1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include <stdio.h> 18 19 #include <utils/Log.h> 20 21 #include "Fusion.h" 22 23 namespace android { 24 25 // ----------------------------------------------------------------------- 26 27 /* 28 * gyroVAR gives the measured variance of the gyro's output per 29 * Hz (or variance at 1 Hz). This is an "intrinsic" parameter of the gyro, 30 * which is independent of the sampling frequency. 31 * 32 * The variance of gyro's output at a given sampling period can be 33 * calculated as: 34 * variance(T) = gyroVAR / T 35 * 36 * The variance of the INTEGRATED OUTPUT at a given sampling period can be 37 * calculated as: 38 * variance_integrate_output(T) = gyroVAR * T 39 * 40 */ 41 static const float gyroVAR = 1e-7; // (rad/s)^2 / Hz 42 static const float biasVAR = 1e-8; // (rad/s)^2 / s (guessed) 43 44 /* 45 * Standard deviations of accelerometer and magnetometer 46 */ 47 static const float accSTDEV = 0.05f; // m/s^2 (measured 0.08 / CDD 0.05) 48 static const float magSTDEV = 0.5f; // uT (measured 0.7 / CDD 0.5) 49 50 static const float SYMMETRY_TOLERANCE = 1e-10f; 51 52 /* 53 * Accelerometer updates will not be performed near free fall to avoid 54 * ill-conditioning and div by zeros. 55 * Threshhold: 10% of g, in m/s^2 56 */ 57 static const float FREE_FALL_THRESHOLD = 0.981f; 58 static const float FREE_FALL_THRESHOLD_SQ = 59 FREE_FALL_THRESHOLD*FREE_FALL_THRESHOLD; 60 61 /* 62 * The geomagnetic-field should be between 30uT and 60uT. 63 * Fields strengths greater than this likely indicate a local magnetic 64 * disturbance which we do not want to update into the fused frame. 65 */ 66 static const float MAX_VALID_MAGNETIC_FIELD = 100; // uT 67 static const float MAX_VALID_MAGNETIC_FIELD_SQ = 68 MAX_VALID_MAGNETIC_FIELD*MAX_VALID_MAGNETIC_FIELD; 69 70 /* 71 * Values of the field smaller than this should be ignored in fusion to avoid 72 * ill-conditioning. This state can happen with anomalous local magnetic 73 * disturbances canceling the Earth field. 74 */ 75 static const float MIN_VALID_MAGNETIC_FIELD = 10; // uT 76 static const float MIN_VALID_MAGNETIC_FIELD_SQ = 77 MIN_VALID_MAGNETIC_FIELD*MIN_VALID_MAGNETIC_FIELD; 78 79 /* 80 * If the cross product of two vectors has magnitude squared less than this, 81 * we reject it as invalid due to alignment of the vectors. 82 * This threshold is used to check for the case where the magnetic field sample 83 * is parallel to the gravity field, which can happen in certain places due 84 * to magnetic field disturbances. 85 */ 86 static const float MIN_VALID_CROSS_PRODUCT_MAG = 1.0e-3; 87 static const float MIN_VALID_CROSS_PRODUCT_MAG_SQ = 88 MIN_VALID_CROSS_PRODUCT_MAG*MIN_VALID_CROSS_PRODUCT_MAG; 89 90 // ----------------------------------------------------------------------- 91 92 template <typename TYPE, size_t C, size_t R> 93 static mat<TYPE, R, R> scaleCovariance( 94 const mat<TYPE, C, R>& A, 95 const mat<TYPE, C, C>& P) { 96 // A*P*transpose(A); 97 mat<TYPE, R, R> APAt; 98 for (size_t r=0 ; r<R ; r++) { 99 for (size_t j=r ; j<R ; j++) { 100 double apat(0); 101 for (size_t c=0 ; c<C ; c++) { 102 double v(A[c][r]*P[c][c]*0.5); 103 for (size_t k=c+1 ; k<C ; k++) 104 v += A[k][r] * P[c][k]; 105 apat += 2 * v * A[c][j]; 106 } 107 APAt[j][r] = apat; 108 APAt[r][j] = apat; 109 } 110 } 111 return APAt; 112 } 113 114 template <typename TYPE, typename OTHER_TYPE> 115 static mat<TYPE, 3, 3> crossMatrix(const vec<TYPE, 3>& p, OTHER_TYPE diag) { 116 mat<TYPE, 3, 3> r; 117 r[0][0] = diag; 118 r[1][1] = diag; 119 r[2][2] = diag; 120 r[0][1] = p.z; 121 r[1][0] =-p.z; 122 r[0][2] =-p.y; 123 r[2][0] = p.y; 124 r[1][2] = p.x; 125 r[2][1] =-p.x; 126 return r; 127 } 128 129 130 template<typename TYPE, size_t SIZE> 131 class Covariance { 132 mat<TYPE, SIZE, SIZE> mSumXX; 133 vec<TYPE, SIZE> mSumX; 134 size_t mN; 135 public: 136 Covariance() : mSumXX(0.0f), mSumX(0.0f), mN(0) { } 137 void update(const vec<TYPE, SIZE>& x) { 138 mSumXX += x*transpose(x); 139 mSumX += x; 140 mN++; 141 } 142 mat<TYPE, SIZE, SIZE> operator()() const { 143 const float N = 1.0f / mN; 144 return mSumXX*N - (mSumX*transpose(mSumX))*(N*N); 145 } 146 void reset() { 147 mN = 0; 148 mSumXX = 0; 149 mSumX = 0; 150 } 151 size_t getCount() const { 152 return mN; 153 } 154 }; 155 156 // ----------------------------------------------------------------------- 157 158 Fusion::Fusion() { 159 Phi[0][1] = 0; 160 Phi[1][1] = 1; 161 162 Ba.x = 0; 163 Ba.y = 0; 164 Ba.z = 1; 165 166 Bm.x = 0; 167 Bm.y = 1; 168 Bm.z = 0; 169 170 x0 = 0; 171 x1 = 0; 172 173 init(); 174 } 175 176 void Fusion::init() { 177 mInitState = 0; 178 179 mGyroRate = 0; 180 181 mCount[0] = 0; 182 mCount[1] = 0; 183 mCount[2] = 0; 184 185 mData = 0; 186 } 187 188 void Fusion::initFusion(const vec4_t& q, float dT) 189 { 190 // initial estimate: E{ x(t0) } 191 x0 = q; 192 x1 = 0; 193 194 // process noise covariance matrix: G.Q.Gt, with 195 // 196 // G = | -1 0 | Q = | q00 q10 | 197 // | 0 1 | | q01 q11 | 198 // 199 // q00 = sv^2.dt + 1/3.su^2.dt^3 200 // q10 = q01 = 1/2.su^2.dt^2 201 // q11 = su^2.dt 202 // 203 204 const float dT2 = dT*dT; 205 const float dT3 = dT2*dT; 206 207 // variance of integrated output at 1/dT Hz (random drift) 208 const float q00 = gyroVAR * dT + 0.33333f * biasVAR * dT3; 209 210 // variance of drift rate ramp 211 const float q11 = biasVAR * dT; 212 const float q10 = 0.5f * biasVAR * dT2; 213 const float q01 = q10; 214 215 GQGt[0][0] = q00; // rad^2 216 GQGt[1][0] = -q10; 217 GQGt[0][1] = -q01; 218 GQGt[1][1] = q11; // (rad/s)^2 219 220 // initial covariance: Var{ x(t0) } 221 // TODO: initialize P correctly 222 P = 0; 223 } 224 225 bool Fusion::hasEstimate() const { 226 return (mInitState == (MAG|ACC|GYRO)); 227 } 228 229 bool Fusion::checkInitComplete(int what, const vec3_t& d, float dT) { 230 if (hasEstimate()) 231 return true; 232 233 if (what == ACC) { 234 mData[0] += d * (1/length(d)); 235 mCount[0]++; 236 mInitState |= ACC; 237 } else if (what == MAG) { 238 mData[1] += d * (1/length(d)); 239 mCount[1]++; 240 mInitState |= MAG; 241 } else if (what == GYRO) { 242 mGyroRate = dT; 243 mData[2] += d*dT; 244 mCount[2]++; 245 if (mCount[2] == 64) { 246 // 64 samples is good enough to estimate the gyro drift and 247 // doesn't take too much time. 248 mInitState |= GYRO; 249 } 250 } 251 252 if (mInitState == (MAG|ACC|GYRO)) { 253 // Average all the values we collected so far 254 mData[0] *= 1.0f/mCount[0]; 255 mData[1] *= 1.0f/mCount[1]; 256 mData[2] *= 1.0f/mCount[2]; 257 258 // calculate the MRPs from the data collection, this gives us 259 // a rough estimate of our initial state 260 mat33_t R; 261 vec3_t up(mData[0]); 262 vec3_t east(cross_product(mData[1], up)); 263 east *= 1/length(east); 264 vec3_t north(cross_product(up, east)); 265 R << east << north << up; 266 const vec4_t q = matrixToQuat(R); 267 268 initFusion(q, mGyroRate); 269 } 270 271 return false; 272 } 273 274 void Fusion::handleGyro(const vec3_t& w, float dT) { 275 if (!checkInitComplete(GYRO, w, dT)) 276 return; 277 278 predict(w, dT); 279 } 280 281 status_t Fusion::handleAcc(const vec3_t& a) { 282 // ignore acceleration data if we're close to free-fall 283 if (length_squared(a) < FREE_FALL_THRESHOLD_SQ) { 284 return BAD_VALUE; 285 } 286 287 if (!checkInitComplete(ACC, a)) 288 return BAD_VALUE; 289 290 const float l = 1/length(a); 291 update(a*l, Ba, accSTDEV*l); 292 return NO_ERROR; 293 } 294 295 status_t Fusion::handleMag(const vec3_t& m) { 296 // the geomagnetic-field should be between 30uT and 60uT 297 // reject if too large to avoid spurious magnetic sources 298 const float magFieldSq = length_squared(m); 299 if (magFieldSq > MAX_VALID_MAGNETIC_FIELD_SQ) { 300 return BAD_VALUE; 301 } else if (magFieldSq < MIN_VALID_MAGNETIC_FIELD_SQ) { 302 // Also reject if too small since we will get ill-defined (zero mag) 303 // cross-products below 304 return BAD_VALUE; 305 } 306 307 if (!checkInitComplete(MAG, m)) 308 return BAD_VALUE; 309 310 // Orthogonalize the magnetic field to the gravity field, mapping it into 311 // tangent to Earth. 312 const vec3_t up( getRotationMatrix() * Ba ); 313 const vec3_t east( cross_product(m, up) ); 314 315 // If the m and up vectors align, the cross product magnitude will 316 // approach 0. 317 // Reject this case as well to avoid div by zero problems and 318 // ill-conditioning below. 319 if (length_squared(east) < MIN_VALID_CROSS_PRODUCT_MAG_SQ) { 320 return BAD_VALUE; 321 } 322 323 // If we have created an orthogonal magnetic field successfully, 324 // then pass it in as the update. 325 vec3_t north( cross_product(up, east) ); 326 327 const float l = 1 / length(north); 328 north *= l; 329 330 update(north, Bm, magSTDEV*l); 331 return NO_ERROR; 332 } 333 334 void Fusion::checkState() { 335 // P needs to stay positive semidefinite or the fusion diverges. When we 336 // detect divergence, we reset the fusion. 337 // TODO(braun): Instead, find the reason for the divergence and fix it. 338 339 if (!isPositiveSemidefinite(P[0][0], SYMMETRY_TOLERANCE) || 340 !isPositiveSemidefinite(P[1][1], SYMMETRY_TOLERANCE)) { 341 ALOGW("Sensor fusion diverged; resetting state."); 342 P = 0; 343 } 344 } 345 346 vec4_t Fusion::getAttitude() const { 347 return x0; 348 } 349 350 vec3_t Fusion::getBias() const { 351 return x1; 352 } 353 354 mat33_t Fusion::getRotationMatrix() const { 355 return quatToMatrix(x0); 356 } 357 358 mat34_t Fusion::getF(const vec4_t& q) { 359 mat34_t F; 360 361 // This is used to compute the derivative of q 362 // F = | [q.xyz]x | 363 // | -q.xyz | 364 365 F[0].x = q.w; F[1].x =-q.z; F[2].x = q.y; 366 F[0].y = q.z; F[1].y = q.w; F[2].y =-q.x; 367 F[0].z =-q.y; F[1].z = q.x; F[2].z = q.w; 368 F[0].w =-q.x; F[1].w =-q.y; F[2].w =-q.z; 369 return F; 370 } 371 372 void Fusion::predict(const vec3_t& w, float dT) { 373 const vec4_t q = x0; 374 const vec3_t b = x1; 375 const vec3_t we = w - b; 376 377 // q(k+1) = O(we)*q(k) 378 // -------------------- 379 // 380 // O(w) = | cos(0.5*||w||*dT)*I33 - [psi]x psi | 381 // | -psi' cos(0.5*||w||*dT) | 382 // 383 // psi = sin(0.5*||w||*dT)*w / ||w|| 384 // 385 // 386 // P(k+1) = Phi(k)*P(k)*Phi(k)' + G*Q(k)*G' 387 // ---------------------------------------- 388 // 389 // G = | -I33 0 | 390 // | 0 I33 | 391 // 392 // Phi = | Phi00 Phi10 | 393 // | 0 1 | 394 // 395 // Phi00 = I33 396 // - [w]x * sin(||w||*dt)/||w|| 397 // + [w]x^2 * (1-cos(||w||*dT))/||w||^2 398 // 399 // Phi10 = [w]x * (1 - cos(||w||*dt))/||w||^2 400 // - [w]x^2 * (||w||*dT - sin(||w||*dt))/||w||^3 401 // - I33*dT 402 403 const mat33_t I33(1); 404 const mat33_t I33dT(dT); 405 const mat33_t wx(crossMatrix(we, 0)); 406 const mat33_t wx2(wx*wx); 407 const float lwedT = length(we)*dT; 408 const float hlwedT = 0.5f*lwedT; 409 const float ilwe = 1/length(we); 410 const float k0 = (1-cosf(lwedT))*(ilwe*ilwe); 411 const float k1 = sinf(lwedT); 412 const float k2 = cosf(hlwedT); 413 const vec3_t psi(sinf(hlwedT)*ilwe*we); 414 const mat33_t O33(crossMatrix(-psi, k2)); 415 mat44_t O; 416 O[0].xyz = O33[0]; O[0].w = -psi.x; 417 O[1].xyz = O33[1]; O[1].w = -psi.y; 418 O[2].xyz = O33[2]; O[2].w = -psi.z; 419 O[3].xyz = psi; O[3].w = k2; 420 421 Phi[0][0] = I33 - wx*(k1*ilwe) + wx2*k0; 422 Phi[1][0] = wx*k0 - I33dT - wx2*(ilwe*ilwe*ilwe)*(lwedT-k1); 423 424 x0 = O*q; 425 if (x0.w < 0) 426 x0 = -x0; 427 428 P = Phi*P*transpose(Phi) + GQGt; 429 430 checkState(); 431 } 432 433 void Fusion::update(const vec3_t& z, const vec3_t& Bi, float sigma) { 434 vec4_t q(x0); 435 // measured vector in body space: h(p) = A(p)*Bi 436 const mat33_t A(quatToMatrix(q)); 437 const vec3_t Bb(A*Bi); 438 439 // Sensitivity matrix H = dh(p)/dp 440 // H = [ L 0 ] 441 const mat33_t L(crossMatrix(Bb, 0)); 442 443 // gain... 444 // K = P*Ht / [H*P*Ht + R] 445 vec<mat33_t, 2> K; 446 const mat33_t R(sigma*sigma); 447 const mat33_t S(scaleCovariance(L, P[0][0]) + R); 448 const mat33_t Si(invert(S)); 449 const mat33_t LtSi(transpose(L)*Si); 450 K[0] = P[0][0] * LtSi; 451 K[1] = transpose(P[1][0])*LtSi; 452 453 // update... 454 // P = (I-K*H) * P 455 // P -= K*H*P 456 // | K0 | * | L 0 | * P = | K0*L 0 | * | P00 P10 | = | K0*L*P00 K0*L*P10 | 457 // | K1 | | K1*L 0 | | P01 P11 | | K1*L*P00 K1*L*P10 | 458 // Note: the Joseph form is numerically more stable and given by: 459 // P = (I-KH) * P * (I-KH)' + K*R*R' 460 const mat33_t K0L(K[0] * L); 461 const mat33_t K1L(K[1] * L); 462 P[0][0] -= K0L*P[0][0]; 463 P[1][1] -= K1L*P[1][0]; 464 P[1][0] -= K0L*P[1][0]; 465 P[0][1] = transpose(P[1][0]); 466 467 const vec3_t e(z - Bb); 468 const vec3_t dq(K[0]*e); 469 const vec3_t db(K[1]*e); 470 471 q += getF(q)*(0.5f*dq); 472 x0 = normalize_quat(q); 473 x1 += db; 474 475 checkState(); 476 } 477 478 // ----------------------------------------------------------------------- 479 480 }; // namespace android 481 482