1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1 (at) gmail.com> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #ifndef EIGEN_LU_H 11 #define EIGEN_LU_H 12 13 namespace Eigen { 14 15 /** \ingroup LU_Module 16 * 17 * \class FullPivLU 18 * 19 * \brief LU decomposition of a matrix with complete pivoting, and related features 20 * 21 * \param MatrixType the type of the matrix of which we are computing the LU decomposition 22 * 23 * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is 24 * decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is 25 * upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU 26 * decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any 27 * zeros are at the end. 28 * 29 * This decomposition provides the generic approach to solving systems of linear equations, computing 30 * the rank, invertibility, inverse, kernel, and determinant. 31 * 32 * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD 33 * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix, 34 * working with the SVD allows to select the smallest singular values of the matrix, something that 35 * the LU decomposition doesn't see. 36 * 37 * The data of the LU decomposition can be directly accessed through the methods matrixLU(), 38 * permutationP(), permutationQ(). 39 * 40 * As an exemple, here is how the original matrix can be retrieved: 41 * \include class_FullPivLU.cpp 42 * Output: \verbinclude class_FullPivLU.out 43 * 44 * \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse() 45 */ 46 template<typename _MatrixType> class FullPivLU 47 { 48 public: 49 typedef _MatrixType MatrixType; 50 enum { 51 RowsAtCompileTime = MatrixType::RowsAtCompileTime, 52 ColsAtCompileTime = MatrixType::ColsAtCompileTime, 53 Options = MatrixType::Options, 54 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, 55 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime 56 }; 57 typedef typename MatrixType::Scalar Scalar; 58 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; 59 typedef typename internal::traits<MatrixType>::StorageKind StorageKind; 60 typedef typename MatrixType::Index Index; 61 typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType; 62 typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType; 63 typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType; 64 typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType; 65 66 /** 67 * \brief Default Constructor. 68 * 69 * The default constructor is useful in cases in which the user intends to 70 * perform decompositions via LU::compute(const MatrixType&). 71 */ 72 FullPivLU(); 73 74 /** \brief Default Constructor with memory preallocation 75 * 76 * Like the default constructor but with preallocation of the internal data 77 * according to the specified problem \a size. 78 * \sa FullPivLU() 79 */ 80 FullPivLU(Index rows, Index cols); 81 82 /** Constructor. 83 * 84 * \param matrix the matrix of which to compute the LU decomposition. 85 * It is required to be nonzero. 86 */ 87 FullPivLU(const MatrixType& matrix); 88 89 /** Computes the LU decomposition of the given matrix. 90 * 91 * \param matrix the matrix of which to compute the LU decomposition. 92 * It is required to be nonzero. 93 * 94 * \returns a reference to *this 95 */ 96 FullPivLU& compute(const MatrixType& matrix); 97 98 /** \returns the LU decomposition matrix: the upper-triangular part is U, the 99 * unit-lower-triangular part is L (at least for square matrices; in the non-square 100 * case, special care is needed, see the documentation of class FullPivLU). 101 * 102 * \sa matrixL(), matrixU() 103 */ 104 inline const MatrixType& matrixLU() const 105 { 106 eigen_assert(m_isInitialized && "LU is not initialized."); 107 return m_lu; 108 } 109 110 /** \returns the number of nonzero pivots in the LU decomposition. 111 * Here nonzero is meant in the exact sense, not in a fuzzy sense. 112 * So that notion isn't really intrinsically interesting, but it is 113 * still useful when implementing algorithms. 114 * 115 * \sa rank() 116 */ 117 inline Index nonzeroPivots() const 118 { 119 eigen_assert(m_isInitialized && "LU is not initialized."); 120 return m_nonzero_pivots; 121 } 122 123 /** \returns the absolute value of the biggest pivot, i.e. the biggest 124 * diagonal coefficient of U. 125 */ 126 RealScalar maxPivot() const { return m_maxpivot; } 127 128 /** \returns the permutation matrix P 129 * 130 * \sa permutationQ() 131 */ 132 inline const PermutationPType& permutationP() const 133 { 134 eigen_assert(m_isInitialized && "LU is not initialized."); 135 return m_p; 136 } 137 138 /** \returns the permutation matrix Q 139 * 140 * \sa permutationP() 141 */ 142 inline const PermutationQType& permutationQ() const 143 { 144 eigen_assert(m_isInitialized && "LU is not initialized."); 145 return m_q; 146 } 147 148 /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix 149 * will form a basis of the kernel. 150 * 151 * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros. 152 * 153 * \note This method has to determine which pivots should be considered nonzero. 154 * For that, it uses the threshold value that you can control by calling 155 * setThreshold(const RealScalar&). 156 * 157 * Example: \include FullPivLU_kernel.cpp 158 * Output: \verbinclude FullPivLU_kernel.out 159 * 160 * \sa image() 161 */ 162 inline const internal::kernel_retval<FullPivLU> kernel() const 163 { 164 eigen_assert(m_isInitialized && "LU is not initialized."); 165 return internal::kernel_retval<FullPivLU>(*this); 166 } 167 168 /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix 169 * will form a basis of the kernel. 170 * 171 * \param originalMatrix the original matrix, of which *this is the LU decomposition. 172 * The reason why it is needed to pass it here, is that this allows 173 * a large optimization, as otherwise this method would need to reconstruct it 174 * from the LU decomposition. 175 * 176 * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros. 177 * 178 * \note This method has to determine which pivots should be considered nonzero. 179 * For that, it uses the threshold value that you can control by calling 180 * setThreshold(const RealScalar&). 181 * 182 * Example: \include FullPivLU_image.cpp 183 * Output: \verbinclude FullPivLU_image.out 184 * 185 * \sa kernel() 186 */ 187 inline const internal::image_retval<FullPivLU> 188 image(const MatrixType& originalMatrix) const 189 { 190 eigen_assert(m_isInitialized && "LU is not initialized."); 191 return internal::image_retval<FullPivLU>(*this, originalMatrix); 192 } 193 194 /** \return a solution x to the equation Ax=b, where A is the matrix of which 195 * *this is the LU decomposition. 196 * 197 * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, 198 * the only requirement in order for the equation to make sense is that 199 * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. 200 * 201 * \returns a solution. 202 * 203 * \note_about_checking_solutions 204 * 205 * \note_about_arbitrary_choice_of_solution 206 * \note_about_using_kernel_to_study_multiple_solutions 207 * 208 * Example: \include FullPivLU_solve.cpp 209 * Output: \verbinclude FullPivLU_solve.out 210 * 211 * \sa TriangularView::solve(), kernel(), inverse() 212 */ 213 template<typename Rhs> 214 inline const internal::solve_retval<FullPivLU, Rhs> 215 solve(const MatrixBase<Rhs>& b) const 216 { 217 eigen_assert(m_isInitialized && "LU is not initialized."); 218 return internal::solve_retval<FullPivLU, Rhs>(*this, b.derived()); 219 } 220 221 /** \returns the determinant of the matrix of which 222 * *this is the LU decomposition. It has only linear complexity 223 * (that is, O(n) where n is the dimension of the square matrix) 224 * as the LU decomposition has already been computed. 225 * 226 * \note This is only for square matrices. 227 * 228 * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers 229 * optimized paths. 230 * 231 * \warning a determinant can be very big or small, so for matrices 232 * of large enough dimension, there is a risk of overflow/underflow. 233 * 234 * \sa MatrixBase::determinant() 235 */ 236 typename internal::traits<MatrixType>::Scalar determinant() const; 237 238 /** Allows to prescribe a threshold to be used by certain methods, such as rank(), 239 * who need to determine when pivots are to be considered nonzero. This is not used for the 240 * LU decomposition itself. 241 * 242 * When it needs to get the threshold value, Eigen calls threshold(). By default, this 243 * uses a formula to automatically determine a reasonable threshold. 244 * Once you have called the present method setThreshold(const RealScalar&), 245 * your value is used instead. 246 * 247 * \param threshold The new value to use as the threshold. 248 * 249 * A pivot will be considered nonzero if its absolute value is strictly greater than 250 * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ 251 * where maxpivot is the biggest pivot. 252 * 253 * If you want to come back to the default behavior, call setThreshold(Default_t) 254 */ 255 FullPivLU& setThreshold(const RealScalar& threshold) 256 { 257 m_usePrescribedThreshold = true; 258 m_prescribedThreshold = threshold; 259 return *this; 260 } 261 262 /** Allows to come back to the default behavior, letting Eigen use its default formula for 263 * determining the threshold. 264 * 265 * You should pass the special object Eigen::Default as parameter here. 266 * \code lu.setThreshold(Eigen::Default); \endcode 267 * 268 * See the documentation of setThreshold(const RealScalar&). 269 */ 270 FullPivLU& setThreshold(Default_t) 271 { 272 m_usePrescribedThreshold = false; 273 return *this; 274 } 275 276 /** Returns the threshold that will be used by certain methods such as rank(). 277 * 278 * See the documentation of setThreshold(const RealScalar&). 279 */ 280 RealScalar threshold() const 281 { 282 eigen_assert(m_isInitialized || m_usePrescribedThreshold); 283 return m_usePrescribedThreshold ? m_prescribedThreshold 284 // this formula comes from experimenting (see "LU precision tuning" thread on the list) 285 // and turns out to be identical to Higham's formula used already in LDLt. 286 : NumTraits<Scalar>::epsilon() * m_lu.diagonalSize(); 287 } 288 289 /** \returns the rank of the matrix of which *this is the LU decomposition. 290 * 291 * \note This method has to determine which pivots should be considered nonzero. 292 * For that, it uses the threshold value that you can control by calling 293 * setThreshold(const RealScalar&). 294 */ 295 inline Index rank() const 296 { 297 using std::abs; 298 eigen_assert(m_isInitialized && "LU is not initialized."); 299 RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); 300 Index result = 0; 301 for(Index i = 0; i < m_nonzero_pivots; ++i) 302 result += (abs(m_lu.coeff(i,i)) > premultiplied_threshold); 303 return result; 304 } 305 306 /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition. 307 * 308 * \note This method has to determine which pivots should be considered nonzero. 309 * For that, it uses the threshold value that you can control by calling 310 * setThreshold(const RealScalar&). 311 */ 312 inline Index dimensionOfKernel() const 313 { 314 eigen_assert(m_isInitialized && "LU is not initialized."); 315 return cols() - rank(); 316 } 317 318 /** \returns true if the matrix of which *this is the LU decomposition represents an injective 319 * linear map, i.e. has trivial kernel; false otherwise. 320 * 321 * \note This method has to determine which pivots should be considered nonzero. 322 * For that, it uses the threshold value that you can control by calling 323 * setThreshold(const RealScalar&). 324 */ 325 inline bool isInjective() const 326 { 327 eigen_assert(m_isInitialized && "LU is not initialized."); 328 return rank() == cols(); 329 } 330 331 /** \returns true if the matrix of which *this is the LU decomposition represents a surjective 332 * linear map; false otherwise. 333 * 334 * \note This method has to determine which pivots should be considered nonzero. 335 * For that, it uses the threshold value that you can control by calling 336 * setThreshold(const RealScalar&). 337 */ 338 inline bool isSurjective() const 339 { 340 eigen_assert(m_isInitialized && "LU is not initialized."); 341 return rank() == rows(); 342 } 343 344 /** \returns true if the matrix of which *this is the LU decomposition is invertible. 345 * 346 * \note This method has to determine which pivots should be considered nonzero. 347 * For that, it uses the threshold value that you can control by calling 348 * setThreshold(const RealScalar&). 349 */ 350 inline bool isInvertible() const 351 { 352 eigen_assert(m_isInitialized && "LU is not initialized."); 353 return isInjective() && (m_lu.rows() == m_lu.cols()); 354 } 355 356 /** \returns the inverse of the matrix of which *this is the LU decomposition. 357 * 358 * \note If this matrix is not invertible, the returned matrix has undefined coefficients. 359 * Use isInvertible() to first determine whether this matrix is invertible. 360 * 361 * \sa MatrixBase::inverse() 362 */ 363 inline const internal::solve_retval<FullPivLU,typename MatrixType::IdentityReturnType> inverse() const 364 { 365 eigen_assert(m_isInitialized && "LU is not initialized."); 366 eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!"); 367 return internal::solve_retval<FullPivLU,typename MatrixType::IdentityReturnType> 368 (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols())); 369 } 370 371 MatrixType reconstructedMatrix() const; 372 373 inline Index rows() const { return m_lu.rows(); } 374 inline Index cols() const { return m_lu.cols(); } 375 376 protected: 377 MatrixType m_lu; 378 PermutationPType m_p; 379 PermutationQType m_q; 380 IntColVectorType m_rowsTranspositions; 381 IntRowVectorType m_colsTranspositions; 382 Index m_det_pq, m_nonzero_pivots; 383 RealScalar m_maxpivot, m_prescribedThreshold; 384 bool m_isInitialized, m_usePrescribedThreshold; 385 }; 386 387 template<typename MatrixType> 388 FullPivLU<MatrixType>::FullPivLU() 389 : m_isInitialized(false), m_usePrescribedThreshold(false) 390 { 391 } 392 393 template<typename MatrixType> 394 FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols) 395 : m_lu(rows, cols), 396 m_p(rows), 397 m_q(cols), 398 m_rowsTranspositions(rows), 399 m_colsTranspositions(cols), 400 m_isInitialized(false), 401 m_usePrescribedThreshold(false) 402 { 403 } 404 405 template<typename MatrixType> 406 FullPivLU<MatrixType>::FullPivLU(const MatrixType& matrix) 407 : m_lu(matrix.rows(), matrix.cols()), 408 m_p(matrix.rows()), 409 m_q(matrix.cols()), 410 m_rowsTranspositions(matrix.rows()), 411 m_colsTranspositions(matrix.cols()), 412 m_isInitialized(false), 413 m_usePrescribedThreshold(false) 414 { 415 compute(matrix); 416 } 417 418 template<typename MatrixType> 419 FullPivLU<MatrixType>& FullPivLU<MatrixType>::compute(const MatrixType& matrix) 420 { 421 // the permutations are stored as int indices, so just to be sure: 422 eigen_assert(matrix.rows()<=NumTraits<int>::highest() && matrix.cols()<=NumTraits<int>::highest()); 423 424 m_isInitialized = true; 425 m_lu = matrix; 426 427 const Index size = matrix.diagonalSize(); 428 const Index rows = matrix.rows(); 429 const Index cols = matrix.cols(); 430 431 // will store the transpositions, before we accumulate them at the end. 432 // can't accumulate on-the-fly because that will be done in reverse order for the rows. 433 m_rowsTranspositions.resize(matrix.rows()); 434 m_colsTranspositions.resize(matrix.cols()); 435 Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i 436 437 m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) 438 m_maxpivot = RealScalar(0); 439 440 for(Index k = 0; k < size; ++k) 441 { 442 // First, we need to find the pivot. 443 444 // biggest coefficient in the remaining bottom-right corner (starting at row k, col k) 445 Index row_of_biggest_in_corner, col_of_biggest_in_corner; 446 RealScalar biggest_in_corner; 447 biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k) 448 .cwiseAbs() 449 .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner); 450 row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner, 451 col_of_biggest_in_corner += k; // need to add k to them. 452 453 if(biggest_in_corner==RealScalar(0)) 454 { 455 // before exiting, make sure to initialize the still uninitialized transpositions 456 // in a sane state without destroying what we already have. 457 m_nonzero_pivots = k; 458 for(Index i = k; i < size; ++i) 459 { 460 m_rowsTranspositions.coeffRef(i) = i; 461 m_colsTranspositions.coeffRef(i) = i; 462 } 463 break; 464 } 465 466 if(biggest_in_corner > m_maxpivot) m_maxpivot = biggest_in_corner; 467 468 // Now that we've found the pivot, we need to apply the row/col swaps to 469 // bring it to the location (k,k). 470 471 m_rowsTranspositions.coeffRef(k) = row_of_biggest_in_corner; 472 m_colsTranspositions.coeffRef(k) = col_of_biggest_in_corner; 473 if(k != row_of_biggest_in_corner) { 474 m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner)); 475 ++number_of_transpositions; 476 } 477 if(k != col_of_biggest_in_corner) { 478 m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner)); 479 ++number_of_transpositions; 480 } 481 482 // Now that the pivot is at the right location, we update the remaining 483 // bottom-right corner by Gaussian elimination. 484 485 if(k<rows-1) 486 m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k); 487 if(k<size-1) 488 m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1); 489 } 490 491 // the main loop is over, we still have to accumulate the transpositions to find the 492 // permutations P and Q 493 494 m_p.setIdentity(rows); 495 for(Index k = size-1; k >= 0; --k) 496 m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k)); 497 498 m_q.setIdentity(cols); 499 for(Index k = 0; k < size; ++k) 500 m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k)); 501 502 m_det_pq = (number_of_transpositions%2) ? -1 : 1; 503 return *this; 504 } 505 506 template<typename MatrixType> 507 typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const 508 { 509 eigen_assert(m_isInitialized && "LU is not initialized."); 510 eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!"); 511 return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod()); 512 } 513 514 /** \returns the matrix represented by the decomposition, 515 * i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$. 516 * This function is provided for debug purposes. */ 517 template<typename MatrixType> 518 MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const 519 { 520 eigen_assert(m_isInitialized && "LU is not initialized."); 521 const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols()); 522 // LU 523 MatrixType res(m_lu.rows(),m_lu.cols()); 524 // FIXME the .toDenseMatrix() should not be needed... 525 res = m_lu.leftCols(smalldim) 526 .template triangularView<UnitLower>().toDenseMatrix() 527 * m_lu.topRows(smalldim) 528 .template triangularView<Upper>().toDenseMatrix(); 529 530 // P^{-1}(LU) 531 res = m_p.inverse() * res; 532 533 // (P^{-1}LU)Q^{-1} 534 res = res * m_q.inverse(); 535 536 return res; 537 } 538 539 /********* Implementation of kernel() **************************************************/ 540 541 namespace internal { 542 template<typename _MatrixType> 543 struct kernel_retval<FullPivLU<_MatrixType> > 544 : kernel_retval_base<FullPivLU<_MatrixType> > 545 { 546 EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>) 547 548 enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED( 549 MatrixType::MaxColsAtCompileTime, 550 MatrixType::MaxRowsAtCompileTime) 551 }; 552 553 template<typename Dest> void evalTo(Dest& dst) const 554 { 555 using std::abs; 556 const Index cols = dec().matrixLU().cols(), dimker = cols - rank(); 557 if(dimker == 0) 558 { 559 // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's 560 // avoid crashing/asserting as that depends on floating point calculations. Let's 561 // just return a single column vector filled with zeros. 562 dst.setZero(); 563 return; 564 } 565 566 /* Let us use the following lemma: 567 * 568 * Lemma: If the matrix A has the LU decomposition PAQ = LU, 569 * then Ker A = Q(Ker U). 570 * 571 * Proof: trivial: just keep in mind that P, Q, L are invertible. 572 */ 573 574 /* Thus, all we need to do is to compute Ker U, and then apply Q. 575 * 576 * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end. 577 * Thus, the diagonal of U ends with exactly 578 * dimKer zero's. Let us use that to construct dimKer linearly 579 * independent vectors in Ker U. 580 */ 581 582 Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank()); 583 RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold(); 584 Index p = 0; 585 for(Index i = 0; i < dec().nonzeroPivots(); ++i) 586 if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold) 587 pivots.coeffRef(p++) = i; 588 eigen_internal_assert(p == rank()); 589 590 // we construct a temporaty trapezoid matrix m, by taking the U matrix and 591 // permuting the rows and cols to bring the nonnegligible pivots to the top of 592 // the main diagonal. We need that to be able to apply our triangular solvers. 593 // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified 594 Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options, 595 MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime> 596 m(dec().matrixLU().block(0, 0, rank(), cols)); 597 for(Index i = 0; i < rank(); ++i) 598 { 599 if(i) m.row(i).head(i).setZero(); 600 m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i); 601 } 602 m.block(0, 0, rank(), rank()); 603 m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero(); 604 for(Index i = 0; i < rank(); ++i) 605 m.col(i).swap(m.col(pivots.coeff(i))); 606 607 // ok, we have our trapezoid matrix, we can apply the triangular solver. 608 // notice that the math behind this suggests that we should apply this to the 609 // negative of the RHS, but for performance we just put the negative sign elsewhere, see below. 610 m.topLeftCorner(rank(), rank()) 611 .template triangularView<Upper>().solveInPlace( 612 m.topRightCorner(rank(), dimker) 613 ); 614 615 // now we must undo the column permutation that we had applied! 616 for(Index i = rank()-1; i >= 0; --i) 617 m.col(i).swap(m.col(pivots.coeff(i))); 618 619 // see the negative sign in the next line, that's what we were talking about above. 620 for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker); 621 for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero(); 622 for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1); 623 } 624 }; 625 626 /***** Implementation of image() *****************************************************/ 627 628 template<typename _MatrixType> 629 struct image_retval<FullPivLU<_MatrixType> > 630 : image_retval_base<FullPivLU<_MatrixType> > 631 { 632 EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>) 633 634 enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED( 635 MatrixType::MaxColsAtCompileTime, 636 MatrixType::MaxRowsAtCompileTime) 637 }; 638 639 template<typename Dest> void evalTo(Dest& dst) const 640 { 641 using std::abs; 642 if(rank() == 0) 643 { 644 // The Image is just {0}, so it doesn't have a basis properly speaking, but let's 645 // avoid crashing/asserting as that depends on floating point calculations. Let's 646 // just return a single column vector filled with zeros. 647 dst.setZero(); 648 return; 649 } 650 651 Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank()); 652 RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold(); 653 Index p = 0; 654 for(Index i = 0; i < dec().nonzeroPivots(); ++i) 655 if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold) 656 pivots.coeffRef(p++) = i; 657 eigen_internal_assert(p == rank()); 658 659 for(Index i = 0; i < rank(); ++i) 660 dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i))); 661 } 662 }; 663 664 /***** Implementation of solve() *****************************************************/ 665 666 template<typename _MatrixType, typename Rhs> 667 struct solve_retval<FullPivLU<_MatrixType>, Rhs> 668 : solve_retval_base<FullPivLU<_MatrixType>, Rhs> 669 { 670 EIGEN_MAKE_SOLVE_HELPERS(FullPivLU<_MatrixType>,Rhs) 671 672 template<typename Dest> void evalTo(Dest& dst) const 673 { 674 /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}. 675 * So we proceed as follows: 676 * Step 1: compute c = P * rhs. 677 * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible. 678 * Step 3: replace c by the solution x to Ux = c. May or may not exist. 679 * Step 4: result = Q * c; 680 */ 681 682 const Index rows = dec().rows(), cols = dec().cols(), 683 nonzero_pivots = dec().nonzeroPivots(); 684 eigen_assert(rhs().rows() == rows); 685 const Index smalldim = (std::min)(rows, cols); 686 687 if(nonzero_pivots == 0) 688 { 689 dst.setZero(); 690 return; 691 } 692 693 typename Rhs::PlainObject c(rhs().rows(), rhs().cols()); 694 695 // Step 1 696 c = dec().permutationP() * rhs(); 697 698 // Step 2 699 dec().matrixLU() 700 .topLeftCorner(smalldim,smalldim) 701 .template triangularView<UnitLower>() 702 .solveInPlace(c.topRows(smalldim)); 703 if(rows>cols) 704 { 705 c.bottomRows(rows-cols) 706 -= dec().matrixLU().bottomRows(rows-cols) 707 * c.topRows(cols); 708 } 709 710 // Step 3 711 dec().matrixLU() 712 .topLeftCorner(nonzero_pivots, nonzero_pivots) 713 .template triangularView<Upper>() 714 .solveInPlace(c.topRows(nonzero_pivots)); 715 716 // Step 4 717 for(Index i = 0; i < nonzero_pivots; ++i) 718 dst.row(dec().permutationQ().indices().coeff(i)) = c.row(i); 719 for(Index i = nonzero_pivots; i < dec().matrixLU().cols(); ++i) 720 dst.row(dec().permutationQ().indices().coeff(i)).setZero(); 721 } 722 }; 723 724 } // end namespace internal 725 726 /******* MatrixBase methods *****************************************************************/ 727 728 /** \lu_module 729 * 730 * \return the full-pivoting LU decomposition of \c *this. 731 * 732 * \sa class FullPivLU 733 */ 734 template<typename Derived> 735 inline const FullPivLU<typename MatrixBase<Derived>::PlainObject> 736 MatrixBase<Derived>::fullPivLu() const 737 { 738 return FullPivLU<PlainObject>(eval()); 739 } 740 741 } // end namespace Eigen 742 743 #endif // EIGEN_LU_H 744