Home | History | Annotate | Download | only in Sema
      1 //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis member access expressions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 #include "clang/Sema/SemaInternal.h"
     14 #include "clang/AST/ASTLambda.h"
     15 #include "clang/AST/DeclCXX.h"
     16 #include "clang/AST/DeclObjC.h"
     17 #include "clang/AST/DeclTemplate.h"
     18 #include "clang/AST/ExprCXX.h"
     19 #include "clang/AST/ExprObjC.h"
     20 #include "clang/Lex/Preprocessor.h"
     21 #include "clang/Sema/Lookup.h"
     22 #include "clang/Sema/Scope.h"
     23 #include "clang/Sema/ScopeInfo.h"
     24 
     25 using namespace clang;
     26 using namespace sema;
     27 
     28 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
     29 static bool BaseIsNotInSet(const CXXRecordDecl *Base, void *BasesPtr) {
     30   const BaseSet &Bases = *reinterpret_cast<const BaseSet*>(BasesPtr);
     31   return !Bases.count(Base->getCanonicalDecl());
     32 }
     33 
     34 /// Determines if the given class is provably not derived from all of
     35 /// the prospective base classes.
     36 static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
     37                                      const BaseSet &Bases) {
     38   void *BasesPtr = const_cast<void*>(reinterpret_cast<const void*>(&Bases));
     39   return BaseIsNotInSet(Record, BasesPtr) &&
     40          Record->forallBases(BaseIsNotInSet, BasesPtr);
     41 }
     42 
     43 enum IMAKind {
     44   /// The reference is definitely not an instance member access.
     45   IMA_Static,
     46 
     47   /// The reference may be an implicit instance member access.
     48   IMA_Mixed,
     49 
     50   /// The reference may be to an instance member, but it might be invalid if
     51   /// so, because the context is not an instance method.
     52   IMA_Mixed_StaticContext,
     53 
     54   /// The reference may be to an instance member, but it is invalid if
     55   /// so, because the context is from an unrelated class.
     56   IMA_Mixed_Unrelated,
     57 
     58   /// The reference is definitely an implicit instance member access.
     59   IMA_Instance,
     60 
     61   /// The reference may be to an unresolved using declaration.
     62   IMA_Unresolved,
     63 
     64   /// The reference is a contextually-permitted abstract member reference.
     65   IMA_Abstract,
     66 
     67   /// The reference may be to an unresolved using declaration and the
     68   /// context is not an instance method.
     69   IMA_Unresolved_StaticContext,
     70 
     71   // The reference refers to a field which is not a member of the containing
     72   // class, which is allowed because we're in C++11 mode and the context is
     73   // unevaluated.
     74   IMA_Field_Uneval_Context,
     75 
     76   /// All possible referrents are instance members and the current
     77   /// context is not an instance method.
     78   IMA_Error_StaticContext,
     79 
     80   /// All possible referrents are instance members of an unrelated
     81   /// class.
     82   IMA_Error_Unrelated
     83 };
     84 
     85 /// The given lookup names class member(s) and is not being used for
     86 /// an address-of-member expression.  Classify the type of access
     87 /// according to whether it's possible that this reference names an
     88 /// instance member.  This is best-effort in dependent contexts; it is okay to
     89 /// conservatively answer "yes", in which case some errors will simply
     90 /// not be caught until template-instantiation.
     91 static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
     92                                             Scope *CurScope,
     93                                             const LookupResult &R) {
     94   assert(!R.empty() && (*R.begin())->isCXXClassMember());
     95 
     96   DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
     97 
     98   bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
     99     (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
    100 
    101   if (R.isUnresolvableResult())
    102     return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
    103 
    104   // Collect all the declaring classes of instance members we find.
    105   bool hasNonInstance = false;
    106   bool isField = false;
    107   BaseSet Classes;
    108   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
    109     NamedDecl *D = *I;
    110 
    111     if (D->isCXXInstanceMember()) {
    112       if (dyn_cast<FieldDecl>(D) || dyn_cast<MSPropertyDecl>(D)
    113           || dyn_cast<IndirectFieldDecl>(D))
    114         isField = true;
    115 
    116       CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
    117       Classes.insert(R->getCanonicalDecl());
    118     }
    119     else
    120       hasNonInstance = true;
    121   }
    122 
    123   // If we didn't find any instance members, it can't be an implicit
    124   // member reference.
    125   if (Classes.empty())
    126     return IMA_Static;
    127 
    128   // C++11 [expr.prim.general]p12:
    129   //   An id-expression that denotes a non-static data member or non-static
    130   //   member function of a class can only be used:
    131   //   (...)
    132   //   - if that id-expression denotes a non-static data member and it
    133   //     appears in an unevaluated operand.
    134   //
    135   // This rule is specific to C++11.  However, we also permit this form
    136   // in unevaluated inline assembly operands, like the operand to a SIZE.
    137   IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
    138   assert(!AbstractInstanceResult);
    139   switch (SemaRef.ExprEvalContexts.back().Context) {
    140   case Sema::Unevaluated:
    141     if (isField && SemaRef.getLangOpts().CPlusPlus11)
    142       AbstractInstanceResult = IMA_Field_Uneval_Context;
    143     break;
    144 
    145   case Sema::UnevaluatedAbstract:
    146     AbstractInstanceResult = IMA_Abstract;
    147     break;
    148 
    149   case Sema::ConstantEvaluated:
    150   case Sema::PotentiallyEvaluated:
    151   case Sema::PotentiallyEvaluatedIfUsed:
    152     break;
    153   }
    154 
    155   // If the current context is not an instance method, it can't be
    156   // an implicit member reference.
    157   if (isStaticContext) {
    158     if (hasNonInstance)
    159       return IMA_Mixed_StaticContext;
    160 
    161     return AbstractInstanceResult ? AbstractInstanceResult
    162                                   : IMA_Error_StaticContext;
    163   }
    164 
    165   CXXRecordDecl *contextClass;
    166   if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
    167     contextClass = MD->getParent()->getCanonicalDecl();
    168   else
    169     contextClass = cast<CXXRecordDecl>(DC);
    170 
    171   // [class.mfct.non-static]p3:
    172   // ...is used in the body of a non-static member function of class X,
    173   // if name lookup (3.4.1) resolves the name in the id-expression to a
    174   // non-static non-type member of some class C [...]
    175   // ...if C is not X or a base class of X, the class member access expression
    176   // is ill-formed.
    177   if (R.getNamingClass() &&
    178       contextClass->getCanonicalDecl() !=
    179         R.getNamingClass()->getCanonicalDecl()) {
    180     // If the naming class is not the current context, this was a qualified
    181     // member name lookup, and it's sufficient to check that we have the naming
    182     // class as a base class.
    183     Classes.clear();
    184     Classes.insert(R.getNamingClass()->getCanonicalDecl());
    185   }
    186 
    187   // If we can prove that the current context is unrelated to all the
    188   // declaring classes, it can't be an implicit member reference (in
    189   // which case it's an error if any of those members are selected).
    190   if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
    191     return hasNonInstance ? IMA_Mixed_Unrelated :
    192            AbstractInstanceResult ? AbstractInstanceResult :
    193                                     IMA_Error_Unrelated;
    194 
    195   return (hasNonInstance ? IMA_Mixed : IMA_Instance);
    196 }
    197 
    198 /// Diagnose a reference to a field with no object available.
    199 static void diagnoseInstanceReference(Sema &SemaRef,
    200                                       const CXXScopeSpec &SS,
    201                                       NamedDecl *Rep,
    202                                       const DeclarationNameInfo &nameInfo) {
    203   SourceLocation Loc = nameInfo.getLoc();
    204   SourceRange Range(Loc);
    205   if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
    206 
    207   DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
    208   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
    209   CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr;
    210   CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
    211 
    212   bool InStaticMethod = Method && Method->isStatic();
    213   bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
    214 
    215   if (IsField && InStaticMethod)
    216     // "invalid use of member 'x' in static member function"
    217     SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
    218         << Range << nameInfo.getName();
    219   else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
    220            !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
    221     // Unqualified lookup in a non-static member function found a member of an
    222     // enclosing class.
    223     SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
    224       << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
    225   else if (IsField)
    226     SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
    227       << nameInfo.getName() << Range;
    228   else
    229     SemaRef.Diag(Loc, diag::err_member_call_without_object)
    230       << Range;
    231 }
    232 
    233 /// Builds an expression which might be an implicit member expression.
    234 ExprResult
    235 Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
    236                                       SourceLocation TemplateKWLoc,
    237                                       LookupResult &R,
    238                                 const TemplateArgumentListInfo *TemplateArgs) {
    239   switch (ClassifyImplicitMemberAccess(*this, CurScope, R)) {
    240   case IMA_Instance:
    241     return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true);
    242 
    243   case IMA_Mixed:
    244   case IMA_Mixed_Unrelated:
    245   case IMA_Unresolved:
    246     return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false);
    247 
    248   case IMA_Field_Uneval_Context:
    249     Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
    250       << R.getLookupNameInfo().getName();
    251     // Fall through.
    252   case IMA_Static:
    253   case IMA_Abstract:
    254   case IMA_Mixed_StaticContext:
    255   case IMA_Unresolved_StaticContext:
    256     if (TemplateArgs || TemplateKWLoc.isValid())
    257       return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
    258     return BuildDeclarationNameExpr(SS, R, false);
    259 
    260   case IMA_Error_StaticContext:
    261   case IMA_Error_Unrelated:
    262     diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
    263                               R.getLookupNameInfo());
    264     return ExprError();
    265   }
    266 
    267   llvm_unreachable("unexpected instance member access kind");
    268 }
    269 
    270 /// Determine whether input char is from rgba component set.
    271 static bool
    272 IsRGBA(char c) {
    273   switch (c) {
    274   case 'r':
    275   case 'g':
    276   case 'b':
    277   case 'a':
    278     return true;
    279   default:
    280     return false;
    281   }
    282 }
    283 
    284 /// Check an ext-vector component access expression.
    285 ///
    286 /// VK should be set in advance to the value kind of the base
    287 /// expression.
    288 static QualType
    289 CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
    290                         SourceLocation OpLoc, const IdentifierInfo *CompName,
    291                         SourceLocation CompLoc) {
    292   // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
    293   // see FIXME there.
    294   //
    295   // FIXME: This logic can be greatly simplified by splitting it along
    296   // halving/not halving and reworking the component checking.
    297   const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
    298 
    299   // The vector accessor can't exceed the number of elements.
    300   const char *compStr = CompName->getNameStart();
    301 
    302   // This flag determines whether or not the component is one of the four
    303   // special names that indicate a subset of exactly half the elements are
    304   // to be selected.
    305   bool HalvingSwizzle = false;
    306 
    307   // This flag determines whether or not CompName has an 's' char prefix,
    308   // indicating that it is a string of hex values to be used as vector indices.
    309   bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1];
    310 
    311   bool HasRepeated = false;
    312   bool HasIndex[16] = {};
    313 
    314   int Idx;
    315 
    316   // Check that we've found one of the special components, or that the component
    317   // names must come from the same set.
    318   if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
    319       !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
    320     HalvingSwizzle = true;
    321   } else if (!HexSwizzle &&
    322              (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
    323     bool HasRGBA = IsRGBA(*compStr);
    324     do {
    325       if (HasRGBA != IsRGBA(*compStr))
    326         break;
    327       if (HasIndex[Idx]) HasRepeated = true;
    328       HasIndex[Idx] = true;
    329       compStr++;
    330     } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
    331   } else {
    332     if (HexSwizzle) compStr++;
    333     while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
    334       if (HasIndex[Idx]) HasRepeated = true;
    335       HasIndex[Idx] = true;
    336       compStr++;
    337     }
    338   }
    339 
    340   if (!HalvingSwizzle && *compStr) {
    341     // We didn't get to the end of the string. This means the component names
    342     // didn't come from the same set *or* we encountered an illegal name.
    343     S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
    344       << StringRef(compStr, 1) << SourceRange(CompLoc);
    345     return QualType();
    346   }
    347 
    348   // Ensure no component accessor exceeds the width of the vector type it
    349   // operates on.
    350   if (!HalvingSwizzle) {
    351     compStr = CompName->getNameStart();
    352 
    353     if (HexSwizzle)
    354       compStr++;
    355 
    356     while (*compStr) {
    357       if (!vecType->isAccessorWithinNumElements(*compStr++)) {
    358         S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
    359           << baseType << SourceRange(CompLoc);
    360         return QualType();
    361       }
    362     }
    363   }
    364 
    365   // The component accessor looks fine - now we need to compute the actual type.
    366   // The vector type is implied by the component accessor. For example,
    367   // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
    368   // vec4.s0 is a float, vec4.s23 is a vec3, etc.
    369   // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
    370   unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
    371                                      : CompName->getLength();
    372   if (HexSwizzle)
    373     CompSize--;
    374 
    375   if (CompSize == 1)
    376     return vecType->getElementType();
    377 
    378   if (HasRepeated) VK = VK_RValue;
    379 
    380   QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
    381   // Now look up the TypeDefDecl from the vector type. Without this,
    382   // diagostics look bad. We want extended vector types to appear built-in.
    383   for (Sema::ExtVectorDeclsType::iterator
    384          I = S.ExtVectorDecls.begin(S.getExternalSource()),
    385          E = S.ExtVectorDecls.end();
    386        I != E; ++I) {
    387     if ((*I)->getUnderlyingType() == VT)
    388       return S.Context.getTypedefType(*I);
    389   }
    390 
    391   return VT; // should never get here (a typedef type should always be found).
    392 }
    393 
    394 static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
    395                                                 IdentifierInfo *Member,
    396                                                 const Selector &Sel,
    397                                                 ASTContext &Context) {
    398   if (Member)
    399     if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
    400       return PD;
    401   if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
    402     return OMD;
    403 
    404   for (const auto *I : PDecl->protocols()) {
    405     if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel,
    406                                                            Context))
    407       return D;
    408   }
    409   return nullptr;
    410 }
    411 
    412 static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
    413                                       IdentifierInfo *Member,
    414                                       const Selector &Sel,
    415                                       ASTContext &Context) {
    416   // Check protocols on qualified interfaces.
    417   Decl *GDecl = nullptr;
    418   for (const auto *I : QIdTy->quals()) {
    419     if (Member)
    420       if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(Member)) {
    421         GDecl = PD;
    422         break;
    423       }
    424     // Also must look for a getter or setter name which uses property syntax.
    425     if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) {
    426       GDecl = OMD;
    427       break;
    428     }
    429   }
    430   if (!GDecl) {
    431     for (const auto *I : QIdTy->quals()) {
    432       // Search in the protocol-qualifier list of current protocol.
    433       GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context);
    434       if (GDecl)
    435         return GDecl;
    436     }
    437   }
    438   return GDecl;
    439 }
    440 
    441 ExprResult
    442 Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
    443                                bool IsArrow, SourceLocation OpLoc,
    444                                const CXXScopeSpec &SS,
    445                                SourceLocation TemplateKWLoc,
    446                                NamedDecl *FirstQualifierInScope,
    447                                const DeclarationNameInfo &NameInfo,
    448                                const TemplateArgumentListInfo *TemplateArgs) {
    449   // Even in dependent contexts, try to diagnose base expressions with
    450   // obviously wrong types, e.g.:
    451   //
    452   // T* t;
    453   // t.f;
    454   //
    455   // In Obj-C++, however, the above expression is valid, since it could be
    456   // accessing the 'f' property if T is an Obj-C interface. The extra check
    457   // allows this, while still reporting an error if T is a struct pointer.
    458   if (!IsArrow) {
    459     const PointerType *PT = BaseType->getAs<PointerType>();
    460     if (PT && (!getLangOpts().ObjC1 ||
    461                PT->getPointeeType()->isRecordType())) {
    462       assert(BaseExpr && "cannot happen with implicit member accesses");
    463       Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
    464         << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
    465       return ExprError();
    466     }
    467   }
    468 
    469   assert(BaseType->isDependentType() ||
    470          NameInfo.getName().isDependentName() ||
    471          isDependentScopeSpecifier(SS));
    472 
    473   // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
    474   // must have pointer type, and the accessed type is the pointee.
    475   return CXXDependentScopeMemberExpr::Create(
    476       Context, BaseExpr, BaseType, IsArrow, OpLoc,
    477       SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope,
    478       NameInfo, TemplateArgs);
    479 }
    480 
    481 /// We know that the given qualified member reference points only to
    482 /// declarations which do not belong to the static type of the base
    483 /// expression.  Diagnose the problem.
    484 static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
    485                                              Expr *BaseExpr,
    486                                              QualType BaseType,
    487                                              const CXXScopeSpec &SS,
    488                                              NamedDecl *rep,
    489                                        const DeclarationNameInfo &nameInfo) {
    490   // If this is an implicit member access, use a different set of
    491   // diagnostics.
    492   if (!BaseExpr)
    493     return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
    494 
    495   SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
    496     << SS.getRange() << rep << BaseType;
    497 }
    498 
    499 // Check whether the declarations we found through a nested-name
    500 // specifier in a member expression are actually members of the base
    501 // type.  The restriction here is:
    502 //
    503 //   C++ [expr.ref]p2:
    504 //     ... In these cases, the id-expression shall name a
    505 //     member of the class or of one of its base classes.
    506 //
    507 // So it's perfectly legitimate for the nested-name specifier to name
    508 // an unrelated class, and for us to find an overload set including
    509 // decls from classes which are not superclasses, as long as the decl
    510 // we actually pick through overload resolution is from a superclass.
    511 bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
    512                                          QualType BaseType,
    513                                          const CXXScopeSpec &SS,
    514                                          const LookupResult &R) {
    515   CXXRecordDecl *BaseRecord =
    516     cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
    517   if (!BaseRecord) {
    518     // We can't check this yet because the base type is still
    519     // dependent.
    520     assert(BaseType->isDependentType());
    521     return false;
    522   }
    523 
    524   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
    525     // If this is an implicit member reference and we find a
    526     // non-instance member, it's not an error.
    527     if (!BaseExpr && !(*I)->isCXXInstanceMember())
    528       return false;
    529 
    530     // Note that we use the DC of the decl, not the underlying decl.
    531     DeclContext *DC = (*I)->getDeclContext();
    532     while (DC->isTransparentContext())
    533       DC = DC->getParent();
    534 
    535     if (!DC->isRecord())
    536       continue;
    537 
    538     CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
    539     if (BaseRecord->getCanonicalDecl() == MemberRecord ||
    540         !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
    541       return false;
    542   }
    543 
    544   DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
    545                                    R.getRepresentativeDecl(),
    546                                    R.getLookupNameInfo());
    547   return true;
    548 }
    549 
    550 namespace {
    551 
    552 // Callback to only accept typo corrections that are either a ValueDecl or a
    553 // FunctionTemplateDecl and are declared in the current record or, for a C++
    554 // classes, one of its base classes.
    555 class RecordMemberExprValidatorCCC : public CorrectionCandidateCallback {
    556  public:
    557   explicit RecordMemberExprValidatorCCC(const RecordType *RTy)
    558       : Record(RTy->getDecl()) {}
    559 
    560   bool ValidateCandidate(const TypoCorrection &candidate) override {
    561     NamedDecl *ND = candidate.getCorrectionDecl();
    562     // Don't accept candidates that cannot be member functions, constants,
    563     // variables, or templates.
    564     if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)))
    565       return false;
    566 
    567     // Accept candidates that occur in the current record.
    568     if (Record->containsDecl(ND))
    569       return true;
    570 
    571     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record)) {
    572       // Accept candidates that occur in any of the current class' base classes.
    573       for (const auto &BS : RD->bases()) {
    574         if (const RecordType *BSTy = dyn_cast_or_null<RecordType>(
    575                 BS.getType().getTypePtrOrNull())) {
    576           if (BSTy->getDecl()->containsDecl(ND))
    577             return true;
    578         }
    579       }
    580     }
    581 
    582     return false;
    583   }
    584 
    585  private:
    586   const RecordDecl *const Record;
    587 };
    588 
    589 }
    590 
    591 static bool
    592 LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
    593                          SourceRange BaseRange, const RecordType *RTy,
    594                          SourceLocation OpLoc, CXXScopeSpec &SS,
    595                          bool HasTemplateArgs) {
    596   RecordDecl *RDecl = RTy->getDecl();
    597   if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
    598       SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
    599                                   diag::err_typecheck_incomplete_tag,
    600                                   BaseRange))
    601     return true;
    602 
    603   if (HasTemplateArgs) {
    604     // LookupTemplateName doesn't expect these both to exist simultaneously.
    605     QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
    606 
    607     bool MOUS;
    608     SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS);
    609     return false;
    610   }
    611 
    612   DeclContext *DC = RDecl;
    613   if (SS.isSet()) {
    614     // If the member name was a qualified-id, look into the
    615     // nested-name-specifier.
    616     DC = SemaRef.computeDeclContext(SS, false);
    617 
    618     if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
    619       SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
    620         << SS.getRange() << DC;
    621       return true;
    622     }
    623 
    624     assert(DC && "Cannot handle non-computable dependent contexts in lookup");
    625 
    626     if (!isa<TypeDecl>(DC)) {
    627       SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
    628         << DC << SS.getRange();
    629       return true;
    630     }
    631   }
    632 
    633   // The record definition is complete, now look up the member.
    634   SemaRef.LookupQualifiedName(R, DC);
    635 
    636   if (!R.empty())
    637     return false;
    638 
    639   // We didn't find anything with the given name, so try to correct
    640   // for typos.
    641   DeclarationName Name = R.getLookupName();
    642   RecordMemberExprValidatorCCC Validator(RTy);
    643   TypoCorrection Corrected = SemaRef.CorrectTypo(R.getLookupNameInfo(),
    644                                                  R.getLookupKind(), nullptr,
    645                                                  &SS, Validator,
    646                                                  Sema::CTK_ErrorRecovery, DC);
    647   R.clear();
    648   if (Corrected.isResolved() && !Corrected.isKeyword()) {
    649     R.setLookupName(Corrected.getCorrection());
    650     for (TypoCorrection::decl_iterator DI = Corrected.begin(),
    651                                        DIEnd = Corrected.end();
    652          DI != DIEnd; ++DI) {
    653       R.addDecl(*DI);
    654     }
    655     R.resolveKind();
    656 
    657     // If we're typo-correcting to an overloaded name, we don't yet have enough
    658     // information to do overload resolution, so we don't know which previous
    659     // declaration to point to.
    660     if (Corrected.isOverloaded())
    661       Corrected.setCorrectionDecl(nullptr);
    662     bool DroppedSpecifier =
    663         Corrected.WillReplaceSpecifier() &&
    664         Name.getAsString() == Corrected.getAsString(SemaRef.getLangOpts());
    665     SemaRef.diagnoseTypo(Corrected,
    666                          SemaRef.PDiag(diag::err_no_member_suggest)
    667                            << Name << DC << DroppedSpecifier << SS.getRange());
    668   }
    669 
    670   return false;
    671 }
    672 
    673 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
    674                                    ExprResult &BaseExpr, bool &IsArrow,
    675                                    SourceLocation OpLoc, CXXScopeSpec &SS,
    676                                    Decl *ObjCImpDecl, bool HasTemplateArgs);
    677 
    678 ExprResult
    679 Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
    680                                SourceLocation OpLoc, bool IsArrow,
    681                                CXXScopeSpec &SS,
    682                                SourceLocation TemplateKWLoc,
    683                                NamedDecl *FirstQualifierInScope,
    684                                const DeclarationNameInfo &NameInfo,
    685                                const TemplateArgumentListInfo *TemplateArgs,
    686                                ActOnMemberAccessExtraArgs *ExtraArgs) {
    687   if (BaseType->isDependentType() ||
    688       (SS.isSet() && isDependentScopeSpecifier(SS)))
    689     return ActOnDependentMemberExpr(Base, BaseType,
    690                                     IsArrow, OpLoc,
    691                                     SS, TemplateKWLoc, FirstQualifierInScope,
    692                                     NameInfo, TemplateArgs);
    693 
    694   LookupResult R(*this, NameInfo, LookupMemberName);
    695 
    696   // Implicit member accesses.
    697   if (!Base) {
    698     QualType RecordTy = BaseType;
    699     if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
    700     if (LookupMemberExprInRecord(*this, R, SourceRange(),
    701                                  RecordTy->getAs<RecordType>(),
    702                                  OpLoc, SS, TemplateArgs != nullptr))
    703       return ExprError();
    704 
    705   // Explicit member accesses.
    706   } else {
    707     ExprResult BaseResult = Base;
    708     ExprResult Result = LookupMemberExpr(
    709         *this, R, BaseResult, IsArrow, OpLoc, SS,
    710         ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr,
    711         TemplateArgs != nullptr);
    712 
    713     if (BaseResult.isInvalid())
    714       return ExprError();
    715     Base = BaseResult.get();
    716 
    717     if (Result.isInvalid())
    718       return ExprError();
    719 
    720     if (Result.get())
    721       return Result;
    722 
    723     // LookupMemberExpr can modify Base, and thus change BaseType
    724     BaseType = Base->getType();
    725   }
    726 
    727   return BuildMemberReferenceExpr(Base, BaseType,
    728                                   OpLoc, IsArrow, SS, TemplateKWLoc,
    729                                   FirstQualifierInScope, R, TemplateArgs,
    730                                   false, ExtraArgs);
    731 }
    732 
    733 static ExprResult
    734 BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
    735                         const CXXScopeSpec &SS, FieldDecl *Field,
    736                         DeclAccessPair FoundDecl,
    737                         const DeclarationNameInfo &MemberNameInfo);
    738 
    739 ExprResult
    740 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
    741                                                SourceLocation loc,
    742                                                IndirectFieldDecl *indirectField,
    743                                                DeclAccessPair foundDecl,
    744                                                Expr *baseObjectExpr,
    745                                                SourceLocation opLoc) {
    746   // First, build the expression that refers to the base object.
    747 
    748   bool baseObjectIsPointer = false;
    749   Qualifiers baseQuals;
    750 
    751   // Case 1:  the base of the indirect field is not a field.
    752   VarDecl *baseVariable = indirectField->getVarDecl();
    753   CXXScopeSpec EmptySS;
    754   if (baseVariable) {
    755     assert(baseVariable->getType()->isRecordType());
    756 
    757     // In principle we could have a member access expression that
    758     // accesses an anonymous struct/union that's a static member of
    759     // the base object's class.  However, under the current standard,
    760     // static data members cannot be anonymous structs or unions.
    761     // Supporting this is as easy as building a MemberExpr here.
    762     assert(!baseObjectExpr && "anonymous struct/union is static data member?");
    763 
    764     DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
    765 
    766     ExprResult result
    767       = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
    768     if (result.isInvalid()) return ExprError();
    769 
    770     baseObjectExpr = result.get();
    771     baseObjectIsPointer = false;
    772     baseQuals = baseObjectExpr->getType().getQualifiers();
    773 
    774     // Case 2: the base of the indirect field is a field and the user
    775     // wrote a member expression.
    776   } else if (baseObjectExpr) {
    777     // The caller provided the base object expression. Determine
    778     // whether its a pointer and whether it adds any qualifiers to the
    779     // anonymous struct/union fields we're looking into.
    780     QualType objectType = baseObjectExpr->getType();
    781 
    782     if (const PointerType *ptr = objectType->getAs<PointerType>()) {
    783       baseObjectIsPointer = true;
    784       objectType = ptr->getPointeeType();
    785     } else {
    786       baseObjectIsPointer = false;
    787     }
    788     baseQuals = objectType.getQualifiers();
    789 
    790     // Case 3: the base of the indirect field is a field and we should
    791     // build an implicit member access.
    792   } else {
    793     // We've found a member of an anonymous struct/union that is
    794     // inside a non-anonymous struct/union, so in a well-formed
    795     // program our base object expression is "this".
    796     QualType ThisTy = getCurrentThisType();
    797     if (ThisTy.isNull()) {
    798       Diag(loc, diag::err_invalid_member_use_in_static_method)
    799         << indirectField->getDeclName();
    800       return ExprError();
    801     }
    802 
    803     // Our base object expression is "this".
    804     CheckCXXThisCapture(loc);
    805     baseObjectExpr
    806       = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
    807     baseObjectIsPointer = true;
    808     baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
    809   }
    810 
    811   // Build the implicit member references to the field of the
    812   // anonymous struct/union.
    813   Expr *result = baseObjectExpr;
    814   IndirectFieldDecl::chain_iterator
    815   FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
    816 
    817   // Build the first member access in the chain with full information.
    818   if (!baseVariable) {
    819     FieldDecl *field = cast<FieldDecl>(*FI);
    820 
    821     // Make a nameInfo that properly uses the anonymous name.
    822     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
    823 
    824     result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
    825                                      EmptySS, field, foundDecl,
    826                                      memberNameInfo).get();
    827     if (!result)
    828       return ExprError();
    829 
    830     // FIXME: check qualified member access
    831   }
    832 
    833   // In all cases, we should now skip the first declaration in the chain.
    834   ++FI;
    835 
    836   while (FI != FEnd) {
    837     FieldDecl *field = cast<FieldDecl>(*FI++);
    838 
    839     // FIXME: these are somewhat meaningless
    840     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
    841     DeclAccessPair fakeFoundDecl =
    842         DeclAccessPair::make(field, field->getAccess());
    843 
    844     result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
    845                                      (FI == FEnd? SS : EmptySS), field,
    846                                      fakeFoundDecl, memberNameInfo).get();
    847   }
    848 
    849   return result;
    850 }
    851 
    852 static ExprResult
    853 BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
    854                        const CXXScopeSpec &SS,
    855                        MSPropertyDecl *PD,
    856                        const DeclarationNameInfo &NameInfo) {
    857   // Property names are always simple identifiers and therefore never
    858   // require any interesting additional storage.
    859   return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
    860                                            S.Context.PseudoObjectTy, VK_LValue,
    861                                            SS.getWithLocInContext(S.Context),
    862                                            NameInfo.getLoc());
    863 }
    864 
    865 /// \brief Build a MemberExpr AST node.
    866 static MemberExpr *
    867 BuildMemberExpr(Sema &SemaRef, ASTContext &C, Expr *Base, bool isArrow,
    868                 const CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
    869                 ValueDecl *Member, DeclAccessPair FoundDecl,
    870                 const DeclarationNameInfo &MemberNameInfo, QualType Ty,
    871                 ExprValueKind VK, ExprObjectKind OK,
    872                 const TemplateArgumentListInfo *TemplateArgs = nullptr) {
    873   assert((!isArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
    874   MemberExpr *E =
    875       MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C),
    876                          TemplateKWLoc, Member, FoundDecl, MemberNameInfo,
    877                          TemplateArgs, Ty, VK, OK);
    878   SemaRef.MarkMemberReferenced(E);
    879   return E;
    880 }
    881 
    882 ExprResult
    883 Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
    884                                SourceLocation OpLoc, bool IsArrow,
    885                                const CXXScopeSpec &SS,
    886                                SourceLocation TemplateKWLoc,
    887                                NamedDecl *FirstQualifierInScope,
    888                                LookupResult &R,
    889                                const TemplateArgumentListInfo *TemplateArgs,
    890                                bool SuppressQualifierCheck,
    891                                ActOnMemberAccessExtraArgs *ExtraArgs) {
    892   QualType BaseType = BaseExprType;
    893   if (IsArrow) {
    894     assert(BaseType->isPointerType());
    895     BaseType = BaseType->castAs<PointerType>()->getPointeeType();
    896   }
    897   R.setBaseObjectType(BaseType);
    898 
    899   LambdaScopeInfo *const CurLSI = getCurLambda();
    900   // If this is an implicit member reference and the overloaded
    901   // name refers to both static and non-static member functions
    902   // (i.e. BaseExpr is null) and if we are currently processing a lambda,
    903   // check if we should/can capture 'this'...
    904   // Keep this example in mind:
    905   //  struct X {
    906   //   void f(int) { }
    907   //   static void f(double) { }
    908   //
    909   //   int g() {
    910   //     auto L = [=](auto a) {
    911   //       return [](int i) {
    912   //         return [=](auto b) {
    913   //           f(b);
    914   //           //f(decltype(a){});
    915   //         };
    916   //       };
    917   //     };
    918   //     auto M = L(0.0);
    919   //     auto N = M(3);
    920   //     N(5.32); // OK, must not error.
    921   //     return 0;
    922   //   }
    923   //  };
    924   //
    925   if (!BaseExpr && CurLSI) {
    926     SourceLocation Loc = R.getNameLoc();
    927     if (SS.getRange().isValid())
    928       Loc = SS.getRange().getBegin();
    929     DeclContext *EnclosingFunctionCtx = CurContext->getParent()->getParent();
    930     // If the enclosing function is not dependent, then this lambda is
    931     // capture ready, so if we can capture this, do so.
    932     if (!EnclosingFunctionCtx->isDependentContext()) {
    933       // If the current lambda and all enclosing lambdas can capture 'this' -
    934       // then go ahead and capture 'this' (since our unresolved overload set
    935       // contains both static and non-static member functions).
    936       if (!CheckCXXThisCapture(Loc, /*Explcit*/false, /*Diagnose*/false))
    937         CheckCXXThisCapture(Loc);
    938     } else if (CurContext->isDependentContext()) {
    939       // ... since this is an implicit member reference, that might potentially
    940       // involve a 'this' capture, mark 'this' for potential capture in
    941       // enclosing lambdas.
    942       if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
    943         CurLSI->addPotentialThisCapture(Loc);
    944     }
    945   }
    946   const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
    947   DeclarationName MemberName = MemberNameInfo.getName();
    948   SourceLocation MemberLoc = MemberNameInfo.getLoc();
    949 
    950   if (R.isAmbiguous())
    951     return ExprError();
    952 
    953   if (R.empty()) {
    954     // Rederive where we looked up.
    955     DeclContext *DC = (SS.isSet()
    956                        ? computeDeclContext(SS, false)
    957                        : BaseType->getAs<RecordType>()->getDecl());
    958 
    959     if (ExtraArgs) {
    960       ExprResult RetryExpr;
    961       if (!IsArrow && BaseExpr) {
    962         SFINAETrap Trap(*this, true);
    963         ParsedType ObjectType;
    964         bool MayBePseudoDestructor = false;
    965         RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
    966                                                  OpLoc, tok::arrow, ObjectType,
    967                                                  MayBePseudoDestructor);
    968         if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
    969           CXXScopeSpec TempSS(SS);
    970           RetryExpr = ActOnMemberAccessExpr(
    971               ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
    972               TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl,
    973               ExtraArgs->HasTrailingLParen);
    974         }
    975         if (Trap.hasErrorOccurred())
    976           RetryExpr = ExprError();
    977       }
    978       if (RetryExpr.isUsable()) {
    979         Diag(OpLoc, diag::err_no_member_overloaded_arrow)
    980           << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
    981         return RetryExpr;
    982       }
    983     }
    984 
    985     Diag(R.getNameLoc(), diag::err_no_member)
    986       << MemberName << DC
    987       << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
    988     return ExprError();
    989   }
    990 
    991   // Diagnose lookups that find only declarations from a non-base
    992   // type.  This is possible for either qualified lookups (which may
    993   // have been qualified with an unrelated type) or implicit member
    994   // expressions (which were found with unqualified lookup and thus
    995   // may have come from an enclosing scope).  Note that it's okay for
    996   // lookup to find declarations from a non-base type as long as those
    997   // aren't the ones picked by overload resolution.
    998   if ((SS.isSet() || !BaseExpr ||
    999        (isa<CXXThisExpr>(BaseExpr) &&
   1000         cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
   1001       !SuppressQualifierCheck &&
   1002       CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
   1003     return ExprError();
   1004 
   1005   // Construct an unresolved result if we in fact got an unresolved
   1006   // result.
   1007   if (R.isOverloadedResult() || R.isUnresolvableResult()) {
   1008     // Suppress any lookup-related diagnostics; we'll do these when we
   1009     // pick a member.
   1010     R.suppressDiagnostics();
   1011 
   1012     UnresolvedMemberExpr *MemExpr
   1013       = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
   1014                                      BaseExpr, BaseExprType,
   1015                                      IsArrow, OpLoc,
   1016                                      SS.getWithLocInContext(Context),
   1017                                      TemplateKWLoc, MemberNameInfo,
   1018                                      TemplateArgs, R.begin(), R.end());
   1019 
   1020     return MemExpr;
   1021   }
   1022 
   1023   assert(R.isSingleResult());
   1024   DeclAccessPair FoundDecl = R.begin().getPair();
   1025   NamedDecl *MemberDecl = R.getFoundDecl();
   1026 
   1027   // FIXME: diagnose the presence of template arguments now.
   1028 
   1029   // If the decl being referenced had an error, return an error for this
   1030   // sub-expr without emitting another error, in order to avoid cascading
   1031   // error cases.
   1032   if (MemberDecl->isInvalidDecl())
   1033     return ExprError();
   1034 
   1035   // Handle the implicit-member-access case.
   1036   if (!BaseExpr) {
   1037     // If this is not an instance member, convert to a non-member access.
   1038     if (!MemberDecl->isCXXInstanceMember())
   1039       return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
   1040 
   1041     SourceLocation Loc = R.getNameLoc();
   1042     if (SS.getRange().isValid())
   1043       Loc = SS.getRange().getBegin();
   1044     CheckCXXThisCapture(Loc);
   1045     BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
   1046   }
   1047 
   1048   bool ShouldCheckUse = true;
   1049   if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
   1050     // Don't diagnose the use of a virtual member function unless it's
   1051     // explicitly qualified.
   1052     if (MD->isVirtual() && !SS.isSet())
   1053       ShouldCheckUse = false;
   1054   }
   1055 
   1056   // Check the use of this member.
   1057   if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc))
   1058     return ExprError();
   1059 
   1060   if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
   1061     return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
   1062                                    SS, FD, FoundDecl, MemberNameInfo);
   1063 
   1064   if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl))
   1065     return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
   1066                                   MemberNameInfo);
   1067 
   1068   if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
   1069     // We may have found a field within an anonymous union or struct
   1070     // (C++ [class.union]).
   1071     return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
   1072                                                     FoundDecl, BaseExpr,
   1073                                                     OpLoc);
   1074 
   1075   if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
   1076     return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS, TemplateKWLoc,
   1077                            Var, FoundDecl, MemberNameInfo,
   1078                            Var->getType().getNonReferenceType(), VK_LValue,
   1079                            OK_Ordinary);
   1080   }
   1081 
   1082   if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
   1083     ExprValueKind valueKind;
   1084     QualType type;
   1085     if (MemberFn->isInstance()) {
   1086       valueKind = VK_RValue;
   1087       type = Context.BoundMemberTy;
   1088     } else {
   1089       valueKind = VK_LValue;
   1090       type = MemberFn->getType();
   1091     }
   1092 
   1093     return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS, TemplateKWLoc,
   1094                            MemberFn, FoundDecl, MemberNameInfo, type, valueKind,
   1095                            OK_Ordinary);
   1096   }
   1097   assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
   1098 
   1099   if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
   1100     return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS, TemplateKWLoc,
   1101                            Enum, FoundDecl, MemberNameInfo, Enum->getType(),
   1102                            VK_RValue, OK_Ordinary);
   1103   }
   1104 
   1105   // We found something that we didn't expect. Complain.
   1106   if (isa<TypeDecl>(MemberDecl))
   1107     Diag(MemberLoc, diag::err_typecheck_member_reference_type)
   1108       << MemberName << BaseType << int(IsArrow);
   1109   else
   1110     Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
   1111       << MemberName << BaseType << int(IsArrow);
   1112 
   1113   Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
   1114     << MemberName;
   1115   R.suppressDiagnostics();
   1116   return ExprError();
   1117 }
   1118 
   1119 /// Given that normal member access failed on the given expression,
   1120 /// and given that the expression's type involves builtin-id or
   1121 /// builtin-Class, decide whether substituting in the redefinition
   1122 /// types would be profitable.  The redefinition type is whatever
   1123 /// this translation unit tried to typedef to id/Class;  we store
   1124 /// it to the side and then re-use it in places like this.
   1125 static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
   1126   const ObjCObjectPointerType *opty
   1127     = base.get()->getType()->getAs<ObjCObjectPointerType>();
   1128   if (!opty) return false;
   1129 
   1130   const ObjCObjectType *ty = opty->getObjectType();
   1131 
   1132   QualType redef;
   1133   if (ty->isObjCId()) {
   1134     redef = S.Context.getObjCIdRedefinitionType();
   1135   } else if (ty->isObjCClass()) {
   1136     redef = S.Context.getObjCClassRedefinitionType();
   1137   } else {
   1138     return false;
   1139   }
   1140 
   1141   // Do the substitution as long as the redefinition type isn't just a
   1142   // possibly-qualified pointer to builtin-id or builtin-Class again.
   1143   opty = redef->getAs<ObjCObjectPointerType>();
   1144   if (opty && !opty->getObjectType()->getInterface())
   1145     return false;
   1146 
   1147   base = S.ImpCastExprToType(base.get(), redef, CK_BitCast);
   1148   return true;
   1149 }
   1150 
   1151 static bool isRecordType(QualType T) {
   1152   return T->isRecordType();
   1153 }
   1154 static bool isPointerToRecordType(QualType T) {
   1155   if (const PointerType *PT = T->getAs<PointerType>())
   1156     return PT->getPointeeType()->isRecordType();
   1157   return false;
   1158 }
   1159 
   1160 /// Perform conversions on the LHS of a member access expression.
   1161 ExprResult
   1162 Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
   1163   if (IsArrow && !Base->getType()->isFunctionType())
   1164     return DefaultFunctionArrayLvalueConversion(Base);
   1165 
   1166   return CheckPlaceholderExpr(Base);
   1167 }
   1168 
   1169 /// Look up the given member of the given non-type-dependent
   1170 /// expression.  This can return in one of two ways:
   1171 ///  * If it returns a sentinel null-but-valid result, the caller will
   1172 ///    assume that lookup was performed and the results written into
   1173 ///    the provided structure.  It will take over from there.
   1174 ///  * Otherwise, the returned expression will be produced in place of
   1175 ///    an ordinary member expression.
   1176 ///
   1177 /// The ObjCImpDecl bit is a gross hack that will need to be properly
   1178 /// fixed for ObjC++.
   1179 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
   1180                                    ExprResult &BaseExpr, bool &IsArrow,
   1181                                    SourceLocation OpLoc, CXXScopeSpec &SS,
   1182                                    Decl *ObjCImpDecl, bool HasTemplateArgs) {
   1183   assert(BaseExpr.get() && "no base expression");
   1184 
   1185   // Perform default conversions.
   1186   BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow);
   1187   if (BaseExpr.isInvalid())
   1188     return ExprError();
   1189 
   1190   QualType BaseType = BaseExpr.get()->getType();
   1191   assert(!BaseType->isDependentType());
   1192 
   1193   DeclarationName MemberName = R.getLookupName();
   1194   SourceLocation MemberLoc = R.getNameLoc();
   1195 
   1196   // For later type-checking purposes, turn arrow accesses into dot
   1197   // accesses.  The only access type we support that doesn't follow
   1198   // the C equivalence "a->b === (*a).b" is ObjC property accesses,
   1199   // and those never use arrows, so this is unaffected.
   1200   if (IsArrow) {
   1201     if (const PointerType *Ptr = BaseType->getAs<PointerType>())
   1202       BaseType = Ptr->getPointeeType();
   1203     else if (const ObjCObjectPointerType *Ptr
   1204                = BaseType->getAs<ObjCObjectPointerType>())
   1205       BaseType = Ptr->getPointeeType();
   1206     else if (BaseType->isRecordType()) {
   1207       // Recover from arrow accesses to records, e.g.:
   1208       //   struct MyRecord foo;
   1209       //   foo->bar
   1210       // This is actually well-formed in C++ if MyRecord has an
   1211       // overloaded operator->, but that should have been dealt with
   1212       // by now--or a diagnostic message already issued if a problem
   1213       // was encountered while looking for the overloaded operator->.
   1214       if (!S.getLangOpts().CPlusPlus) {
   1215         S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
   1216           << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
   1217           << FixItHint::CreateReplacement(OpLoc, ".");
   1218       }
   1219       IsArrow = false;
   1220     } else if (BaseType->isFunctionType()) {
   1221       goto fail;
   1222     } else {
   1223       S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
   1224         << BaseType << BaseExpr.get()->getSourceRange();
   1225       return ExprError();
   1226     }
   1227   }
   1228 
   1229   // Handle field access to simple records.
   1230   if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
   1231     if (LookupMemberExprInRecord(S, R, BaseExpr.get()->getSourceRange(),
   1232                                  RTy, OpLoc, SS, HasTemplateArgs))
   1233       return ExprError();
   1234 
   1235     // Returning valid-but-null is how we indicate to the caller that
   1236     // the lookup result was filled in.
   1237     return ExprResult((Expr *)nullptr);
   1238   }
   1239 
   1240   // Handle ivar access to Objective-C objects.
   1241   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
   1242     if (!SS.isEmpty() && !SS.isInvalid()) {
   1243       S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
   1244         << 1 << SS.getScopeRep()
   1245         << FixItHint::CreateRemoval(SS.getRange());
   1246       SS.clear();
   1247     }
   1248 
   1249     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
   1250 
   1251     // There are three cases for the base type:
   1252     //   - builtin id (qualified or unqualified)
   1253     //   - builtin Class (qualified or unqualified)
   1254     //   - an interface
   1255     ObjCInterfaceDecl *IDecl = OTy->getInterface();
   1256     if (!IDecl) {
   1257       if (S.getLangOpts().ObjCAutoRefCount &&
   1258           (OTy->isObjCId() || OTy->isObjCClass()))
   1259         goto fail;
   1260       // There's an implicit 'isa' ivar on all objects.
   1261       // But we only actually find it this way on objects of type 'id',
   1262       // apparently.
   1263       if (OTy->isObjCId() && Member->isStr("isa"))
   1264         return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc,
   1265                                            OpLoc, S.Context.getObjCClassType());
   1266       if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
   1267         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
   1268                                 ObjCImpDecl, HasTemplateArgs);
   1269       goto fail;
   1270     }
   1271 
   1272     if (S.RequireCompleteType(OpLoc, BaseType,
   1273                               diag::err_typecheck_incomplete_tag,
   1274                               BaseExpr.get()))
   1275       return ExprError();
   1276 
   1277     ObjCInterfaceDecl *ClassDeclared = nullptr;
   1278     ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
   1279 
   1280     if (!IV) {
   1281       // Attempt to correct for typos in ivar names.
   1282       DeclFilterCCC<ObjCIvarDecl> Validator;
   1283       Validator.IsObjCIvarLookup = IsArrow;
   1284       if (TypoCorrection Corrected = S.CorrectTypo(
   1285               R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr,
   1286               Validator, Sema::CTK_ErrorRecovery, IDecl)) {
   1287         IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
   1288         S.diagnoseTypo(
   1289             Corrected,
   1290             S.PDiag(diag::err_typecheck_member_reference_ivar_suggest)
   1291                 << IDecl->getDeclName() << MemberName);
   1292 
   1293         // Figure out the class that declares the ivar.
   1294         assert(!ClassDeclared);
   1295         Decl *D = cast<Decl>(IV->getDeclContext());
   1296         if (ObjCCategoryDecl *CAT = dyn_cast<ObjCCategoryDecl>(D))
   1297           D = CAT->getClassInterface();
   1298         ClassDeclared = cast<ObjCInterfaceDecl>(D);
   1299       } else {
   1300         if (IsArrow && IDecl->FindPropertyDeclaration(Member)) {
   1301           S.Diag(MemberLoc, diag::err_property_found_suggest)
   1302               << Member << BaseExpr.get()->getType()
   1303               << FixItHint::CreateReplacement(OpLoc, ".");
   1304           return ExprError();
   1305         }
   1306 
   1307         S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
   1308             << IDecl->getDeclName() << MemberName
   1309             << BaseExpr.get()->getSourceRange();
   1310         return ExprError();
   1311       }
   1312     }
   1313 
   1314     assert(ClassDeclared);
   1315 
   1316     // If the decl being referenced had an error, return an error for this
   1317     // sub-expr without emitting another error, in order to avoid cascading
   1318     // error cases.
   1319     if (IV->isInvalidDecl())
   1320       return ExprError();
   1321 
   1322     // Check whether we can reference this field.
   1323     if (S.DiagnoseUseOfDecl(IV, MemberLoc))
   1324       return ExprError();
   1325     if (IV->getAccessControl() != ObjCIvarDecl::Public &&
   1326         IV->getAccessControl() != ObjCIvarDecl::Package) {
   1327       ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
   1328       if (ObjCMethodDecl *MD = S.getCurMethodDecl())
   1329         ClassOfMethodDecl =  MD->getClassInterface();
   1330       else if (ObjCImpDecl && S.getCurFunctionDecl()) {
   1331         // Case of a c-function declared inside an objc implementation.
   1332         // FIXME: For a c-style function nested inside an objc implementation
   1333         // class, there is no implementation context available, so we pass
   1334         // down the context as argument to this routine. Ideally, this context
   1335         // need be passed down in the AST node and somehow calculated from the
   1336         // AST for a function decl.
   1337         if (ObjCImplementationDecl *IMPD =
   1338               dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
   1339           ClassOfMethodDecl = IMPD->getClassInterface();
   1340         else if (ObjCCategoryImplDecl* CatImplClass =
   1341                    dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
   1342           ClassOfMethodDecl = CatImplClass->getClassInterface();
   1343       }
   1344       if (!S.getLangOpts().DebuggerSupport) {
   1345         if (IV->getAccessControl() == ObjCIvarDecl::Private) {
   1346           if (!declaresSameEntity(ClassDeclared, IDecl) ||
   1347               !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
   1348             S.Diag(MemberLoc, diag::error_private_ivar_access)
   1349               << IV->getDeclName();
   1350         } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
   1351           // @protected
   1352           S.Diag(MemberLoc, diag::error_protected_ivar_access)
   1353               << IV->getDeclName();
   1354       }
   1355     }
   1356     bool warn = true;
   1357     if (S.getLangOpts().ObjCAutoRefCount) {
   1358       Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
   1359       if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
   1360         if (UO->getOpcode() == UO_Deref)
   1361           BaseExp = UO->getSubExpr()->IgnoreParenCasts();
   1362 
   1363       if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
   1364         if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
   1365           S.Diag(DE->getLocation(), diag::error_arc_weak_ivar_access);
   1366           warn = false;
   1367         }
   1368     }
   1369     if (warn) {
   1370       if (ObjCMethodDecl *MD = S.getCurMethodDecl()) {
   1371         ObjCMethodFamily MF = MD->getMethodFamily();
   1372         warn = (MF != OMF_init && MF != OMF_dealloc &&
   1373                 MF != OMF_finalize &&
   1374                 !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
   1375       }
   1376       if (warn)
   1377         S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
   1378     }
   1379 
   1380     ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr(
   1381         IV, IV->getType(), MemberLoc, OpLoc, BaseExpr.get(), IsArrow);
   1382 
   1383     if (S.getLangOpts().ObjCAutoRefCount) {
   1384       if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
   1385         if (!S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc))
   1386           S.recordUseOfEvaluatedWeak(Result);
   1387       }
   1388     }
   1389 
   1390     return Result;
   1391   }
   1392 
   1393   // Objective-C property access.
   1394   const ObjCObjectPointerType *OPT;
   1395   if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
   1396     if (!SS.isEmpty() && !SS.isInvalid()) {
   1397       S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
   1398           << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange());
   1399       SS.clear();
   1400     }
   1401 
   1402     // This actually uses the base as an r-value.
   1403     BaseExpr = S.DefaultLvalueConversion(BaseExpr.get());
   1404     if (BaseExpr.isInvalid())
   1405       return ExprError();
   1406 
   1407     assert(S.Context.hasSameUnqualifiedType(BaseType,
   1408                                             BaseExpr.get()->getType()));
   1409 
   1410     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
   1411 
   1412     const ObjCObjectType *OT = OPT->getObjectType();
   1413 
   1414     // id, with and without qualifiers.
   1415     if (OT->isObjCId()) {
   1416       // Check protocols on qualified interfaces.
   1417       Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
   1418       if (Decl *PMDecl =
   1419               FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) {
   1420         if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
   1421           // Check the use of this declaration
   1422           if (S.DiagnoseUseOfDecl(PD, MemberLoc))
   1423             return ExprError();
   1424 
   1425           return new (S.Context)
   1426               ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue,
   1427                                   OK_ObjCProperty, MemberLoc, BaseExpr.get());
   1428         }
   1429 
   1430         if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
   1431           // Check the use of this method.
   1432           if (S.DiagnoseUseOfDecl(OMD, MemberLoc))
   1433             return ExprError();
   1434           Selector SetterSel =
   1435             SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
   1436                                                    S.PP.getSelectorTable(),
   1437                                                    Member);
   1438           ObjCMethodDecl *SMD = nullptr;
   1439           if (Decl *SDecl = FindGetterSetterNameDecl(OPT,
   1440                                                      /*Property id*/ nullptr,
   1441                                                      SetterSel, S.Context))
   1442             SMD = dyn_cast<ObjCMethodDecl>(SDecl);
   1443 
   1444           return new (S.Context)
   1445               ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue,
   1446                                   OK_ObjCProperty, MemberLoc, BaseExpr.get());
   1447         }
   1448       }
   1449       // Use of id.member can only be for a property reference. Do not
   1450       // use the 'id' redefinition in this case.
   1451       if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr))
   1452         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
   1453                                 ObjCImpDecl, HasTemplateArgs);
   1454 
   1455       return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
   1456                          << MemberName << BaseType);
   1457     }
   1458 
   1459     // 'Class', unqualified only.
   1460     if (OT->isObjCClass()) {
   1461       // Only works in a method declaration (??!).
   1462       ObjCMethodDecl *MD = S.getCurMethodDecl();
   1463       if (!MD) {
   1464         if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
   1465           return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
   1466                                   ObjCImpDecl, HasTemplateArgs);
   1467 
   1468         goto fail;
   1469       }
   1470 
   1471       // Also must look for a getter name which uses property syntax.
   1472       Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
   1473       ObjCInterfaceDecl *IFace = MD->getClassInterface();
   1474       ObjCMethodDecl *Getter;
   1475       if ((Getter = IFace->lookupClassMethod(Sel))) {
   1476         // Check the use of this method.
   1477         if (S.DiagnoseUseOfDecl(Getter, MemberLoc))
   1478           return ExprError();
   1479       } else
   1480         Getter = IFace->lookupPrivateMethod(Sel, false);
   1481       // If we found a getter then this may be a valid dot-reference, we
   1482       // will look for the matching setter, in case it is needed.
   1483       Selector SetterSel =
   1484         SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
   1485                                                S.PP.getSelectorTable(),
   1486                                                Member);
   1487       ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
   1488       if (!Setter) {
   1489         // If this reference is in an @implementation, also check for 'private'
   1490         // methods.
   1491         Setter = IFace->lookupPrivateMethod(SetterSel, false);
   1492       }
   1493 
   1494       if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc))
   1495         return ExprError();
   1496 
   1497       if (Getter || Setter) {
   1498         return new (S.Context) ObjCPropertyRefExpr(
   1499             Getter, Setter, S.Context.PseudoObjectTy, VK_LValue,
   1500             OK_ObjCProperty, MemberLoc, BaseExpr.get());
   1501       }
   1502 
   1503       if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
   1504         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
   1505                                 ObjCImpDecl, HasTemplateArgs);
   1506 
   1507       return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
   1508                          << MemberName << BaseType);
   1509     }
   1510 
   1511     // Normal property access.
   1512     return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName,
   1513                                        MemberLoc, SourceLocation(), QualType(),
   1514                                        false);
   1515   }
   1516 
   1517   // Handle 'field access' to vectors, such as 'V.xx'.
   1518   if (BaseType->isExtVectorType()) {
   1519     // FIXME: this expr should store IsArrow.
   1520     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
   1521     ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
   1522     QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc,
   1523                                            Member, MemberLoc);
   1524     if (ret.isNull())
   1525       return ExprError();
   1526 
   1527     return new (S.Context)
   1528         ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc);
   1529   }
   1530 
   1531   // Adjust builtin-sel to the appropriate redefinition type if that's
   1532   // not just a pointer to builtin-sel again.
   1533   if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
   1534       !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) {
   1535     BaseExpr = S.ImpCastExprToType(
   1536         BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast);
   1537     return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
   1538                             ObjCImpDecl, HasTemplateArgs);
   1539   }
   1540 
   1541   // Failure cases.
   1542  fail:
   1543 
   1544   // Recover from dot accesses to pointers, e.g.:
   1545   //   type *foo;
   1546   //   foo.bar
   1547   // This is actually well-formed in two cases:
   1548   //   - 'type' is an Objective C type
   1549   //   - 'bar' is a pseudo-destructor name which happens to refer to
   1550   //     the appropriate pointer type
   1551   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
   1552     if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
   1553         MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
   1554       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
   1555           << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
   1556           << FixItHint::CreateReplacement(OpLoc, "->");
   1557 
   1558       // Recurse as an -> access.
   1559       IsArrow = true;
   1560       return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
   1561                               ObjCImpDecl, HasTemplateArgs);
   1562     }
   1563   }
   1564 
   1565   // If the user is trying to apply -> or . to a function name, it's probably
   1566   // because they forgot parentheses to call that function.
   1567   if (S.tryToRecoverWithCall(
   1568           BaseExpr, S.PDiag(diag::err_member_reference_needs_call),
   1569           /*complain*/ false,
   1570           IsArrow ? &isPointerToRecordType : &isRecordType)) {
   1571     if (BaseExpr.isInvalid())
   1572       return ExprError();
   1573     BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get());
   1574     return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
   1575                             ObjCImpDecl, HasTemplateArgs);
   1576   }
   1577 
   1578   S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
   1579     << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
   1580 
   1581   return ExprError();
   1582 }
   1583 
   1584 /// The main callback when the parser finds something like
   1585 ///   expression . [nested-name-specifier] identifier
   1586 ///   expression -> [nested-name-specifier] identifier
   1587 /// where 'identifier' encompasses a fairly broad spectrum of
   1588 /// possibilities, including destructor and operator references.
   1589 ///
   1590 /// \param OpKind either tok::arrow or tok::period
   1591 /// \param HasTrailingLParen whether the next token is '(', which
   1592 ///   is used to diagnose mis-uses of special members that can
   1593 ///   only be called
   1594 /// \param ObjCImpDecl the current Objective-C \@implementation
   1595 ///   decl; this is an ugly hack around the fact that Objective-C
   1596 ///   \@implementations aren't properly put in the context chain
   1597 ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
   1598                                        SourceLocation OpLoc,
   1599                                        tok::TokenKind OpKind,
   1600                                        CXXScopeSpec &SS,
   1601                                        SourceLocation TemplateKWLoc,
   1602                                        UnqualifiedId &Id,
   1603                                        Decl *ObjCImpDecl,
   1604                                        bool HasTrailingLParen) {
   1605   if (SS.isSet() && SS.isInvalid())
   1606     return ExprError();
   1607 
   1608   // The only way a reference to a destructor can be used is to
   1609   // immediately call it. If the next token is not a '(', produce
   1610   // a diagnostic and build the call now.
   1611   if (!HasTrailingLParen &&
   1612       Id.getKind() == UnqualifiedId::IK_DestructorName) {
   1613     ExprResult DtorAccess =
   1614         ActOnMemberAccessExpr(S, Base, OpLoc, OpKind, SS, TemplateKWLoc, Id,
   1615                               ObjCImpDecl, /*HasTrailingLParen*/true);
   1616     if (DtorAccess.isInvalid())
   1617       return DtorAccess;
   1618     return DiagnoseDtorReference(Id.getLocStart(), DtorAccess.get());
   1619   }
   1620 
   1621   // Warn about the explicit constructor calls Microsoft extension.
   1622   if (getLangOpts().MicrosoftExt &&
   1623       Id.getKind() == UnqualifiedId::IK_ConstructorName)
   1624     Diag(Id.getSourceRange().getBegin(),
   1625          diag::ext_ms_explicit_constructor_call);
   1626 
   1627   TemplateArgumentListInfo TemplateArgsBuffer;
   1628 
   1629   // Decompose the name into its component parts.
   1630   DeclarationNameInfo NameInfo;
   1631   const TemplateArgumentListInfo *TemplateArgs;
   1632   DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
   1633                          NameInfo, TemplateArgs);
   1634 
   1635   DeclarationName Name = NameInfo.getName();
   1636   bool IsArrow = (OpKind == tok::arrow);
   1637 
   1638   NamedDecl *FirstQualifierInScope
   1639     = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep()));
   1640 
   1641   // This is a postfix expression, so get rid of ParenListExprs.
   1642   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
   1643   if (Result.isInvalid()) return ExprError();
   1644   Base = Result.get();
   1645 
   1646   if (Base->getType()->isDependentType() || Name.isDependentName() ||
   1647       isDependentScopeSpecifier(SS)) {
   1648     return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS,
   1649                                     TemplateKWLoc, FirstQualifierInScope,
   1650                                     NameInfo, TemplateArgs);
   1651   }
   1652 
   1653   ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl,
   1654                                           HasTrailingLParen};
   1655   return BuildMemberReferenceExpr(Base, Base->getType(), OpLoc, IsArrow, SS,
   1656                                   TemplateKWLoc, FirstQualifierInScope,
   1657                                   NameInfo, TemplateArgs, &ExtraArgs);
   1658 }
   1659 
   1660 static ExprResult
   1661 BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
   1662                         const CXXScopeSpec &SS, FieldDecl *Field,
   1663                         DeclAccessPair FoundDecl,
   1664                         const DeclarationNameInfo &MemberNameInfo) {
   1665   // x.a is an l-value if 'a' has a reference type. Otherwise:
   1666   // x.a is an l-value/x-value/pr-value if the base is (and note
   1667   //   that *x is always an l-value), except that if the base isn't
   1668   //   an ordinary object then we must have an rvalue.
   1669   ExprValueKind VK = VK_LValue;
   1670   ExprObjectKind OK = OK_Ordinary;
   1671   if (!IsArrow) {
   1672     if (BaseExpr->getObjectKind() == OK_Ordinary)
   1673       VK = BaseExpr->getValueKind();
   1674     else
   1675       VK = VK_RValue;
   1676   }
   1677   if (VK != VK_RValue && Field->isBitField())
   1678     OK = OK_BitField;
   1679 
   1680   // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
   1681   QualType MemberType = Field->getType();
   1682   if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
   1683     MemberType = Ref->getPointeeType();
   1684     VK = VK_LValue;
   1685   } else {
   1686     QualType BaseType = BaseExpr->getType();
   1687     if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
   1688 
   1689     Qualifiers BaseQuals = BaseType.getQualifiers();
   1690 
   1691     // GC attributes are never picked up by members.
   1692     BaseQuals.removeObjCGCAttr();
   1693 
   1694     // CVR attributes from the base are picked up by members,
   1695     // except that 'mutable' members don't pick up 'const'.
   1696     if (Field->isMutable()) BaseQuals.removeConst();
   1697 
   1698     Qualifiers MemberQuals
   1699     = S.Context.getCanonicalType(MemberType).getQualifiers();
   1700 
   1701     assert(!MemberQuals.hasAddressSpace());
   1702 
   1703 
   1704     Qualifiers Combined = BaseQuals + MemberQuals;
   1705     if (Combined != MemberQuals)
   1706       MemberType = S.Context.getQualifiedType(MemberType, Combined);
   1707   }
   1708 
   1709   S.UnusedPrivateFields.remove(Field);
   1710 
   1711   ExprResult Base =
   1712   S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
   1713                                   FoundDecl, Field);
   1714   if (Base.isInvalid())
   1715     return ExprError();
   1716   return BuildMemberExpr(S, S.Context, Base.get(), IsArrow, SS,
   1717                          /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl,
   1718                          MemberNameInfo, MemberType, VK, OK);
   1719 }
   1720 
   1721 /// Builds an implicit member access expression.  The current context
   1722 /// is known to be an instance method, and the given unqualified lookup
   1723 /// set is known to contain only instance members, at least one of which
   1724 /// is from an appropriate type.
   1725 ExprResult
   1726 Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
   1727                               SourceLocation TemplateKWLoc,
   1728                               LookupResult &R,
   1729                               const TemplateArgumentListInfo *TemplateArgs,
   1730                               bool IsKnownInstance) {
   1731   assert(!R.empty() && !R.isAmbiguous());
   1732 
   1733   SourceLocation loc = R.getNameLoc();
   1734 
   1735   // If this is known to be an instance access, go ahead and build an
   1736   // implicit 'this' expression now.
   1737   // 'this' expression now.
   1738   QualType ThisTy = getCurrentThisType();
   1739   assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
   1740 
   1741   Expr *baseExpr = nullptr; // null signifies implicit access
   1742   if (IsKnownInstance) {
   1743     SourceLocation Loc = R.getNameLoc();
   1744     if (SS.getRange().isValid())
   1745       Loc = SS.getRange().getBegin();
   1746     CheckCXXThisCapture(Loc);
   1747     baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
   1748   }
   1749 
   1750   return BuildMemberReferenceExpr(baseExpr, ThisTy,
   1751                                   /*OpLoc*/ SourceLocation(),
   1752                                   /*IsArrow*/ true,
   1753                                   SS, TemplateKWLoc,
   1754                                   /*FirstQualifierInScope*/ nullptr,
   1755                                   R, TemplateArgs);
   1756 }
   1757