    275 };
    276 
    277 class ZeroPhaseTracer : public DispSync::Callback {
    278 public:
    279     ZeroPhaseTracer() : mParity(false) {}
    280 
    281     virtual void onDispSyncEvent(nsecs_t /*when*/) {
    282         mParity = !mParity;
    283         ATRACE_INT("ZERO_PHASE_VSYNC", mParity ? 1 : 0);
    284     }
    285 
    286 private:
    287     bool mParity;
    288 };
    289 
    290 DispSync::DispSync() :
    291         mRefreshSkipCount(0),
    292         mThread(new DispSyncThread()) {
    293 
    294     mThread->run("DispSync", PRIORITY_URGENT_DISPLAY + PRIORITY_MORE_FAVORABLE);
    295 
    296     reset();
    297     beginResync();
    298 
    299     if (kTraceDetailedInfo) {
    300         // If we're not getting present fences then the ZeroPhaseTracer
    301         // would prevent HW vsync event from ever being turned off.
    302         // Even if we're just ignoring the fences, the zero-phase tracing is
    303         // not needed because any time there is an event registered we will
    304         // turn on the HW vsync events.
    305         if (!kIgnorePresentFences) {
    306             addEventListener(0, new ZeroPhaseTracer());
    307         }
    308     }
    309 }
    310 
    311 DispSync::~DispSync() {}
    312 
    313 void DispSync::reset() {
    314     Mutex::Autolock lock(mMutex);
    315 
    316     mNumResyncSamples = 0;
    317     mFirstResyncSample = 0;
    318     mNumResyncSamplesSincePresent = 0;
    319     resetErrorLocked();
    320 }
    321 
    322 bool DispSync::addPresentFence(const sp<Fence>& fence) {
    323     Mutex::Autolock lock(mMutex);
    324 
    325     mPresentFences[mPresentSampleOffset] = fence;
    326     mPresentTimes[mPresentSampleOffset] = 0;
    327     mPresentSampleOffset = (mPresentSampleOffset + 1) % NUM_PRESENT_SAMPLES;
    328     mNumResyncSamplesSincePresent = 0;
    329 
    330     for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
    331         const sp<Fence>& f(mPresentFences[i]);
    332         if (f != NULL) {
    333             nsecs_t t = f->getSignalTime();
    334             if (t < INT64_MAX) {
    335                 mPresentFences[i].clear();
    336                 mPresentTimes[i] = t + kPresentTimeOffset;
    337             }
    338         }
    339     }
    340 
    341     updateErrorLocked();
    342 
    343     return mPeriod == 0 || mError > kErrorThreshold;
    344 }
    345 
    346 void DispSync::beginResync() {
    347     Mutex::Autolock lock(mMutex);
    348 
    349     mNumResyncSamples = 0;
    350 }
    351 
    352 bool DispSync::addResyncSample(nsecs_t timestamp) {
    353     Mutex::Autolock lock(mMutex);
    354 
    355     size_t idx = (mFirstResyncSample + mNumResyncSamples) % MAX_RESYNC_SAMPLES;
    356     mResyncSamples[idx] = timestamp;
    357 
    358     if (mNumResyncSamples < MAX_RESYNC_SAMPLES) {
    359         mNumResyncSamples++;
    360     } else {
    361         mFirstResyncSample = (mFirstResyncSample + 1) % MAX_RESYNC_SAMPLES;
    362     }
    363 
    364     updateModelLocked();
    365 
    366     if (mNumResyncSamplesSincePresent++ > MAX_RESYNC_SAMPLES_WITHOUT_PRESENT) {
    367         resetErrorLocked();
    368     }
    369 
    370     if (kIgnorePresentFences) {
    371         // If we don't have the sync framework we will never have
    372         // addPresentFence called.  This means we have no way to know whether
    373         // or not we're synchronized with the HW vsyncs, so we just request
    374         // that the HW vsync events be turned on whenever we need to generate
    375         // SW vsync events.
    376         return mThread->hasAnyEventListeners();
    377     }
    378 
    379     return mPeriod == 0 || mError > kErrorThreshold;
    380 }
    381 
    382 void DispSync::endResync() {
    383 }
    384 
    385 status_t DispSync::addEventListener(nsecs_t phase,
    386         const sp<Callback>& callback) {
    387 
    388     Mutex::Autolock lock(mMutex);
    389     return mThread->addEventListener(phase, callback);
    390 }
    391 
    392 void DispSync::setRefreshSkipCount(int count) {
    393     Mutex::Autolock lock(mMutex);
    394     ALOGD("setRefreshSkipCount(%d)", count);
    395     mRefreshSkipCount = count;
    396     updateModelLocked();
    397 }
    398 
    399 status_t DispSync::removeEventListener(const sp<Callback>& callback) {
    400     Mutex::Autolock lock(mMutex);
    401     return mThread->removeEventListener(callback);
    402 }
    403 
    404 void DispSync::setPeriod(nsecs_t period) {
    405     Mutex::Autolock lock(mMutex);
    406     mPeriod = period;
    407     mPhase = 0;
    408     mThread->updateModel(mPeriod, mPhase);
    409 }
    410 
    411 nsecs_t DispSync::getPeriod() {
    412     // lock mutex as mPeriod changes multiple times in updateModelLocked
    413     Mutex::Autolock lock(mMutex);
    414     return mPeriod;
    415 }
    416 
    417 void DispSync::updateModelLocked() {
    418     if (mNumResyncSamples >= MIN_RESYNC_SAMPLES_FOR_UPDATE) {
    419         nsecs_t durationSum = 0;
    420         for (size_t i = 1; i < mNumResyncSamples; i++) {
    421             size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
    422             size_t prev = (idx + MAX_RESYNC_SAMPLES - 1) % MAX_RESYNC_SAMPLES;
    423             durationSum += mResyncSamples[idx] - mResyncSamples[prev];
    424         }
    425 
    426         mPeriod = durationSum / (mNumResyncSamples - 1);
    427 
    428         double sampleAvgX = 0;
    429         double sampleAvgY = 0;
    430         double scale = 2.0 * M_PI / double(mPeriod);
    431         for (size_t i = 0; i < mNumResyncSamples; i++) {
    432             size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
    433             nsecs_t sample = mResyncSamples[idx];
    434             double samplePhase = double(sample % mPeriod) * scale;
    435             sampleAvgX += cos(samplePhase);
    436             sampleAvgY += sin(samplePhase);
    437         }
    438 
    439         sampleAvgX /= double(mNumResyncSamples);
    440         sampleAvgY /= double(mNumResyncSamples);
    441 
    442         mPhase = nsecs_t(atan2(sampleAvgY, sampleAvgX) / scale);
    443 
    444         if (mPhase < 0) {
    445             mPhase += mPeriod;
    446         }
    447 
    448         if (kTraceDetailedInfo) {
    449             ATRACE_INT64("DispSync:Period", mPeriod);
    450             ATRACE_INT64("DispSync:Phase", mPhase);
    451         }
    452 
    453         // Artificially inflate the period if requested.
    454         mPeriod += mPeriod * mRefreshSkipCount;
    455 
    456         mThread->updateModel(mPeriod, mPhase);
    457     }
    458 }
    459 
    460 void DispSync::updateErrorLocked() {
    461     if (mPeriod == 0) {
    462         return;
    463     }
    464 
    465     // Need to compare present fences against the un-adjusted refresh period,
    466     // since they might arrive between two events.
    467     nsecs_t period = mPeriod / (1 + mRefreshSkipCount);
    468 
    469     int numErrSamples = 0;
    470     nsecs_t sqErrSum = 0;
    471 
    472     for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
    473         nsecs_t sample = mPresentTimes[i];
    474         if (sample > mPhase) {
    475             nsecs_t sampleErr = (sample - mPhase) % period;
    476             if (sampleErr > period / 2) {
    477                 sampleErr -= period;
    478             }
    479             sqErrSum += sampleErr * sampleErr;
    480             numErrSamples++;
    481         }
    482     }
    483 
    484     if (numErrSamples > 0) {
    485         mError = sqErrSum / numErrSamples;
    486     } else {
    487         mError = 0;
    488     }
    489 
    490     if (kTraceDetailedInfo) {
    491         ATRACE_INT64("DispSync:Error", mError);
    492     }
    493 }
    494 
    495 void DispSync::resetErrorLocked() {
    496     mPresentSampleOffset = 0;
    497     mError = 0;
    498     for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
    499         mPresentFences[i].clear();
    500         mPresentTimes[i] = 0;
    501     }
    502 }
    503 
    504 nsecs_t DispSync::computeNextRefresh(int periodOffset) const {
    505     Mutex::Autolock lock(mMutex);
    506     nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
    507     return (((now - mPhase) / mPeriod) + periodOffset + 1) * mPeriod + mPhase;
    508 }
    509 
    510 void DispSync::dump(String8& result) const {
    511     Mutex::Autolock lock(mMutex);
    512     result.appendFormat("present fences are %s\n",
    513             kIgnorePresentFences ? "ignored" : "used");
    514     result.appendFormat("mPeriod: %" PRId64 " ns (%.3f fps; skipCount=%d)\n",
    515             mPeriod, 1000000000.0 / mPeriod, mRefreshSkipCount);
    516     result.appendFormat("mPhase: %" PRId64 " ns\n", mPhase);
    517     result.appendFormat("mError: %" PRId64 " ns (sqrt=%.1f)\n",
    518             mError, sqrt(mError));
    519     result.appendFormat("mNumResyncSamplesSincePresent: %d (limit %d)\n",
    520             mNumResyncSamplesSincePresent, MAX_RESYNC_SAMPLES_WITHOUT_PRESENT);
    521     result.appendFormat("mNumResyncSamples: %zd (max %d)\n",
    522             mNumResyncSamples, MAX_RESYNC_SAMPLES);
    523 
    524     result.appendFormat("mResyncSamples:\n");
    525     nsecs_t previous = -1;
    526     for (size_t i = 0; i < mNumResyncSamples; i++) {
    527         size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
    528         nsecs_t sampleTime = mResyncSamples[idx];
    529         if (i == 0) {
    530             result.appendFormat("  %" PRId64 "\n", sampleTime);
    531         } else {
    532             result.appendFormat("  %" PRId64 " (+%" PRId64 ")\n",
    533                     sampleTime, sampleTime - previous);
    534         }
    535         previous = sampleTime;
    536     }
    537 
    538     result.appendFormat("mPresentFences / mPresentTimes [%d]:\n",
    539             NUM_PRESENT_SAMPLES);
    540     nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
    541     previous = 0;
    542     for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
    543         size_t idx = (i + mPresentSampleOffset) % NUM_PRESENT_SAMPLES;
    544         bool signaled = mPresentFences[idx] == NULL;
    545         nsecs_t presentTime = mPresentTimes[idx];
    546         if (!signaled) {
    547             result.appendFormat("  [unsignaled fence]\n");
    548         } else if (presentTime == 0) {
    549             result.appendFormat("  0\n");
    550         } else if (previous == 0) {
    551             result.appendFormat("  %" PRId64 "  (%.3f ms ago)\n", presentTime,
    552                     (now - presentTime) / 1000000.0);
    553         } else {
    554             result.appendFormat("  %" PRId64 " (+%" PRId64 " / %.3f)  (%.3f ms ago)\n",
    555                     presentTime, presentTime - previous,
    556                     (presentTime - previous) / (double) mPeriod,
    557                     (now - presentTime) / 1000000.0);
    558         }
    559         previous = presentTime;
    560     }
    561 
    562     result.appendFormat("current monotonic time: %" PRId64 "\n", now);
    563 }
    564 
    565 } // namespace android
    566