Home | History | Annotate | Download | only in priv
      1 
      2 /*---------------------------------------------------------------*/
      3 /*--- begin                               guest_arm_helpers.c ---*/
      4 /*---------------------------------------------------------------*/
      5 
      6 /*
      7    This file is part of Valgrind, a dynamic binary instrumentation
      8    framework.
      9 
     10    Copyright (C) 2004-2013 OpenWorks LLP
     11       info (at) open-works.net
     12 
     13    This program is free software; you can redistribute it and/or
     14    modify it under the terms of the GNU General Public License as
     15    published by the Free Software Foundation; either version 2 of the
     16    License, or (at your option) any later version.
     17 
     18    This program is distributed in the hope that it will be useful, but
     19    WITHOUT ANY WARRANTY; without even the implied warranty of
     20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     21    General Public License for more details.
     22 
     23    You should have received a copy of the GNU General Public License
     24    along with this program; if not, write to the Free Software
     25    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
     26    02110-1301, USA.
     27 
     28    The GNU General Public License is contained in the file COPYING.
     29 */
     30 
     31 #include "libvex_basictypes.h"
     32 #include "libvex_emnote.h"
     33 #include "libvex_guest_arm.h"
     34 #include "libvex_ir.h"
     35 #include "libvex.h"
     36 
     37 #include "main_util.h"
     38 #include "main_globals.h"
     39 #include "guest_generic_bb_to_IR.h"
     40 #include "guest_arm_defs.h"
     41 
     42 
     43 /* This file contains helper functions for arm guest code.  Calls to
     44    these functions are generated by the back end.  These calls are of
     45    course in the host machine code and this file will be compiled to
     46    host machine code, so that all makes sense.
     47 
     48    Only change the signatures of these helper functions very
     49    carefully.  If you change the signature here, you'll have to change
     50    the parameters passed to it in the IR calls constructed by
     51    guest-arm/toIR.c.
     52 */
     53 
     54 
     55 /* Set to 1 to get detailed profiling info about individual N, Z, C
     56    and V flag evaluation. */
     57 #define PROFILE_NZCV_FLAGS 0
     58 
     59 #if PROFILE_NZCV_FLAGS
     60 
     61 static UInt tab_n_eval[ARMG_CC_OP_NUMBER];
     62 static UInt tab_z_eval[ARMG_CC_OP_NUMBER];
     63 static UInt tab_c_eval[ARMG_CC_OP_NUMBER];
     64 static UInt tab_v_eval[ARMG_CC_OP_NUMBER];
     65 static UInt initted = 0;
     66 static UInt tot_evals = 0;
     67 
     68 static void initCounts ( void )
     69 {
     70    UInt i;
     71    for (i = 0; i < ARMG_CC_OP_NUMBER; i++) {
     72       tab_n_eval[i] = tab_z_eval[i] = tab_c_eval[i] = tab_v_eval[i] = 0;
     73    }
     74    initted = 1;
     75 }
     76 
     77 static void showCounts ( void )
     78 {
     79    UInt i;
     80    vex_printf("\n                 N          Z          C          V\n");
     81    vex_printf(  "---------------------------------------------------\n");
     82    for (i = 0; i < ARMG_CC_OP_NUMBER; i++) {
     83       vex_printf("CC_OP=%d  %9d  %9d  %9d  %9d\n",
     84                  i,
     85                  tab_n_eval[i], tab_z_eval[i],
     86                  tab_c_eval[i], tab_v_eval[i] );
     87     }
     88 }
     89 
     90 #define NOTE_N_EVAL(_cc_op) NOTE_EVAL(_cc_op, tab_n_eval)
     91 #define NOTE_Z_EVAL(_cc_op) NOTE_EVAL(_cc_op, tab_z_eval)
     92 #define NOTE_C_EVAL(_cc_op) NOTE_EVAL(_cc_op, tab_c_eval)
     93 #define NOTE_V_EVAL(_cc_op) NOTE_EVAL(_cc_op, tab_v_eval)
     94 
     95 #define NOTE_EVAL(_cc_op, _tab) \
     96    do { \
     97       if (!initted) initCounts(); \
     98       vassert( ((UInt)(_cc_op)) < ARMG_CC_OP_NUMBER); \
     99       _tab[(UInt)(_cc_op)]++; \
    100       tot_evals++; \
    101       if (0 == (tot_evals & 0xFFFFF)) \
    102         showCounts(); \
    103    } while (0)
    104 
    105 #endif /* PROFILE_NZCV_FLAGS */
    106 
    107 
    108 /* Calculate the N flag from the supplied thunk components, in the
    109    least significant bit of the word.  Returned bits 31:1 are zero. */
    110 static
    111 UInt armg_calculate_flag_n ( UInt cc_op, UInt cc_dep1,
    112                              UInt cc_dep2, UInt cc_dep3 )
    113 {
    114 #  if PROFILE_NZCV_FLAGS
    115    NOTE_N_EVAL(cc_op);
    116 #  endif
    117 
    118    switch (cc_op) {
    119       case ARMG_CC_OP_COPY: {
    120          /* (nzcv:28x0, unused, unused) */
    121          UInt nf   = (cc_dep1 >> ARMG_CC_SHIFT_N) & 1;
    122          return nf;
    123       }
    124       case ARMG_CC_OP_ADD: {
    125          /* (argL, argR, unused) */
    126          UInt argL = cc_dep1;
    127          UInt argR = cc_dep2;
    128          UInt res  = argL + argR;
    129          UInt nf   = res >> 31;
    130          return nf;
    131       }
    132       case ARMG_CC_OP_SUB: {
    133          /* (argL, argR, unused) */
    134          UInt argL = cc_dep1;
    135          UInt argR = cc_dep2;
    136          UInt res  = argL - argR;
    137          UInt nf   = res >> 31;
    138          return nf;
    139       }
    140       case ARMG_CC_OP_ADC: {
    141          /* (argL, argR, oldC) */
    142          UInt argL = cc_dep1;
    143          UInt argR = cc_dep2;
    144          UInt oldC = cc_dep3;
    145          vassert((oldC & ~1) == 0);
    146          UInt res  = argL + argR + oldC;
    147          UInt nf   = res >> 31;
    148          return nf;
    149       }
    150       case ARMG_CC_OP_SBB: {
    151          /* (argL, argR, oldC) */
    152          UInt argL = cc_dep1;
    153          UInt argR = cc_dep2;
    154          UInt oldC = cc_dep3;
    155          vassert((oldC & ~1) == 0);
    156          UInt res  = argL - argR - (oldC ^ 1);
    157          UInt nf   = res >> 31;
    158          return nf;
    159       }
    160       case ARMG_CC_OP_LOGIC: {
    161          /* (res, shco, oldV) */
    162          UInt res  = cc_dep1;
    163          UInt nf   = res >> 31;
    164          return nf;
    165       }
    166       case ARMG_CC_OP_MUL: {
    167          /* (res, unused, oldC:oldV) */
    168          UInt res  = cc_dep1;
    169          UInt nf   = res >> 31;
    170          return nf;
    171       }
    172       case ARMG_CC_OP_MULL: {
    173          /* (resLo32, resHi32, oldC:oldV) */
    174          UInt resHi32 = cc_dep2;
    175          UInt nf      = resHi32 >> 31;
    176          return nf;
    177       }
    178       default:
    179          /* shouldn't really make these calls from generated code */
    180          vex_printf("armg_calculate_flag_n"
    181                     "( op=%u, dep1=0x%x, dep2=0x%x, dep3=0x%x )\n",
    182                     cc_op, cc_dep1, cc_dep2, cc_dep3 );
    183          vpanic("armg_calculate_flags_n");
    184    }
    185 }
    186 
    187 
    188 /* Calculate the Z flag from the supplied thunk components, in the
    189    least significant bit of the word.  Returned bits 31:1 are zero. */
    190 static
    191 UInt armg_calculate_flag_z ( UInt cc_op, UInt cc_dep1,
    192                              UInt cc_dep2, UInt cc_dep3 )
    193 {
    194 #  if PROFILE_NZCV_FLAGS
    195    NOTE_Z_EVAL(cc_op);
    196 #  endif
    197 
    198    switch (cc_op) {
    199       case ARMG_CC_OP_COPY: {
    200          /* (nzcv:28x0, unused, unused) */
    201          UInt zf   = (cc_dep1 >> ARMG_CC_SHIFT_Z) & 1;
    202          return zf;
    203       }
    204       case ARMG_CC_OP_ADD: {
    205          /* (argL, argR, unused) */
    206          UInt argL = cc_dep1;
    207          UInt argR = cc_dep2;
    208          UInt res  = argL + argR;
    209          UInt zf   = res == 0;
    210          return zf;
    211       }
    212       case ARMG_CC_OP_SUB: {
    213          /* (argL, argR, unused) */
    214          UInt argL = cc_dep1;
    215          UInt argR = cc_dep2;
    216          UInt res  = argL - argR;
    217          UInt zf   = res == 0;
    218          return zf;
    219       }
    220       case ARMG_CC_OP_ADC: {
    221          /* (argL, argR, oldC) */
    222          UInt argL = cc_dep1;
    223          UInt argR = cc_dep2;
    224          UInt oldC = cc_dep3;
    225          vassert((oldC & ~1) == 0);
    226          UInt res  = argL + argR + oldC;
    227          UInt zf   = res == 0;
    228          return zf;
    229       }
    230       case ARMG_CC_OP_SBB: {
    231          /* (argL, argR, oldC) */
    232          UInt argL = cc_dep1;
    233          UInt argR = cc_dep2;
    234          UInt oldC = cc_dep3;
    235          vassert((oldC & ~1) == 0);
    236          UInt res  = argL - argR - (oldC ^ 1);
    237          UInt zf   = res == 0;
    238          return zf;
    239       }
    240       case ARMG_CC_OP_LOGIC: {
    241          /* (res, shco, oldV) */
    242          UInt res  = cc_dep1;
    243          UInt zf   = res == 0;
    244          return zf;
    245       }
    246       case ARMG_CC_OP_MUL: {
    247          /* (res, unused, oldC:oldV) */
    248          UInt res  = cc_dep1;
    249          UInt zf   = res == 0;
    250          return zf;
    251       }
    252       case ARMG_CC_OP_MULL: {
    253          /* (resLo32, resHi32, oldC:oldV) */
    254          UInt resLo32 = cc_dep1;
    255          UInt resHi32 = cc_dep2;
    256          UInt zf      = (resHi32|resLo32) == 0;
    257          return zf;
    258       }
    259       default:
    260          /* shouldn't really make these calls from generated code */
    261          vex_printf("armg_calculate_flags_z"
    262                     "( op=%u, dep1=0x%x, dep2=0x%x, dep3=0x%x )\n",
    263                     cc_op, cc_dep1, cc_dep2, cc_dep3 );
    264          vpanic("armg_calculate_flags_z");
    265    }
    266 }
    267 
    268 
    269 /* CALLED FROM GENERATED CODE: CLEAN HELPER */
    270 /* Calculate the C flag from the supplied thunk components, in the
    271    least significant bit of the word.  Returned bits 31:1 are zero. */
    272 UInt armg_calculate_flag_c ( UInt cc_op, UInt cc_dep1,
    273                              UInt cc_dep2, UInt cc_dep3 )
    274 {
    275 #  if PROFILE_NZCV_FLAGS
    276    NOTE_C_EVAL(cc_op);
    277 #  endif
    278 
    279    switch (cc_op) {
    280       case ARMG_CC_OP_COPY: {
    281          /* (nzcv:28x0, unused, unused) */
    282          UInt cf   = (cc_dep1 >> ARMG_CC_SHIFT_C) & 1;
    283          return cf;
    284       }
    285       case ARMG_CC_OP_ADD: {
    286          /* (argL, argR, unused) */
    287          UInt argL = cc_dep1;
    288          UInt argR = cc_dep2;
    289          UInt res  = argL + argR;
    290          UInt cf   = res < argL;
    291          return cf;
    292       }
    293       case ARMG_CC_OP_SUB: {
    294          /* (argL, argR, unused) */
    295          UInt argL = cc_dep1;
    296          UInt argR = cc_dep2;
    297          UInt cf   = argL >= argR;
    298          return cf;
    299       }
    300       case ARMG_CC_OP_ADC: {
    301          /* (argL, argR, oldC) */
    302          UInt argL = cc_dep1;
    303          UInt argR = cc_dep2;
    304          UInt oldC = cc_dep3;
    305          vassert((oldC & ~1) == 0);
    306          UInt res  = argL + argR + oldC;
    307          UInt cf   = oldC ? (res <= argL) : (res < argL);
    308          return cf;
    309       }
    310       case ARMG_CC_OP_SBB: {
    311          /* (argL, argR, oldC) */
    312          UInt argL = cc_dep1;
    313          UInt argR = cc_dep2;
    314          UInt oldC = cc_dep3;
    315          vassert((oldC & ~1) == 0);
    316          UInt cf   = oldC ? (argL >= argR) : (argL > argR);
    317          return cf;
    318       }
    319       case ARMG_CC_OP_LOGIC: {
    320          /* (res, shco, oldV) */
    321          UInt shco = cc_dep2;
    322          vassert((shco & ~1) == 0);
    323          UInt cf   = shco;
    324          return cf;
    325       }
    326       case ARMG_CC_OP_MUL: {
    327          /* (res, unused, oldC:oldV) */
    328          UInt oldC = (cc_dep3 >> 1) & 1;
    329          vassert((cc_dep3 & ~3) == 0);
    330          UInt cf   = oldC;
    331          return cf;
    332       }
    333       case ARMG_CC_OP_MULL: {
    334          /* (resLo32, resHi32, oldC:oldV) */
    335          UInt oldC    = (cc_dep3 >> 1) & 1;
    336          vassert((cc_dep3 & ~3) == 0);
    337          UInt cf      = oldC;
    338          return cf;
    339       }
    340       default:
    341          /* shouldn't really make these calls from generated code */
    342          vex_printf("armg_calculate_flag_c"
    343                     "( op=%u, dep1=0x%x, dep2=0x%x, dep3=0x%x )\n",
    344                     cc_op, cc_dep1, cc_dep2, cc_dep3 );
    345          vpanic("armg_calculate_flag_c");
    346    }
    347 }
    348 
    349 
    350 /* CALLED FROM GENERATED CODE: CLEAN HELPER */
    351 /* Calculate the V flag from the supplied thunk components, in the
    352    least significant bit of the word.  Returned bits 31:1 are zero. */
    353 UInt armg_calculate_flag_v ( UInt cc_op, UInt cc_dep1,
    354                              UInt cc_dep2, UInt cc_dep3 )
    355 {
    356 #  if PROFILE_NZCV_FLAGS
    357    NOTE_V_EVAL(cc_op);
    358 #  endif
    359 
    360    switch (cc_op) {
    361       case ARMG_CC_OP_COPY: {
    362          /* (nzcv:28x0, unused, unused) */
    363          UInt vf   = (cc_dep1 >> ARMG_CC_SHIFT_V) & 1;
    364          return vf;
    365       }
    366       case ARMG_CC_OP_ADD: {
    367          /* (argL, argR, unused) */
    368          UInt argL = cc_dep1;
    369          UInt argR = cc_dep2;
    370          UInt res  = argL + argR;
    371          UInt vf   = ((res ^ argL) & (res ^ argR)) >> 31;
    372          return vf;
    373       }
    374       case ARMG_CC_OP_SUB: {
    375          /* (argL, argR, unused) */
    376          UInt argL = cc_dep1;
    377          UInt argR = cc_dep2;
    378          UInt res  = argL - argR;
    379          UInt vf   = ((argL ^ argR) & (argL ^ res)) >> 31;
    380          return vf;
    381       }
    382       case ARMG_CC_OP_ADC: {
    383          /* (argL, argR, oldC) */
    384          UInt argL = cc_dep1;
    385          UInt argR = cc_dep2;
    386          UInt oldC = cc_dep3;
    387          vassert((oldC & ~1) == 0);
    388          UInt res  = argL + argR + oldC;
    389          UInt vf   = ((res ^ argL) & (res ^ argR)) >> 31;
    390          return vf;
    391       }
    392       case ARMG_CC_OP_SBB: {
    393          /* (argL, argR, oldC) */
    394          UInt argL = cc_dep1;
    395          UInt argR = cc_dep2;
    396          UInt oldC = cc_dep3;
    397          vassert((oldC & ~1) == 0);
    398          UInt res  = argL - argR - (oldC ^ 1);
    399          UInt vf   = ((argL ^ argR) & (argL ^ res)) >> 31;
    400          return vf;
    401       }
    402       case ARMG_CC_OP_LOGIC: {
    403          /* (res, shco, oldV) */
    404          UInt oldV = cc_dep3;
    405          vassert((oldV & ~1) == 0);
    406          UInt vf   = oldV;
    407          return vf;
    408       }
    409       case ARMG_CC_OP_MUL: {
    410          /* (res, unused, oldC:oldV) */
    411          UInt oldV = (cc_dep3 >> 0) & 1;
    412          vassert((cc_dep3 & ~3) == 0);
    413          UInt vf   = oldV;
    414          return vf;
    415       }
    416       case ARMG_CC_OP_MULL: {
    417          /* (resLo32, resHi32, oldC:oldV) */
    418          UInt oldV    = (cc_dep3 >> 0) & 1;
    419          vassert((cc_dep3 & ~3) == 0);
    420          UInt vf      = oldV;
    421          return vf;
    422       }
    423       default:
    424          /* shouldn't really make these calls from generated code */
    425          vex_printf("armg_calculate_flag_v"
    426                     "( op=%u, dep1=0x%x, dep2=0x%x, dep3=0x%x )\n",
    427                     cc_op, cc_dep1, cc_dep2, cc_dep3 );
    428          vpanic("armg_calculate_flag_v");
    429    }
    430 }
    431 
    432 
    433 /* CALLED FROM GENERATED CODE: CLEAN HELPER */
    434 /* Calculate NZCV from the supplied thunk components, in the positions
    435    they appear in the CPSR, viz bits 31:28 for N Z C V respectively.
    436    Returned bits 27:0 are zero. */
    437 UInt armg_calculate_flags_nzcv ( UInt cc_op, UInt cc_dep1,
    438                                  UInt cc_dep2, UInt cc_dep3 )
    439 {
    440    UInt f;
    441    UInt res = 0;
    442    f = armg_calculate_flag_n(cc_op, cc_dep1, cc_dep2, cc_dep3);
    443    res |= (f << ARMG_CC_SHIFT_N);
    444    f = armg_calculate_flag_z(cc_op, cc_dep1, cc_dep2, cc_dep3);
    445    res |= (f << ARMG_CC_SHIFT_Z);
    446    f = armg_calculate_flag_c(cc_op, cc_dep1, cc_dep2, cc_dep3);
    447    res |= (f << ARMG_CC_SHIFT_C);
    448    f = armg_calculate_flag_v(cc_op, cc_dep1, cc_dep2, cc_dep3);
    449    res |= (f << ARMG_CC_SHIFT_V);
    450    return res;
    451 }
    452 
    453 
    454 /* CALLED FROM GENERATED CODE: CLEAN HELPER */
    455 /* Calculate the QC flag from the arguments, in the lowest bit
    456    of the word (bit 0).  Urr, having this out of line is bizarre.
    457    Push back inline. */
    458 UInt armg_calculate_flag_qc ( UInt resL1, UInt resL2,
    459                               UInt resR1, UInt resR2 )
    460 {
    461    if (resL1 != resR1 || resL2 != resR2)
    462       return 1;
    463    else
    464       return 0;
    465 }
    466 
    467 /* CALLED FROM GENERATED CODE: CLEAN HELPER */
    468 /* Calculate the specified condition from the thunk components, in the
    469    lowest bit of the word (bit 0).  Returned bits 31:1 are zero. */
    470 UInt armg_calculate_condition ( UInt cond_n_op /* (ARMCondcode << 4) | cc_op */,
    471                                 UInt cc_dep1,
    472                                 UInt cc_dep2, UInt cc_dep3 )
    473 {
    474    UInt cond  = cond_n_op >> 4;
    475    UInt cc_op = cond_n_op & 0xF;
    476    UInt nf, zf, vf, cf, inv;
    477    //   vex_printf("XXXXXXXX %x %x %x %x\n",
    478    //              cond_n_op, cc_dep1, cc_dep2, cc_dep3);
    479 
    480    // skip flags computation in this case
    481    if (cond == ARMCondAL) return 1;
    482 
    483    inv  = cond & 1;
    484 
    485    switch (cond) {
    486       case ARMCondEQ:    // Z=1         => z
    487       case ARMCondNE:    // Z=0
    488          zf = armg_calculate_flag_z(cc_op, cc_dep1, cc_dep2, cc_dep3);
    489          return inv ^ zf;
    490 
    491       case ARMCondHS:    // C=1         => c
    492       case ARMCondLO:    // C=0
    493          cf = armg_calculate_flag_c(cc_op, cc_dep1, cc_dep2, cc_dep3);
    494          return inv ^ cf;
    495 
    496       case ARMCondMI:    // N=1         => n
    497       case ARMCondPL:    // N=0
    498          nf = armg_calculate_flag_n(cc_op, cc_dep1, cc_dep2, cc_dep3);
    499          return inv ^ nf;
    500 
    501       case ARMCondVS:    // V=1         => v
    502       case ARMCondVC:    // V=0
    503          vf = armg_calculate_flag_v(cc_op, cc_dep1, cc_dep2, cc_dep3);
    504          return inv ^ vf;
    505 
    506       case ARMCondHI:    // C=1 && Z=0   => c & ~z
    507       case ARMCondLS:    // C=0 || Z=1
    508          cf = armg_calculate_flag_c(cc_op, cc_dep1, cc_dep2, cc_dep3);
    509          zf = armg_calculate_flag_z(cc_op, cc_dep1, cc_dep2, cc_dep3);
    510          return inv ^ (1 & (cf & ~zf));
    511 
    512       case ARMCondGE:    // N=V          => ~(n^v)
    513       case ARMCondLT:    // N!=V
    514          nf = armg_calculate_flag_n(cc_op, cc_dep1, cc_dep2, cc_dep3);
    515          vf = armg_calculate_flag_v(cc_op, cc_dep1, cc_dep2, cc_dep3);
    516          return inv ^ (1 & ~(nf ^ vf));
    517 
    518       case ARMCondGT:    // Z=0 && N=V   => ~z & ~(n^v)  =>  ~(z | (n^v))
    519       case ARMCondLE:    // Z=1 || N!=V
    520          nf = armg_calculate_flag_n(cc_op, cc_dep1, cc_dep2, cc_dep3);
    521          vf = armg_calculate_flag_v(cc_op, cc_dep1, cc_dep2, cc_dep3);
    522          zf = armg_calculate_flag_z(cc_op, cc_dep1, cc_dep2, cc_dep3);
    523          return inv ^ (1 & ~(zf | (nf ^ vf)));
    524 
    525       case ARMCondAL: // handled above
    526       case ARMCondNV: // should never get here: Illegal instr
    527       default:
    528          /* shouldn't really make these calls from generated code */
    529          vex_printf("armg_calculate_condition(ARM)"
    530                     "( %u, %u, 0x%x, 0x%x, 0x%x )\n",
    531                     cond, cc_op, cc_dep1, cc_dep2, cc_dep3 );
    532          vpanic("armg_calculate_condition(ARM)");
    533    }
    534 }
    535 
    536 
    537 /*---------------------------------------------------------------*/
    538 /*--- Flag-helpers translation-time function specialisers.    ---*/
    539 /*--- These help iropt specialise calls the above run-time    ---*/
    540 /*--- flags functions.                                        ---*/
    541 /*---------------------------------------------------------------*/
    542 
    543 /* Used by the optimiser to try specialisations.  Returns an
    544    equivalent expression, or NULL if none. */
    545 
    546 static Bool isU32 ( IRExpr* e, UInt n )
    547 {
    548    return
    549       toBool( e->tag == Iex_Const
    550               && e->Iex.Const.con->tag == Ico_U32
    551               && e->Iex.Const.con->Ico.U32 == n );
    552 }
    553 
    554 IRExpr* guest_arm_spechelper ( const HChar* function_name,
    555                                IRExpr** args,
    556                                IRStmt** precedingStmts,
    557                                Int      n_precedingStmts )
    558 {
    559 #  define unop(_op,_a1) IRExpr_Unop((_op),(_a1))
    560 #  define binop(_op,_a1,_a2) IRExpr_Binop((_op),(_a1),(_a2))
    561 #  define mkU32(_n) IRExpr_Const(IRConst_U32(_n))
    562 #  define mkU8(_n)  IRExpr_Const(IRConst_U8(_n))
    563 
    564    Int i, arity = 0;
    565    for (i = 0; args[i]; i++)
    566       arity++;
    567 #  if 0
    568    vex_printf("spec request:\n");
    569    vex_printf("   %s  ", function_name);
    570    for (i = 0; i < arity; i++) {
    571       vex_printf("  ");
    572       ppIRExpr(args[i]);
    573    }
    574    vex_printf("\n");
    575 #  endif
    576 
    577    /* --------- specialising "armg_calculate_condition" --------- */
    578 
    579    if (vex_streq(function_name, "armg_calculate_condition")) {
    580 
    581       /* specialise calls to the "armg_calculate_condition" function.
    582          Not sure whether this is strictly necessary, but: the
    583          replacement IR must produce only the values 0 or 1.  Bits
    584          31:1 are required to be zero. */
    585       IRExpr *cond_n_op, *cc_dep1, *cc_dep2, *cc_ndep;
    586       vassert(arity == 4);
    587       cond_n_op = args[0]; /* (ARMCondcode << 4)  |  ARMG_CC_OP_* */
    588       cc_dep1   = args[1];
    589       cc_dep2   = args[2];
    590       cc_ndep   = args[3];
    591 
    592       /*---------------- SUB ----------------*/
    593 
    594       if (isU32(cond_n_op, (ARMCondEQ << 4) | ARMG_CC_OP_SUB)) {
    595          /* EQ after SUB --> test argL == argR */
    596          return unop(Iop_1Uto32,
    597                      binop(Iop_CmpEQ32, cc_dep1, cc_dep2));
    598       }
    599       if (isU32(cond_n_op, (ARMCondNE << 4) | ARMG_CC_OP_SUB)) {
    600          /* NE after SUB --> test argL != argR */
    601          return unop(Iop_1Uto32,
    602                      binop(Iop_CmpNE32, cc_dep1, cc_dep2));
    603       }
    604 
    605       if (isU32(cond_n_op, (ARMCondGT << 4) | ARMG_CC_OP_SUB)) {
    606          /* GT after SUB --> test argL >s argR
    607                          --> test argR <s argL */
    608          return unop(Iop_1Uto32,
    609                      binop(Iop_CmpLT32S, cc_dep2, cc_dep1));
    610       }
    611       if (isU32(cond_n_op, (ARMCondLE << 4) | ARMG_CC_OP_SUB)) {
    612          /* LE after SUB --> test argL <=s argR */
    613          return unop(Iop_1Uto32,
    614                      binop(Iop_CmpLE32S, cc_dep1, cc_dep2));
    615       }
    616 
    617       if (isU32(cond_n_op, (ARMCondLT << 4) | ARMG_CC_OP_SUB)) {
    618          /* LT after SUB --> test argL <s argR */
    619          return unop(Iop_1Uto32,
    620                      binop(Iop_CmpLT32S, cc_dep1, cc_dep2));
    621       }
    622 
    623       if (isU32(cond_n_op, (ARMCondGE << 4) | ARMG_CC_OP_SUB)) {
    624          /* GE after SUB --> test argL >=s argR
    625                          --> test argR <=s argL */
    626          return unop(Iop_1Uto32,
    627                      binop(Iop_CmpLE32S, cc_dep2, cc_dep1));
    628       }
    629 
    630       if (isU32(cond_n_op, (ARMCondHS << 4) | ARMG_CC_OP_SUB)) {
    631          /* HS after SUB --> test argL >=u argR
    632                          --> test argR <=u argL */
    633          return unop(Iop_1Uto32,
    634                      binop(Iop_CmpLE32U, cc_dep2, cc_dep1));
    635       }
    636       if (isU32(cond_n_op, (ARMCondLO << 4) | ARMG_CC_OP_SUB)) {
    637          /* LO after SUB --> test argL <u argR */
    638          return unop(Iop_1Uto32,
    639                      binop(Iop_CmpLT32U, cc_dep1, cc_dep2));
    640       }
    641 
    642       if (isU32(cond_n_op, (ARMCondLS << 4) | ARMG_CC_OP_SUB)) {
    643          /* LS after SUB --> test argL <=u argR */
    644          return unop(Iop_1Uto32,
    645                      binop(Iop_CmpLE32U, cc_dep1, cc_dep2));
    646       }
    647       if (isU32(cond_n_op, (ARMCondHI << 4) | ARMG_CC_OP_SUB)) {
    648          /* HI after SUB --> test argL >u argR
    649                          --> test argR <u argL */
    650          return unop(Iop_1Uto32,
    651                      binop(Iop_CmpLT32U, cc_dep2, cc_dep1));
    652       }
    653 
    654       /*---------------- SBB ----------------*/
    655 
    656       if (isU32(cond_n_op, (ARMCondHS << 4) | ARMG_CC_OP_SBB)) {
    657          /* This seems to happen a lot in softfloat code, eg __divdf3+140 */
    658          /* thunk is: (dep1=argL, dep2=argR, ndep=oldC) */
    659          /* HS after SBB (same as C after SBB below)
    660             --> oldC ? (argL >=u argR) : (argL >u argR)
    661             --> oldC ? (argR <=u argL) : (argR <u argL)
    662          */
    663          return
    664             IRExpr_ITE(
    665                binop(Iop_CmpNE32, cc_ndep, mkU32(0)),
    666                /* case oldC != 0 */
    667                unop(Iop_1Uto32, binop(Iop_CmpLE32U, cc_dep2, cc_dep1)),
    668                /* case oldC == 0 */
    669                unop(Iop_1Uto32, binop(Iop_CmpLT32U, cc_dep2, cc_dep1))
    670             );
    671       }
    672 
    673       /*---------------- LOGIC ----------------*/
    674 
    675       if (isU32(cond_n_op, (ARMCondEQ << 4) | ARMG_CC_OP_LOGIC)) {
    676          /* EQ after LOGIC --> test res == 0 */
    677          return unop(Iop_1Uto32,
    678                      binop(Iop_CmpEQ32, cc_dep1, mkU32(0)));
    679       }
    680       if (isU32(cond_n_op, (ARMCondNE << 4) | ARMG_CC_OP_LOGIC)) {
    681          /* NE after LOGIC --> test res != 0 */
    682          return unop(Iop_1Uto32,
    683                      binop(Iop_CmpNE32, cc_dep1, mkU32(0)));
    684       }
    685 
    686       if (isU32(cond_n_op, (ARMCondPL << 4) | ARMG_CC_OP_LOGIC)) {
    687          /* PL after LOGIC --> test (res >> 31) == 0 */
    688          return unop(Iop_1Uto32,
    689                      binop(Iop_CmpEQ32,
    690                            binop(Iop_Shr32, cc_dep1, mkU8(31)),
    691                            mkU32(0)));
    692       }
    693       if (isU32(cond_n_op, (ARMCondMI << 4) | ARMG_CC_OP_LOGIC)) {
    694          /* MI after LOGIC --> test (res >> 31) == 1 */
    695          return unop(Iop_1Uto32,
    696                      binop(Iop_CmpEQ32,
    697                            binop(Iop_Shr32, cc_dep1, mkU8(31)),
    698                            mkU32(1)));
    699       }
    700 
    701       /*---------------- COPY ----------------*/
    702 
    703       if (isU32(cond_n_op, (ARMCondNE << 4) | ARMG_CC_OP_COPY)) {
    704          /* NE after COPY --> ((cc_dep1 >> ARMG_CC_SHIFT_Z) ^ 1) & 1 */
    705          return binop(Iop_And32,
    706                       binop(Iop_Xor32,
    707                             binop(Iop_Shr32, cc_dep1,
    708                                              mkU8(ARMG_CC_SHIFT_Z)),
    709                             mkU32(1)),
    710                       mkU32(1));
    711       }
    712 
    713       /*----------------- AL -----------------*/
    714 
    715       /* A critically important case for Thumb code.
    716 
    717          What we're trying to spot is the case where cond_n_op is an
    718          expression of the form Or32(..., 0xE0) since that means the
    719          caller is asking for CondAL and we can simply return 1
    720          without caring what the ... part is.  This is a potentially
    721          dodgy kludge in that it assumes that the ... part has zeroes
    722          in bits 7:4, so that the result of the Or32 is guaranteed to
    723          be 0xE in bits 7:4.  Given that the places where this first
    724          arg are constructed (in guest_arm_toIR.c) are very
    725          constrained, we can get away with this.  To make this
    726          guaranteed safe would require to have a new primop, Slice44
    727          or some such, thusly
    728 
    729          Slice44(arg1, arg2) = 0--(24)--0 arg1[7:4] arg2[3:0]
    730 
    731          and we would then look for Slice44(0xE0, ...)
    732          which would give the required safety property.
    733 
    734          It would be infeasibly expensive to scan backwards through
    735          the entire block looking for an assignment to the temp, so
    736          just look at the previous 16 statements.  That should find it
    737          if it is an interesting case, as a result of how the
    738          boilerplate guff at the start of each Thumb insn translation
    739          is made.
    740       */
    741       if (cond_n_op->tag == Iex_RdTmp) {
    742          Int    j;
    743          IRTemp look_for = cond_n_op->Iex.RdTmp.tmp;
    744          Int    limit    = n_precedingStmts - 16;
    745          if (limit < 0) limit = 0;
    746          if (0) vex_printf("scanning %d .. %d\n", n_precedingStmts-1, limit);
    747          for (j = n_precedingStmts - 1; j >= limit; j--) {
    748             IRStmt* st = precedingStmts[j];
    749             if (st->tag == Ist_WrTmp
    750                 && st->Ist.WrTmp.tmp == look_for
    751                 && st->Ist.WrTmp.data->tag == Iex_Binop
    752                 && st->Ist.WrTmp.data->Iex.Binop.op == Iop_Or32
    753                 && isU32(st->Ist.WrTmp.data->Iex.Binop.arg2, (ARMCondAL << 4)))
    754                return mkU32(1);
    755          }
    756          /* Didn't find any useful binding to the first arg
    757             in the previous 16 stmts. */
    758       }
    759    }
    760 
    761    /* --------- specialising "armg_calculate_flag_c" --------- */
    762 
    763    else
    764    if (vex_streq(function_name, "armg_calculate_flag_c")) {
    765 
    766       /* specialise calls to the "armg_calculate_flag_c" function.
    767          Note that the returned value must be either 0 or 1; nonzero
    768          bits 31:1 are not allowed.  In turn, incoming oldV and oldC
    769          values (from the thunk) are assumed to have bits 31:1
    770          clear. */
    771       IRExpr *cc_op, *cc_dep1, *cc_dep2, *cc_ndep;
    772       vassert(arity == 4);
    773       cc_op   = args[0]; /* ARMG_CC_OP_* */
    774       cc_dep1 = args[1];
    775       cc_dep2 = args[2];
    776       cc_ndep = args[3];
    777 
    778       if (isU32(cc_op, ARMG_CC_OP_LOGIC)) {
    779          /* Thunk args are (result, shco, oldV) */
    780          /* C after LOGIC --> shco */
    781          return cc_dep2;
    782       }
    783 
    784       if (isU32(cc_op, ARMG_CC_OP_SUB)) {
    785          /* Thunk args are (argL, argR, unused) */
    786          /* C after SUB --> argL >=u argR
    787                         --> argR <=u argL */
    788          return unop(Iop_1Uto32,
    789                      binop(Iop_CmpLE32U, cc_dep2, cc_dep1));
    790       }
    791 
    792       if (isU32(cc_op, ARMG_CC_OP_SBB)) {
    793          /* This happens occasionally in softfloat code, eg __divdf3+140 */
    794          /* thunk is: (dep1=argL, dep2=argR, ndep=oldC) */
    795          /* C after SBB (same as HS after SBB above)
    796             --> oldC ? (argL >=u argR) : (argL >u argR)
    797             --> oldC ? (argR <=u argL) : (argR <u argL)
    798          */
    799          return
    800             IRExpr_ITE(
    801                binop(Iop_CmpNE32, cc_ndep, mkU32(0)),
    802                /* case oldC != 0 */
    803                unop(Iop_1Uto32, binop(Iop_CmpLE32U, cc_dep2, cc_dep1)),
    804                /* case oldC == 0 */
    805                unop(Iop_1Uto32, binop(Iop_CmpLT32U, cc_dep2, cc_dep1))
    806             );
    807       }
    808 
    809    }
    810 
    811    /* --------- specialising "armg_calculate_flag_v" --------- */
    812 
    813    else
    814    if (vex_streq(function_name, "armg_calculate_flag_v")) {
    815 
    816       /* specialise calls to the "armg_calculate_flag_v" function.
    817          Note that the returned value must be either 0 or 1; nonzero
    818          bits 31:1 are not allowed.  In turn, incoming oldV and oldC
    819          values (from the thunk) are assumed to have bits 31:1
    820          clear. */
    821       IRExpr *cc_op, *cc_dep1, *cc_dep2, *cc_ndep;
    822       vassert(arity == 4);
    823       cc_op   = args[0]; /* ARMG_CC_OP_* */
    824       cc_dep1 = args[1];
    825       cc_dep2 = args[2];
    826       cc_ndep = args[3];
    827 
    828       if (isU32(cc_op, ARMG_CC_OP_LOGIC)) {
    829          /* Thunk args are (result, shco, oldV) */
    830          /* V after LOGIC --> oldV */
    831          return cc_ndep;
    832       }
    833 
    834       if (isU32(cc_op, ARMG_CC_OP_SUB)) {
    835          /* Thunk args are (argL, argR, unused) */
    836          /* V after SUB
    837             --> let res = argL - argR
    838                 in ((argL ^ argR) & (argL ^ res)) >> 31
    839             --> ((argL ^ argR) & (argL ^ (argL - argR))) >> 31
    840          */
    841          IRExpr* argL = cc_dep1;
    842          IRExpr* argR = cc_dep2;
    843          return
    844             binop(Iop_Shr32,
    845                   binop(Iop_And32,
    846                         binop(Iop_Xor32, argL, argR),
    847                         binop(Iop_Xor32, argL, binop(Iop_Sub32, argL, argR))
    848                   ),
    849                   mkU8(31)
    850             );
    851       }
    852 
    853       if (isU32(cc_op, ARMG_CC_OP_SBB)) {
    854          /* This happens occasionally in softfloat code, eg __divdf3+140 */
    855          /* thunk is: (dep1=argL, dep2=argR, ndep=oldC) */
    856          /* V after SBB
    857             --> let res = argL - argR - (oldC ^ 1)
    858                 in  (argL ^ argR) & (argL ^ res) & 1
    859          */
    860          return
    861             binop(
    862                Iop_And32,
    863                binop(
    864                   Iop_And32,
    865                   // argL ^ argR
    866                   binop(Iop_Xor32, cc_dep1, cc_dep2),
    867                   // argL ^ (argL - argR - (oldC ^ 1))
    868                   binop(Iop_Xor32,
    869                         cc_dep1,
    870                         binop(Iop_Sub32,
    871                               binop(Iop_Sub32, cc_dep1, cc_dep2),
    872                               binop(Iop_Xor32, cc_ndep, mkU32(1)))
    873                   )
    874                ),
    875                mkU32(1)
    876             );
    877       }
    878 
    879    }
    880 
    881 #  undef unop
    882 #  undef binop
    883 #  undef mkU32
    884 #  undef mkU8
    885 
    886    return NULL;
    887 }
    888 
    889 
    890 /*----------------------------------------------*/
    891 /*--- The exported fns ..                    ---*/
    892 /*----------------------------------------------*/
    893 
    894 /* VISIBLE TO LIBVEX CLIENT */
    895 #if 0
    896 void LibVEX_GuestARM_put_flags ( UInt flags_native,
    897                                  /*OUT*/VexGuestARMState* vex_state )
    898 {
    899    vassert(0); // FIXME
    900 
    901    /* Mask out everything except N Z V C. */
    902    flags_native
    903       &= (ARMG_CC_MASK_N | ARMG_CC_MASK_Z | ARMG_CC_MASK_V | ARMG_CC_MASK_C);
    904 
    905    vex_state->guest_CC_OP   = ARMG_CC_OP_COPY;
    906    vex_state->guest_CC_DEP1 = flags_native;
    907    vex_state->guest_CC_DEP2 = 0;
    908    vex_state->guest_CC_NDEP = 0;
    909 }
    910 #endif
    911 
    912 /* VISIBLE TO LIBVEX CLIENT */
    913 UInt LibVEX_GuestARM_get_cpsr ( /*IN*/const VexGuestARMState* vex_state )
    914 {
    915    UInt cpsr = 0;
    916    // NZCV
    917    cpsr |= armg_calculate_flags_nzcv(
    918                vex_state->guest_CC_OP,
    919                vex_state->guest_CC_DEP1,
    920                vex_state->guest_CC_DEP2,
    921                vex_state->guest_CC_NDEP
    922             );
    923    vassert(0 == (cpsr & 0x0FFFFFFF));
    924    // Q
    925    if (vex_state->guest_QFLAG32 > 0)
    926       cpsr |= (1 << 27);
    927    // GE
    928    if (vex_state->guest_GEFLAG0 > 0)
    929       cpsr |= (1 << 16);
    930    if (vex_state->guest_GEFLAG1 > 0)
    931       cpsr |= (1 << 17);
    932    if (vex_state->guest_GEFLAG2 > 0)
    933       cpsr |= (1 << 18);
    934    if (vex_state->guest_GEFLAG3 > 0)
    935       cpsr |= (1 << 19);
    936    // M
    937    cpsr |= (1 << 4); // 0b10000 means user-mode
    938    // J,T   J (bit 24) is zero by initialisation above
    939    // T  we copy from R15T[0]
    940    if (vex_state->guest_R15T & 1)
    941       cpsr |= (1 << 5);
    942    // ITSTATE we punt on for the time being.  Could compute it
    943    // if needed though.
    944    // E, endianness, 0 (littleendian) from initialisation above
    945    // A,I,F disable some async exceptions.  Not sure about these.
    946    // Leave as zero for the time being.
    947    return cpsr;
    948 }
    949 
    950 /* VISIBLE TO LIBVEX CLIENT */
    951 void LibVEX_GuestARM_initialise ( /*OUT*/VexGuestARMState* vex_state )
    952 {
    953    vex_state->host_EvC_FAILADDR = 0;
    954    vex_state->host_EvC_COUNTER = 0;
    955 
    956    vex_state->guest_R0  = 0;
    957    vex_state->guest_R1  = 0;
    958    vex_state->guest_R2  = 0;
    959    vex_state->guest_R3  = 0;
    960    vex_state->guest_R4  = 0;
    961    vex_state->guest_R5  = 0;
    962    vex_state->guest_R6  = 0;
    963    vex_state->guest_R7  = 0;
    964    vex_state->guest_R8  = 0;
    965    vex_state->guest_R9  = 0;
    966    vex_state->guest_R10 = 0;
    967    vex_state->guest_R11 = 0;
    968    vex_state->guest_R12 = 0;
    969    vex_state->guest_R13 = 0;
    970    vex_state->guest_R14 = 0;
    971    vex_state->guest_R15T = 0;  /* NB: implies ARM mode */
    972 
    973    vex_state->guest_CC_OP   = ARMG_CC_OP_COPY;
    974    vex_state->guest_CC_DEP1 = 0;
    975    vex_state->guest_CC_DEP2 = 0;
    976    vex_state->guest_CC_NDEP = 0;
    977    vex_state->guest_QFLAG32 = 0;
    978    vex_state->guest_GEFLAG0 = 0;
    979    vex_state->guest_GEFLAG1 = 0;
    980    vex_state->guest_GEFLAG2 = 0;
    981    vex_state->guest_GEFLAG3 = 0;
    982 
    983    vex_state->guest_EMNOTE  = EmNote_NONE;
    984    vex_state->guest_CMSTART = 0;
    985    vex_state->guest_CMLEN   = 0;
    986    vex_state->guest_NRADDR  = 0;
    987    vex_state->guest_IP_AT_SYSCALL = 0;
    988 
    989    vex_state->guest_D0  = 0;
    990    vex_state->guest_D1  = 0;
    991    vex_state->guest_D2  = 0;
    992    vex_state->guest_D3  = 0;
    993    vex_state->guest_D4  = 0;
    994    vex_state->guest_D5  = 0;
    995    vex_state->guest_D6  = 0;
    996    vex_state->guest_D7  = 0;
    997    vex_state->guest_D8  = 0;
    998    vex_state->guest_D9  = 0;
    999    vex_state->guest_D10 = 0;
   1000    vex_state->guest_D11 = 0;
   1001    vex_state->guest_D12 = 0;
   1002    vex_state->guest_D13 = 0;
   1003    vex_state->guest_D14 = 0;
   1004    vex_state->guest_D15 = 0;
   1005    vex_state->guest_D16 = 0;
   1006    vex_state->guest_D17 = 0;
   1007    vex_state->guest_D18 = 0;
   1008    vex_state->guest_D19 = 0;
   1009    vex_state->guest_D20 = 0;
   1010    vex_state->guest_D21 = 0;
   1011    vex_state->guest_D22 = 0;
   1012    vex_state->guest_D23 = 0;
   1013    vex_state->guest_D24 = 0;
   1014    vex_state->guest_D25 = 0;
   1015    vex_state->guest_D26 = 0;
   1016    vex_state->guest_D27 = 0;
   1017    vex_state->guest_D28 = 0;
   1018    vex_state->guest_D29 = 0;
   1019    vex_state->guest_D30 = 0;
   1020    vex_state->guest_D31 = 0;
   1021 
   1022    /* ARM encoded; zero is the default as it happens (result flags
   1023       (NZCV) cleared, FZ disabled, round to nearest, non-vector mode,
   1024       all exns masked, all exn sticky bits cleared). */
   1025    vex_state->guest_FPSCR = 0;
   1026 
   1027    vex_state->guest_TPIDRURO = 0;
   1028 
   1029    /* Not in a Thumb IT block. */
   1030    vex_state->guest_ITSTATE = 0;
   1031 
   1032    vex_state->padding1 = 0;
   1033 }
   1034 
   1035 
   1036 /*-----------------------------------------------------------*/
   1037 /*--- Describing the arm guest state, for the benefit     ---*/
   1038 /*--- of iropt and instrumenters.                         ---*/
   1039 /*-----------------------------------------------------------*/
   1040 
   1041 /* Figure out if any part of the guest state contained in minoff
   1042    .. maxoff requires precise memory exceptions.  If in doubt return
   1043    True (but this generates significantly slower code).
   1044 
   1045    We enforce precise exns for guest R13(sp), R15T(pc), R7, R11.
   1046 
   1047 
   1048    Only R13(sp) is needed in mode VexRegUpdSpAtMemAccess.
   1049 */
   1050 Bool guest_arm_state_requires_precise_mem_exns ( Int minoff,
   1051                                                  Int maxoff)
   1052 {
   1053    Int sp_min = offsetof(VexGuestARMState, guest_R13);
   1054    Int sp_max = sp_min + 4 - 1;
   1055    Int pc_min = offsetof(VexGuestARMState, guest_R15T);
   1056    Int pc_max = pc_min + 4 - 1;
   1057 
   1058    if (maxoff < sp_min || minoff > sp_max) {
   1059       /* no overlap with sp */
   1060       if (vex_control.iropt_register_updates == VexRegUpdSpAtMemAccess)
   1061          return False; // We only need to check stack pointer.
   1062    } else {
   1063       return True;
   1064    }
   1065 
   1066    if (maxoff < pc_min || minoff > pc_max) {
   1067       /* no overlap with pc */
   1068    } else {
   1069       return True;
   1070    }
   1071 
   1072    /* We appear to need precise updates of R11 in order to get proper
   1073       stacktraces from non-optimised code. */
   1074    Int r11_min = offsetof(VexGuestARMState, guest_R11);
   1075    Int r11_max = r11_min + 4 - 1;
   1076 
   1077    if (maxoff < r11_min || minoff > r11_max) {
   1078       /* no overlap with r11 */
   1079    } else {
   1080       return True;
   1081    }
   1082 
   1083    /* Ditto R7, particularly needed for proper stacktraces in Thumb
   1084       code. */
   1085    Int r7_min = offsetof(VexGuestARMState, guest_R7);
   1086    Int r7_max = r7_min + 4 - 1;
   1087 
   1088    if (maxoff < r7_min || minoff > r7_max) {
   1089       /* no overlap with r7 */
   1090    } else {
   1091       return True;
   1092    }
   1093 
   1094    return False;
   1095 }
   1096 
   1097 
   1098 
   1099 #define ALWAYSDEFD(field)                           \
   1100     { offsetof(VexGuestARMState, field),            \
   1101       (sizeof ((VexGuestARMState*)0)->field) }
   1102 
   1103 VexGuestLayout
   1104    armGuest_layout
   1105       = {
   1106           /* Total size of the guest state, in bytes. */
   1107           .total_sizeB = sizeof(VexGuestARMState),
   1108 
   1109           /* Describe the stack pointer. */
   1110           .offset_SP = offsetof(VexGuestARMState,guest_R13),
   1111           .sizeof_SP = 4,
   1112 
   1113           /* Describe the instruction pointer. */
   1114           .offset_IP = offsetof(VexGuestARMState,guest_R15T),
   1115           .sizeof_IP = 4,
   1116 
   1117           /* Describe any sections to be regarded by Memcheck as
   1118              'always-defined'. */
   1119           .n_alwaysDefd = 10,
   1120 
   1121           /* flags thunk: OP is always defd, whereas DEP1 and DEP2
   1122              have to be tracked.  See detailed comment in gdefs.h on
   1123              meaning of thunk fields. */
   1124           .alwaysDefd
   1125              = { /* 0 */ ALWAYSDEFD(guest_R15T),
   1126                  /* 1 */ ALWAYSDEFD(guest_CC_OP),
   1127                  /* 2 */ ALWAYSDEFD(guest_CC_NDEP),
   1128                  /* 3 */ ALWAYSDEFD(guest_EMNOTE),
   1129                  /* 4 */ ALWAYSDEFD(guest_CMSTART),
   1130                  /* 5 */ ALWAYSDEFD(guest_CMLEN),
   1131                  /* 6 */ ALWAYSDEFD(guest_NRADDR),
   1132                  /* 7 */ ALWAYSDEFD(guest_IP_AT_SYSCALL),
   1133                  /* 8 */ ALWAYSDEFD(guest_TPIDRURO),
   1134                  /* 9 */ ALWAYSDEFD(guest_ITSTATE)
   1135                }
   1136         };
   1137 
   1138 
   1139 /*---------------------------------------------------------------*/
   1140 /*--- end                                 guest_arm_helpers.c ---*/
   1141 /*---------------------------------------------------------------*/
   1142