Home | History | Annotate | Download | only in Scalar
      1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Jump Threading pass.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Transforms/Scalar.h"
     15 #include "llvm/ADT/DenseMap.h"
     16 #include "llvm/ADT/DenseSet.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/SmallPtrSet.h"
     19 #include "llvm/ADT/SmallSet.h"
     20 #include "llvm/ADT/Statistic.h"
     21 #include "llvm/Analysis/CFG.h"
     22 #include "llvm/Analysis/ConstantFolding.h"
     23 #include "llvm/Analysis/InstructionSimplify.h"
     24 #include "llvm/Analysis/LazyValueInfo.h"
     25 #include "llvm/Analysis/Loads.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/IntrinsicInst.h"
     28 #include "llvm/IR/LLVMContext.h"
     29 #include "llvm/IR/ValueHandle.h"
     30 #include "llvm/Pass.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/raw_ostream.h"
     34 #include "llvm/Target/TargetLibraryInfo.h"
     35 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     36 #include "llvm/Transforms/Utils/Local.h"
     37 #include "llvm/Transforms/Utils/SSAUpdater.h"
     38 using namespace llvm;
     39 
     40 #define DEBUG_TYPE "jump-threading"
     41 
     42 STATISTIC(NumThreads, "Number of jumps threaded");
     43 STATISTIC(NumFolds,   "Number of terminators folded");
     44 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
     45 
     46 static cl::opt<unsigned>
     47 Threshold("jump-threading-threshold",
     48           cl::desc("Max block size to duplicate for jump threading"),
     49           cl::init(6), cl::Hidden);
     50 
     51 namespace {
     52   // These are at global scope so static functions can use them too.
     53   typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo;
     54   typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy;
     55 
     56   // This is used to keep track of what kind of constant we're currently hoping
     57   // to find.
     58   enum ConstantPreference {
     59     WantInteger,
     60     WantBlockAddress
     61   };
     62 
     63   /// This pass performs 'jump threading', which looks at blocks that have
     64   /// multiple predecessors and multiple successors.  If one or more of the
     65   /// predecessors of the block can be proven to always jump to one of the
     66   /// successors, we forward the edge from the predecessor to the successor by
     67   /// duplicating the contents of this block.
     68   ///
     69   /// An example of when this can occur is code like this:
     70   ///
     71   ///   if () { ...
     72   ///     X = 4;
     73   ///   }
     74   ///   if (X < 3) {
     75   ///
     76   /// In this case, the unconditional branch at the end of the first if can be
     77   /// revectored to the false side of the second if.
     78   ///
     79   class JumpThreading : public FunctionPass {
     80     const DataLayout *DL;
     81     TargetLibraryInfo *TLI;
     82     LazyValueInfo *LVI;
     83 #ifdef NDEBUG
     84     SmallPtrSet<BasicBlock*, 16> LoopHeaders;
     85 #else
     86     SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
     87 #endif
     88     DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
     89 
     90     // RAII helper for updating the recursion stack.
     91     struct RecursionSetRemover {
     92       DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
     93       std::pair<Value*, BasicBlock*> ThePair;
     94 
     95       RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
     96                           std::pair<Value*, BasicBlock*> P)
     97         : TheSet(S), ThePair(P) { }
     98 
     99       ~RecursionSetRemover() {
    100         TheSet.erase(ThePair);
    101       }
    102     };
    103   public:
    104     static char ID; // Pass identification
    105     JumpThreading() : FunctionPass(ID) {
    106       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
    107     }
    108 
    109     bool runOnFunction(Function &F) override;
    110 
    111     void getAnalysisUsage(AnalysisUsage &AU) const override {
    112       AU.addRequired<LazyValueInfo>();
    113       AU.addPreserved<LazyValueInfo>();
    114       AU.addRequired<TargetLibraryInfo>();
    115     }
    116 
    117     void FindLoopHeaders(Function &F);
    118     bool ProcessBlock(BasicBlock *BB);
    119     bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
    120                     BasicBlock *SuccBB);
    121     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
    122                                   const SmallVectorImpl<BasicBlock *> &PredBBs);
    123 
    124     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
    125                                          PredValueInfo &Result,
    126                                          ConstantPreference Preference);
    127     bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
    128                                 ConstantPreference Preference);
    129 
    130     bool ProcessBranchOnPHI(PHINode *PN);
    131     bool ProcessBranchOnXOR(BinaryOperator *BO);
    132 
    133     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
    134     bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB);
    135   };
    136 }
    137 
    138 char JumpThreading::ID = 0;
    139 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
    140                 "Jump Threading", false, false)
    141 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
    142 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
    143 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
    144                 "Jump Threading", false, false)
    145 
    146 // Public interface to the Jump Threading pass
    147 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
    148 
    149 /// runOnFunction - Top level algorithm.
    150 ///
    151 bool JumpThreading::runOnFunction(Function &F) {
    152   if (skipOptnoneFunction(F))
    153     return false;
    154 
    155   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
    156   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
    157   DL = DLP ? &DLP->getDataLayout() : nullptr;
    158   TLI = &getAnalysis<TargetLibraryInfo>();
    159   LVI = &getAnalysis<LazyValueInfo>();
    160 
    161   // Remove unreachable blocks from function as they may result in infinite
    162   // loop. We do threading if we found something profitable. Jump threading a
    163   // branch can create other opportunities. If these opportunities form a cycle
    164   // i.e. if any jump treading is undoing previous threading in the path, then
    165   // we will loop forever. We take care of this issue by not jump threading for
    166   // back edges. This works for normal cases but not for unreachable blocks as
    167   // they may have cycle with no back edge.
    168   removeUnreachableBlocks(F);
    169 
    170   FindLoopHeaders(F);
    171 
    172   bool Changed, EverChanged = false;
    173   do {
    174     Changed = false;
    175     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
    176       BasicBlock *BB = I;
    177       // Thread all of the branches we can over this block.
    178       while (ProcessBlock(BB))
    179         Changed = true;
    180 
    181       ++I;
    182 
    183       // If the block is trivially dead, zap it.  This eliminates the successor
    184       // edges which simplifies the CFG.
    185       if (pred_begin(BB) == pred_end(BB) &&
    186           BB != &BB->getParent()->getEntryBlock()) {
    187         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
    188               << "' with terminator: " << *BB->getTerminator() << '\n');
    189         LoopHeaders.erase(BB);
    190         LVI->eraseBlock(BB);
    191         DeleteDeadBlock(BB);
    192         Changed = true;
    193         continue;
    194       }
    195 
    196       BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
    197 
    198       // Can't thread an unconditional jump, but if the block is "almost
    199       // empty", we can replace uses of it with uses of the successor and make
    200       // this dead.
    201       if (BI && BI->isUnconditional() &&
    202           BB != &BB->getParent()->getEntryBlock() &&
    203           // If the terminator is the only non-phi instruction, try to nuke it.
    204           BB->getFirstNonPHIOrDbg()->isTerminator()) {
    205         // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
    206         // block, we have to make sure it isn't in the LoopHeaders set.  We
    207         // reinsert afterward if needed.
    208         bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
    209         BasicBlock *Succ = BI->getSuccessor(0);
    210 
    211         // FIXME: It is always conservatively correct to drop the info
    212         // for a block even if it doesn't get erased.  This isn't totally
    213         // awesome, but it allows us to use AssertingVH to prevent nasty
    214         // dangling pointer issues within LazyValueInfo.
    215         LVI->eraseBlock(BB);
    216         if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
    217           Changed = true;
    218           // If we deleted BB and BB was the header of a loop, then the
    219           // successor is now the header of the loop.
    220           BB = Succ;
    221         }
    222 
    223         if (ErasedFromLoopHeaders)
    224           LoopHeaders.insert(BB);
    225       }
    226     }
    227     EverChanged |= Changed;
    228   } while (Changed);
    229 
    230   LoopHeaders.clear();
    231   return EverChanged;
    232 }
    233 
    234 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
    235 /// thread across it. Stop scanning the block when passing the threshold.
    236 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
    237                                              unsigned Threshold) {
    238   /// Ignore PHI nodes, these will be flattened when duplication happens.
    239   BasicBlock::const_iterator I = BB->getFirstNonPHI();
    240 
    241   // FIXME: THREADING will delete values that are just used to compute the
    242   // branch, so they shouldn't count against the duplication cost.
    243 
    244   // Sum up the cost of each instruction until we get to the terminator.  Don't
    245   // include the terminator because the copy won't include it.
    246   unsigned Size = 0;
    247   for (; !isa<TerminatorInst>(I); ++I) {
    248 
    249     // Stop scanning the block if we've reached the threshold.
    250     if (Size > Threshold)
    251       return Size;
    252 
    253     // Debugger intrinsics don't incur code size.
    254     if (isa<DbgInfoIntrinsic>(I)) continue;
    255 
    256     // If this is a pointer->pointer bitcast, it is free.
    257     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
    258       continue;
    259 
    260     // All other instructions count for at least one unit.
    261     ++Size;
    262 
    263     // Calls are more expensive.  If they are non-intrinsic calls, we model them
    264     // as having cost of 4.  If they are a non-vector intrinsic, we model them
    265     // as having cost of 2 total, and if they are a vector intrinsic, we model
    266     // them as having cost 1.
    267     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
    268       if (CI->cannotDuplicate())
    269         // Blocks with NoDuplicate are modelled as having infinite cost, so they
    270         // are never duplicated.
    271         return ~0U;
    272       else if (!isa<IntrinsicInst>(CI))
    273         Size += 3;
    274       else if (!CI->getType()->isVectorTy())
    275         Size += 1;
    276     }
    277   }
    278 
    279   // Threading through a switch statement is particularly profitable.  If this
    280   // block ends in a switch, decrease its cost to make it more likely to happen.
    281   if (isa<SwitchInst>(I))
    282     Size = Size > 6 ? Size-6 : 0;
    283 
    284   // The same holds for indirect branches, but slightly more so.
    285   if (isa<IndirectBrInst>(I))
    286     Size = Size > 8 ? Size-8 : 0;
    287 
    288   return Size;
    289 }
    290 
    291 /// FindLoopHeaders - We do not want jump threading to turn proper loop
    292 /// structures into irreducible loops.  Doing this breaks up the loop nesting
    293 /// hierarchy and pessimizes later transformations.  To prevent this from
    294 /// happening, we first have to find the loop headers.  Here we approximate this
    295 /// by finding targets of backedges in the CFG.
    296 ///
    297 /// Note that there definitely are cases when we want to allow threading of
    298 /// edges across a loop header.  For example, threading a jump from outside the
    299 /// loop (the preheader) to an exit block of the loop is definitely profitable.
    300 /// It is also almost always profitable to thread backedges from within the loop
    301 /// to exit blocks, and is often profitable to thread backedges to other blocks
    302 /// within the loop (forming a nested loop).  This simple analysis is not rich
    303 /// enough to track all of these properties and keep it up-to-date as the CFG
    304 /// mutates, so we don't allow any of these transformations.
    305 ///
    306 void JumpThreading::FindLoopHeaders(Function &F) {
    307   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
    308   FindFunctionBackedges(F, Edges);
    309 
    310   for (unsigned i = 0, e = Edges.size(); i != e; ++i)
    311     LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
    312 }
    313 
    314 /// getKnownConstant - Helper method to determine if we can thread over a
    315 /// terminator with the given value as its condition, and if so what value to
    316 /// use for that. What kind of value this is depends on whether we want an
    317 /// integer or a block address, but an undef is always accepted.
    318 /// Returns null if Val is null or not an appropriate constant.
    319 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
    320   if (!Val)
    321     return nullptr;
    322 
    323   // Undef is "known" enough.
    324   if (UndefValue *U = dyn_cast<UndefValue>(Val))
    325     return U;
    326 
    327   if (Preference == WantBlockAddress)
    328     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
    329 
    330   return dyn_cast<ConstantInt>(Val);
    331 }
    332 
    333 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
    334 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
    335 /// in any of our predecessors.  If so, return the known list of value and pred
    336 /// BB in the result vector.
    337 ///
    338 /// This returns true if there were any known values.
    339 ///
    340 bool JumpThreading::
    341 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
    342                                 ConstantPreference Preference) {
    343   // This method walks up use-def chains recursively.  Because of this, we could
    344   // get into an infinite loop going around loops in the use-def chain.  To
    345   // prevent this, keep track of what (value, block) pairs we've already visited
    346   // and terminate the search if we loop back to them
    347   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
    348     return false;
    349 
    350   // An RAII help to remove this pair from the recursion set once the recursion
    351   // stack pops back out again.
    352   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
    353 
    354   // If V is a constant, then it is known in all predecessors.
    355   if (Constant *KC = getKnownConstant(V, Preference)) {
    356     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
    357       Result.push_back(std::make_pair(KC, *PI));
    358 
    359     return true;
    360   }
    361 
    362   // If V is a non-instruction value, or an instruction in a different block,
    363   // then it can't be derived from a PHI.
    364   Instruction *I = dyn_cast<Instruction>(V);
    365   if (!I || I->getParent() != BB) {
    366 
    367     // Okay, if this is a live-in value, see if it has a known value at the end
    368     // of any of our predecessors.
    369     //
    370     // FIXME: This should be an edge property, not a block end property.
    371     /// TODO: Per PR2563, we could infer value range information about a
    372     /// predecessor based on its terminator.
    373     //
    374     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
    375     // "I" is a non-local compare-with-a-constant instruction.  This would be
    376     // able to handle value inequalities better, for example if the compare is
    377     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
    378     // Perhaps getConstantOnEdge should be smart enough to do this?
    379 
    380     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    381       BasicBlock *P = *PI;
    382       // If the value is known by LazyValueInfo to be a constant in a
    383       // predecessor, use that information to try to thread this block.
    384       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
    385       if (Constant *KC = getKnownConstant(PredCst, Preference))
    386         Result.push_back(std::make_pair(KC, P));
    387     }
    388 
    389     return !Result.empty();
    390   }
    391 
    392   /// If I is a PHI node, then we know the incoming values for any constants.
    393   if (PHINode *PN = dyn_cast<PHINode>(I)) {
    394     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    395       Value *InVal = PN->getIncomingValue(i);
    396       if (Constant *KC = getKnownConstant(InVal, Preference)) {
    397         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
    398       } else {
    399         Constant *CI = LVI->getConstantOnEdge(InVal,
    400                                               PN->getIncomingBlock(i), BB);
    401         if (Constant *KC = getKnownConstant(CI, Preference))
    402           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
    403       }
    404     }
    405 
    406     return !Result.empty();
    407   }
    408 
    409   PredValueInfoTy LHSVals, RHSVals;
    410 
    411   // Handle some boolean conditions.
    412   if (I->getType()->getPrimitiveSizeInBits() == 1) {
    413     assert(Preference == WantInteger && "One-bit non-integer type?");
    414     // X | true -> true
    415     // X & false -> false
    416     if (I->getOpcode() == Instruction::Or ||
    417         I->getOpcode() == Instruction::And) {
    418       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
    419                                       WantInteger);
    420       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
    421                                       WantInteger);
    422 
    423       if (LHSVals.empty() && RHSVals.empty())
    424         return false;
    425 
    426       ConstantInt *InterestingVal;
    427       if (I->getOpcode() == Instruction::Or)
    428         InterestingVal = ConstantInt::getTrue(I->getContext());
    429       else
    430         InterestingVal = ConstantInt::getFalse(I->getContext());
    431 
    432       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
    433 
    434       // Scan for the sentinel.  If we find an undef, force it to the
    435       // interesting value: x|undef -> true and x&undef -> false.
    436       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
    437         if (LHSVals[i].first == InterestingVal ||
    438             isa<UndefValue>(LHSVals[i].first)) {
    439           Result.push_back(LHSVals[i]);
    440           Result.back().first = InterestingVal;
    441           LHSKnownBBs.insert(LHSVals[i].second);
    442         }
    443       for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
    444         if (RHSVals[i].first == InterestingVal ||
    445             isa<UndefValue>(RHSVals[i].first)) {
    446           // If we already inferred a value for this block on the LHS, don't
    447           // re-add it.
    448           if (!LHSKnownBBs.count(RHSVals[i].second)) {
    449             Result.push_back(RHSVals[i]);
    450             Result.back().first = InterestingVal;
    451           }
    452         }
    453 
    454       return !Result.empty();
    455     }
    456 
    457     // Handle the NOT form of XOR.
    458     if (I->getOpcode() == Instruction::Xor &&
    459         isa<ConstantInt>(I->getOperand(1)) &&
    460         cast<ConstantInt>(I->getOperand(1))->isOne()) {
    461       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
    462                                       WantInteger);
    463       if (Result.empty())
    464         return false;
    465 
    466       // Invert the known values.
    467       for (unsigned i = 0, e = Result.size(); i != e; ++i)
    468         Result[i].first = ConstantExpr::getNot(Result[i].first);
    469 
    470       return true;
    471     }
    472 
    473   // Try to simplify some other binary operator values.
    474   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
    475     assert(Preference != WantBlockAddress
    476             && "A binary operator creating a block address?");
    477     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
    478       PredValueInfoTy LHSVals;
    479       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
    480                                       WantInteger);
    481 
    482       // Try to use constant folding to simplify the binary operator.
    483       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
    484         Constant *V = LHSVals[i].first;
    485         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
    486 
    487         if (Constant *KC = getKnownConstant(Folded, WantInteger))
    488           Result.push_back(std::make_pair(KC, LHSVals[i].second));
    489       }
    490     }
    491 
    492     return !Result.empty();
    493   }
    494 
    495   // Handle compare with phi operand, where the PHI is defined in this block.
    496   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
    497     assert(Preference == WantInteger && "Compares only produce integers");
    498     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
    499     if (PN && PN->getParent() == BB) {
    500       // We can do this simplification if any comparisons fold to true or false.
    501       // See if any do.
    502       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    503         BasicBlock *PredBB = PN->getIncomingBlock(i);
    504         Value *LHS = PN->getIncomingValue(i);
    505         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
    506 
    507         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL);
    508         if (!Res) {
    509           if (!isa<Constant>(RHS))
    510             continue;
    511 
    512           LazyValueInfo::Tristate
    513             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
    514                                            cast<Constant>(RHS), PredBB, BB);
    515           if (ResT == LazyValueInfo::Unknown)
    516             continue;
    517           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
    518         }
    519 
    520         if (Constant *KC = getKnownConstant(Res, WantInteger))
    521           Result.push_back(std::make_pair(KC, PredBB));
    522       }
    523 
    524       return !Result.empty();
    525     }
    526 
    527 
    528     // If comparing a live-in value against a constant, see if we know the
    529     // live-in value on any predecessors.
    530     if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
    531       if (!isa<Instruction>(Cmp->getOperand(0)) ||
    532           cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
    533         Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
    534 
    535         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
    536           BasicBlock *P = *PI;
    537           // If the value is known by LazyValueInfo to be a constant in a
    538           // predecessor, use that information to try to thread this block.
    539           LazyValueInfo::Tristate Res =
    540             LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
    541                                     RHSCst, P, BB);
    542           if (Res == LazyValueInfo::Unknown)
    543             continue;
    544 
    545           Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
    546           Result.push_back(std::make_pair(ResC, P));
    547         }
    548 
    549         return !Result.empty();
    550       }
    551 
    552       // Try to find a constant value for the LHS of a comparison,
    553       // and evaluate it statically if we can.
    554       if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
    555         PredValueInfoTy LHSVals;
    556         ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
    557                                         WantInteger);
    558 
    559         for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
    560           Constant *V = LHSVals[i].first;
    561           Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
    562                                                       V, CmpConst);
    563           if (Constant *KC = getKnownConstant(Folded, WantInteger))
    564             Result.push_back(std::make_pair(KC, LHSVals[i].second));
    565         }
    566 
    567         return !Result.empty();
    568       }
    569     }
    570   }
    571 
    572   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
    573     // Handle select instructions where at least one operand is a known constant
    574     // and we can figure out the condition value for any predecessor block.
    575     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
    576     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
    577     PredValueInfoTy Conds;
    578     if ((TrueVal || FalseVal) &&
    579         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
    580                                         WantInteger)) {
    581       for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
    582         Constant *Cond = Conds[i].first;
    583 
    584         // Figure out what value to use for the condition.
    585         bool KnownCond;
    586         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
    587           // A known boolean.
    588           KnownCond = CI->isOne();
    589         } else {
    590           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
    591           // Either operand will do, so be sure to pick the one that's a known
    592           // constant.
    593           // FIXME: Do this more cleverly if both values are known constants?
    594           KnownCond = (TrueVal != nullptr);
    595         }
    596 
    597         // See if the select has a known constant value for this predecessor.
    598         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
    599           Result.push_back(std::make_pair(Val, Conds[i].second));
    600       }
    601 
    602       return !Result.empty();
    603     }
    604   }
    605 
    606   // If all else fails, see if LVI can figure out a constant value for us.
    607   Constant *CI = LVI->getConstant(V, BB);
    608   if (Constant *KC = getKnownConstant(CI, Preference)) {
    609     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
    610       Result.push_back(std::make_pair(KC, *PI));
    611   }
    612 
    613   return !Result.empty();
    614 }
    615 
    616 
    617 
    618 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
    619 /// in an undefined jump, decide which block is best to revector to.
    620 ///
    621 /// Since we can pick an arbitrary destination, we pick the successor with the
    622 /// fewest predecessors.  This should reduce the in-degree of the others.
    623 ///
    624 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
    625   TerminatorInst *BBTerm = BB->getTerminator();
    626   unsigned MinSucc = 0;
    627   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
    628   // Compute the successor with the minimum number of predecessors.
    629   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
    630   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
    631     TestBB = BBTerm->getSuccessor(i);
    632     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
    633     if (NumPreds < MinNumPreds) {
    634       MinSucc = i;
    635       MinNumPreds = NumPreds;
    636     }
    637   }
    638 
    639   return MinSucc;
    640 }
    641 
    642 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
    643   if (!BB->hasAddressTaken()) return false;
    644 
    645   // If the block has its address taken, it may be a tree of dead constants
    646   // hanging off of it.  These shouldn't keep the block alive.
    647   BlockAddress *BA = BlockAddress::get(BB);
    648   BA->removeDeadConstantUsers();
    649   return !BA->use_empty();
    650 }
    651 
    652 /// ProcessBlock - If there are any predecessors whose control can be threaded
    653 /// through to a successor, transform them now.
    654 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
    655   // If the block is trivially dead, just return and let the caller nuke it.
    656   // This simplifies other transformations.
    657   if (pred_begin(BB) == pred_end(BB) &&
    658       BB != &BB->getParent()->getEntryBlock())
    659     return false;
    660 
    661   // If this block has a single predecessor, and if that pred has a single
    662   // successor, merge the blocks.  This encourages recursive jump threading
    663   // because now the condition in this block can be threaded through
    664   // predecessors of our predecessor block.
    665   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
    666     if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
    667         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
    668       // If SinglePred was a loop header, BB becomes one.
    669       if (LoopHeaders.erase(SinglePred))
    670         LoopHeaders.insert(BB);
    671 
    672       // Remember if SinglePred was the entry block of the function.  If so, we
    673       // will need to move BB back to the entry position.
    674       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
    675       LVI->eraseBlock(SinglePred);
    676       MergeBasicBlockIntoOnlyPred(BB);
    677 
    678       if (isEntry && BB != &BB->getParent()->getEntryBlock())
    679         BB->moveBefore(&BB->getParent()->getEntryBlock());
    680       return true;
    681     }
    682   }
    683 
    684   // What kind of constant we're looking for.
    685   ConstantPreference Preference = WantInteger;
    686 
    687   // Look to see if the terminator is a conditional branch, switch or indirect
    688   // branch, if not we can't thread it.
    689   Value *Condition;
    690   Instruction *Terminator = BB->getTerminator();
    691   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
    692     // Can't thread an unconditional jump.
    693     if (BI->isUnconditional()) return false;
    694     Condition = BI->getCondition();
    695   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
    696     Condition = SI->getCondition();
    697   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
    698     // Can't thread indirect branch with no successors.
    699     if (IB->getNumSuccessors() == 0) return false;
    700     Condition = IB->getAddress()->stripPointerCasts();
    701     Preference = WantBlockAddress;
    702   } else {
    703     return false; // Must be an invoke.
    704   }
    705 
    706   // Run constant folding to see if we can reduce the condition to a simple
    707   // constant.
    708   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
    709     Value *SimpleVal = ConstantFoldInstruction(I, DL, TLI);
    710     if (SimpleVal) {
    711       I->replaceAllUsesWith(SimpleVal);
    712       I->eraseFromParent();
    713       Condition = SimpleVal;
    714     }
    715   }
    716 
    717   // If the terminator is branching on an undef, we can pick any of the
    718   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
    719   if (isa<UndefValue>(Condition)) {
    720     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
    721 
    722     // Fold the branch/switch.
    723     TerminatorInst *BBTerm = BB->getTerminator();
    724     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
    725       if (i == BestSucc) continue;
    726       BBTerm->getSuccessor(i)->removePredecessor(BB, true);
    727     }
    728 
    729     DEBUG(dbgs() << "  In block '" << BB->getName()
    730           << "' folding undef terminator: " << *BBTerm << '\n');
    731     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
    732     BBTerm->eraseFromParent();
    733     return true;
    734   }
    735 
    736   // If the terminator of this block is branching on a constant, simplify the
    737   // terminator to an unconditional branch.  This can occur due to threading in
    738   // other blocks.
    739   if (getKnownConstant(Condition, Preference)) {
    740     DEBUG(dbgs() << "  In block '" << BB->getName()
    741           << "' folding terminator: " << *BB->getTerminator() << '\n');
    742     ++NumFolds;
    743     ConstantFoldTerminator(BB, true);
    744     return true;
    745   }
    746 
    747   Instruction *CondInst = dyn_cast<Instruction>(Condition);
    748 
    749   // All the rest of our checks depend on the condition being an instruction.
    750   if (!CondInst) {
    751     // FIXME: Unify this with code below.
    752     if (ProcessThreadableEdges(Condition, BB, Preference))
    753       return true;
    754     return false;
    755   }
    756 
    757 
    758   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
    759     // For a comparison where the LHS is outside this block, it's possible
    760     // that we've branched on it before.  Used LVI to see if we can simplify
    761     // the branch based on that.
    762     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
    763     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
    764     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
    765     if (CondBr && CondConst && CondBr->isConditional() && PI != PE &&
    766         (!isa<Instruction>(CondCmp->getOperand(0)) ||
    767          cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
    768       // For predecessor edge, determine if the comparison is true or false
    769       // on that edge.  If they're all true or all false, we can simplify the
    770       // branch.
    771       // FIXME: We could handle mixed true/false by duplicating code.
    772       LazyValueInfo::Tristate Baseline =
    773         LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
    774                                 CondConst, *PI, BB);
    775       if (Baseline != LazyValueInfo::Unknown) {
    776         // Check that all remaining incoming values match the first one.
    777         while (++PI != PE) {
    778           LazyValueInfo::Tristate Ret =
    779             LVI->getPredicateOnEdge(CondCmp->getPredicate(),
    780                                     CondCmp->getOperand(0), CondConst, *PI, BB);
    781           if (Ret != Baseline) break;
    782         }
    783 
    784         // If we terminated early, then one of the values didn't match.
    785         if (PI == PE) {
    786           unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
    787           unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
    788           CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
    789           BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
    790           CondBr->eraseFromParent();
    791           return true;
    792         }
    793       }
    794 
    795     }
    796 
    797     if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB))
    798       return true;
    799   }
    800 
    801   // Check for some cases that are worth simplifying.  Right now we want to look
    802   // for loads that are used by a switch or by the condition for the branch.  If
    803   // we see one, check to see if it's partially redundant.  If so, insert a PHI
    804   // which can then be used to thread the values.
    805   //
    806   Value *SimplifyValue = CondInst;
    807   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
    808     if (isa<Constant>(CondCmp->getOperand(1)))
    809       SimplifyValue = CondCmp->getOperand(0);
    810 
    811   // TODO: There are other places where load PRE would be profitable, such as
    812   // more complex comparisons.
    813   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
    814     if (SimplifyPartiallyRedundantLoad(LI))
    815       return true;
    816 
    817 
    818   // Handle a variety of cases where we are branching on something derived from
    819   // a PHI node in the current block.  If we can prove that any predecessors
    820   // compute a predictable value based on a PHI node, thread those predecessors.
    821   //
    822   if (ProcessThreadableEdges(CondInst, BB, Preference))
    823     return true;
    824 
    825   // If this is an otherwise-unfoldable branch on a phi node in the current
    826   // block, see if we can simplify.
    827   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
    828     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
    829       return ProcessBranchOnPHI(PN);
    830 
    831 
    832   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
    833   if (CondInst->getOpcode() == Instruction::Xor &&
    834       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
    835     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
    836 
    837 
    838   // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
    839   // "(X == 4)", thread through this block.
    840 
    841   return false;
    842 }
    843 
    844 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
    845 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
    846 /// important optimization that encourages jump threading, and needs to be run
    847 /// interlaced with other jump threading tasks.
    848 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
    849   // Don't hack volatile/atomic loads.
    850   if (!LI->isSimple()) return false;
    851 
    852   // If the load is defined in a block with exactly one predecessor, it can't be
    853   // partially redundant.
    854   BasicBlock *LoadBB = LI->getParent();
    855   if (LoadBB->getSinglePredecessor())
    856     return false;
    857 
    858   // If the load is defined in a landing pad, it can't be partially redundant,
    859   // because the edges between the invoke and the landing pad cannot have other
    860   // instructions between them.
    861   if (LoadBB->isLandingPad())
    862     return false;
    863 
    864   Value *LoadedPtr = LI->getOperand(0);
    865 
    866   // If the loaded operand is defined in the LoadBB, it can't be available.
    867   // TODO: Could do simple PHI translation, that would be fun :)
    868   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
    869     if (PtrOp->getParent() == LoadBB)
    870       return false;
    871 
    872   // Scan a few instructions up from the load, to see if it is obviously live at
    873   // the entry to its block.
    874   BasicBlock::iterator BBIt = LI;
    875 
    876   if (Value *AvailableVal =
    877         FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
    878     // If the value if the load is locally available within the block, just use
    879     // it.  This frequently occurs for reg2mem'd allocas.
    880     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
    881 
    882     // If the returned value is the load itself, replace with an undef. This can
    883     // only happen in dead loops.
    884     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
    885     LI->replaceAllUsesWith(AvailableVal);
    886     LI->eraseFromParent();
    887     return true;
    888   }
    889 
    890   // Otherwise, if we scanned the whole block and got to the top of the block,
    891   // we know the block is locally transparent to the load.  If not, something
    892   // might clobber its value.
    893   if (BBIt != LoadBB->begin())
    894     return false;
    895 
    896   // If all of the loads and stores that feed the value have the same TBAA tag,
    897   // then we can propagate it onto any newly inserted loads.
    898   MDNode *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa);
    899 
    900   SmallPtrSet<BasicBlock*, 8> PredsScanned;
    901   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
    902   AvailablePredsTy AvailablePreds;
    903   BasicBlock *OneUnavailablePred = nullptr;
    904 
    905   // If we got here, the loaded value is transparent through to the start of the
    906   // block.  Check to see if it is available in any of the predecessor blocks.
    907   for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
    908        PI != PE; ++PI) {
    909     BasicBlock *PredBB = *PI;
    910 
    911     // If we already scanned this predecessor, skip it.
    912     if (!PredsScanned.insert(PredBB))
    913       continue;
    914 
    915     // Scan the predecessor to see if the value is available in the pred.
    916     BBIt = PredBB->end();
    917     MDNode *ThisTBAATag = nullptr;
    918     Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6,
    919                                                     nullptr, &ThisTBAATag);
    920     if (!PredAvailable) {
    921       OneUnavailablePred = PredBB;
    922       continue;
    923     }
    924 
    925     // If tbaa tags disagree or are not present, forget about them.
    926     if (TBAATag != ThisTBAATag) TBAATag = nullptr;
    927 
    928     // If so, this load is partially redundant.  Remember this info so that we
    929     // can create a PHI node.
    930     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
    931   }
    932 
    933   // If the loaded value isn't available in any predecessor, it isn't partially
    934   // redundant.
    935   if (AvailablePreds.empty()) return false;
    936 
    937   // Okay, the loaded value is available in at least one (and maybe all!)
    938   // predecessors.  If the value is unavailable in more than one unique
    939   // predecessor, we want to insert a merge block for those common predecessors.
    940   // This ensures that we only have to insert one reload, thus not increasing
    941   // code size.
    942   BasicBlock *UnavailablePred = nullptr;
    943 
    944   // If there is exactly one predecessor where the value is unavailable, the
    945   // already computed 'OneUnavailablePred' block is it.  If it ends in an
    946   // unconditional branch, we know that it isn't a critical edge.
    947   if (PredsScanned.size() == AvailablePreds.size()+1 &&
    948       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
    949     UnavailablePred = OneUnavailablePred;
    950   } else if (PredsScanned.size() != AvailablePreds.size()) {
    951     // Otherwise, we had multiple unavailable predecessors or we had a critical
    952     // edge from the one.
    953     SmallVector<BasicBlock*, 8> PredsToSplit;
    954     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
    955 
    956     for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
    957       AvailablePredSet.insert(AvailablePreds[i].first);
    958 
    959     // Add all the unavailable predecessors to the PredsToSplit list.
    960     for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
    961          PI != PE; ++PI) {
    962       BasicBlock *P = *PI;
    963       // If the predecessor is an indirect goto, we can't split the edge.
    964       if (isa<IndirectBrInst>(P->getTerminator()))
    965         return false;
    966 
    967       if (!AvailablePredSet.count(P))
    968         PredsToSplit.push_back(P);
    969     }
    970 
    971     // Split them out to their own block.
    972     UnavailablePred =
    973       SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split", this);
    974   }
    975 
    976   // If the value isn't available in all predecessors, then there will be
    977   // exactly one where it isn't available.  Insert a load on that edge and add
    978   // it to the AvailablePreds list.
    979   if (UnavailablePred) {
    980     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
    981            "Can't handle critical edge here!");
    982     LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
    983                                  LI->getAlignment(),
    984                                  UnavailablePred->getTerminator());
    985     NewVal->setDebugLoc(LI->getDebugLoc());
    986     if (TBAATag)
    987       NewVal->setMetadata(LLVMContext::MD_tbaa, TBAATag);
    988 
    989     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
    990   }
    991 
    992   // Now we know that each predecessor of this block has a value in
    993   // AvailablePreds, sort them for efficient access as we're walking the preds.
    994   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
    995 
    996   // Create a PHI node at the start of the block for the PRE'd load value.
    997   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
    998   PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
    999                                 LoadBB->begin());
   1000   PN->takeName(LI);
   1001   PN->setDebugLoc(LI->getDebugLoc());
   1002 
   1003   // Insert new entries into the PHI for each predecessor.  A single block may
   1004   // have multiple entries here.
   1005   for (pred_iterator PI = PB; PI != PE; ++PI) {
   1006     BasicBlock *P = *PI;
   1007     AvailablePredsTy::iterator I =
   1008       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
   1009                        std::make_pair(P, (Value*)nullptr));
   1010 
   1011     assert(I != AvailablePreds.end() && I->first == P &&
   1012            "Didn't find entry for predecessor!");
   1013 
   1014     PN->addIncoming(I->second, I->first);
   1015   }
   1016 
   1017   //cerr << "PRE: " << *LI << *PN << "\n";
   1018 
   1019   LI->replaceAllUsesWith(PN);
   1020   LI->eraseFromParent();
   1021 
   1022   return true;
   1023 }
   1024 
   1025 /// FindMostPopularDest - The specified list contains multiple possible
   1026 /// threadable destinations.  Pick the one that occurs the most frequently in
   1027 /// the list.
   1028 static BasicBlock *
   1029 FindMostPopularDest(BasicBlock *BB,
   1030                     const SmallVectorImpl<std::pair<BasicBlock*,
   1031                                   BasicBlock*> > &PredToDestList) {
   1032   assert(!PredToDestList.empty());
   1033 
   1034   // Determine popularity.  If there are multiple possible destinations, we
   1035   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
   1036   // blocks with known and real destinations to threading undef.  We'll handle
   1037   // them later if interesting.
   1038   DenseMap<BasicBlock*, unsigned> DestPopularity;
   1039   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
   1040     if (PredToDestList[i].second)
   1041       DestPopularity[PredToDestList[i].second]++;
   1042 
   1043   // Find the most popular dest.
   1044   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
   1045   BasicBlock *MostPopularDest = DPI->first;
   1046   unsigned Popularity = DPI->second;
   1047   SmallVector<BasicBlock*, 4> SamePopularity;
   1048 
   1049   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
   1050     // If the popularity of this entry isn't higher than the popularity we've
   1051     // seen so far, ignore it.
   1052     if (DPI->second < Popularity)
   1053       ; // ignore.
   1054     else if (DPI->second == Popularity) {
   1055       // If it is the same as what we've seen so far, keep track of it.
   1056       SamePopularity.push_back(DPI->first);
   1057     } else {
   1058       // If it is more popular, remember it.
   1059       SamePopularity.clear();
   1060       MostPopularDest = DPI->first;
   1061       Popularity = DPI->second;
   1062     }
   1063   }
   1064 
   1065   // Okay, now we know the most popular destination.  If there is more than one
   1066   // destination, we need to determine one.  This is arbitrary, but we need
   1067   // to make a deterministic decision.  Pick the first one that appears in the
   1068   // successor list.
   1069   if (!SamePopularity.empty()) {
   1070     SamePopularity.push_back(MostPopularDest);
   1071     TerminatorInst *TI = BB->getTerminator();
   1072     for (unsigned i = 0; ; ++i) {
   1073       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
   1074 
   1075       if (std::find(SamePopularity.begin(), SamePopularity.end(),
   1076                     TI->getSuccessor(i)) == SamePopularity.end())
   1077         continue;
   1078 
   1079       MostPopularDest = TI->getSuccessor(i);
   1080       break;
   1081     }
   1082   }
   1083 
   1084   // Okay, we have finally picked the most popular destination.
   1085   return MostPopularDest;
   1086 }
   1087 
   1088 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
   1089                                            ConstantPreference Preference) {
   1090   // If threading this would thread across a loop header, don't even try to
   1091   // thread the edge.
   1092   if (LoopHeaders.count(BB))
   1093     return false;
   1094 
   1095   PredValueInfoTy PredValues;
   1096   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference))
   1097     return false;
   1098 
   1099   assert(!PredValues.empty() &&
   1100          "ComputeValueKnownInPredecessors returned true with no values");
   1101 
   1102   DEBUG(dbgs() << "IN BB: " << *BB;
   1103         for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
   1104           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
   1105             << *PredValues[i].first
   1106             << " for pred '" << PredValues[i].second->getName() << "'.\n";
   1107         });
   1108 
   1109   // Decide what we want to thread through.  Convert our list of known values to
   1110   // a list of known destinations for each pred.  This also discards duplicate
   1111   // predecessors and keeps track of the undefined inputs (which are represented
   1112   // as a null dest in the PredToDestList).
   1113   SmallPtrSet<BasicBlock*, 16> SeenPreds;
   1114   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
   1115 
   1116   BasicBlock *OnlyDest = nullptr;
   1117   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
   1118 
   1119   for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
   1120     BasicBlock *Pred = PredValues[i].second;
   1121     if (!SeenPreds.insert(Pred))
   1122       continue;  // Duplicate predecessor entry.
   1123 
   1124     // If the predecessor ends with an indirect goto, we can't change its
   1125     // destination.
   1126     if (isa<IndirectBrInst>(Pred->getTerminator()))
   1127       continue;
   1128 
   1129     Constant *Val = PredValues[i].first;
   1130 
   1131     BasicBlock *DestBB;
   1132     if (isa<UndefValue>(Val))
   1133       DestBB = nullptr;
   1134     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
   1135       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
   1136     else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
   1137       DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
   1138     } else {
   1139       assert(isa<IndirectBrInst>(BB->getTerminator())
   1140               && "Unexpected terminator");
   1141       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
   1142     }
   1143 
   1144     // If we have exactly one destination, remember it for efficiency below.
   1145     if (PredToDestList.empty())
   1146       OnlyDest = DestBB;
   1147     else if (OnlyDest != DestBB)
   1148       OnlyDest = MultipleDestSentinel;
   1149 
   1150     PredToDestList.push_back(std::make_pair(Pred, DestBB));
   1151   }
   1152 
   1153   // If all edges were unthreadable, we fail.
   1154   if (PredToDestList.empty())
   1155     return false;
   1156 
   1157   // Determine which is the most common successor.  If we have many inputs and
   1158   // this block is a switch, we want to start by threading the batch that goes
   1159   // to the most popular destination first.  If we only know about one
   1160   // threadable destination (the common case) we can avoid this.
   1161   BasicBlock *MostPopularDest = OnlyDest;
   1162 
   1163   if (MostPopularDest == MultipleDestSentinel)
   1164     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
   1165 
   1166   // Now that we know what the most popular destination is, factor all
   1167   // predecessors that will jump to it into a single predecessor.
   1168   SmallVector<BasicBlock*, 16> PredsToFactor;
   1169   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
   1170     if (PredToDestList[i].second == MostPopularDest) {
   1171       BasicBlock *Pred = PredToDestList[i].first;
   1172 
   1173       // This predecessor may be a switch or something else that has multiple
   1174       // edges to the block.  Factor each of these edges by listing them
   1175       // according to # occurrences in PredsToFactor.
   1176       TerminatorInst *PredTI = Pred->getTerminator();
   1177       for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
   1178         if (PredTI->getSuccessor(i) == BB)
   1179           PredsToFactor.push_back(Pred);
   1180     }
   1181 
   1182   // If the threadable edges are branching on an undefined value, we get to pick
   1183   // the destination that these predecessors should get to.
   1184   if (!MostPopularDest)
   1185     MostPopularDest = BB->getTerminator()->
   1186                             getSuccessor(GetBestDestForJumpOnUndef(BB));
   1187 
   1188   // Ok, try to thread it!
   1189   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
   1190 }
   1191 
   1192 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
   1193 /// a PHI node in the current block.  See if there are any simplifications we
   1194 /// can do based on inputs to the phi node.
   1195 ///
   1196 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
   1197   BasicBlock *BB = PN->getParent();
   1198 
   1199   // TODO: We could make use of this to do it once for blocks with common PHI
   1200   // values.
   1201   SmallVector<BasicBlock*, 1> PredBBs;
   1202   PredBBs.resize(1);
   1203 
   1204   // If any of the predecessor blocks end in an unconditional branch, we can
   1205   // *duplicate* the conditional branch into that block in order to further
   1206   // encourage jump threading and to eliminate cases where we have branch on a
   1207   // phi of an icmp (branch on icmp is much better).
   1208   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1209     BasicBlock *PredBB = PN->getIncomingBlock(i);
   1210     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
   1211       if (PredBr->isUnconditional()) {
   1212         PredBBs[0] = PredBB;
   1213         // Try to duplicate BB into PredBB.
   1214         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
   1215           return true;
   1216       }
   1217   }
   1218 
   1219   return false;
   1220 }
   1221 
   1222 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
   1223 /// a xor instruction in the current block.  See if there are any
   1224 /// simplifications we can do based on inputs to the xor.
   1225 ///
   1226 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
   1227   BasicBlock *BB = BO->getParent();
   1228 
   1229   // If either the LHS or RHS of the xor is a constant, don't do this
   1230   // optimization.
   1231   if (isa<ConstantInt>(BO->getOperand(0)) ||
   1232       isa<ConstantInt>(BO->getOperand(1)))
   1233     return false;
   1234 
   1235   // If the first instruction in BB isn't a phi, we won't be able to infer
   1236   // anything special about any particular predecessor.
   1237   if (!isa<PHINode>(BB->front()))
   1238     return false;
   1239 
   1240   // If we have a xor as the branch input to this block, and we know that the
   1241   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
   1242   // the condition into the predecessor and fix that value to true, saving some
   1243   // logical ops on that path and encouraging other paths to simplify.
   1244   //
   1245   // This copies something like this:
   1246   //
   1247   //  BB:
   1248   //    %X = phi i1 [1],  [%X']
   1249   //    %Y = icmp eq i32 %A, %B
   1250   //    %Z = xor i1 %X, %Y
   1251   //    br i1 %Z, ...
   1252   //
   1253   // Into:
   1254   //  BB':
   1255   //    %Y = icmp ne i32 %A, %B
   1256   //    br i1 %Z, ...
   1257 
   1258   PredValueInfoTy XorOpValues;
   1259   bool isLHS = true;
   1260   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
   1261                                        WantInteger)) {
   1262     assert(XorOpValues.empty());
   1263     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
   1264                                          WantInteger))
   1265       return false;
   1266     isLHS = false;
   1267   }
   1268 
   1269   assert(!XorOpValues.empty() &&
   1270          "ComputeValueKnownInPredecessors returned true with no values");
   1271 
   1272   // Scan the information to see which is most popular: true or false.  The
   1273   // predecessors can be of the set true, false, or undef.
   1274   unsigned NumTrue = 0, NumFalse = 0;
   1275   for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
   1276     if (isa<UndefValue>(XorOpValues[i].first))
   1277       // Ignore undefs for the count.
   1278       continue;
   1279     if (cast<ConstantInt>(XorOpValues[i].first)->isZero())
   1280       ++NumFalse;
   1281     else
   1282       ++NumTrue;
   1283   }
   1284 
   1285   // Determine which value to split on, true, false, or undef if neither.
   1286   ConstantInt *SplitVal = nullptr;
   1287   if (NumTrue > NumFalse)
   1288     SplitVal = ConstantInt::getTrue(BB->getContext());
   1289   else if (NumTrue != 0 || NumFalse != 0)
   1290     SplitVal = ConstantInt::getFalse(BB->getContext());
   1291 
   1292   // Collect all of the blocks that this can be folded into so that we can
   1293   // factor this once and clone it once.
   1294   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
   1295   for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
   1296     if (XorOpValues[i].first != SplitVal &&
   1297         !isa<UndefValue>(XorOpValues[i].first))
   1298       continue;
   1299 
   1300     BlocksToFoldInto.push_back(XorOpValues[i].second);
   1301   }
   1302 
   1303   // If we inferred a value for all of the predecessors, then duplication won't
   1304   // help us.  However, we can just replace the LHS or RHS with the constant.
   1305   if (BlocksToFoldInto.size() ==
   1306       cast<PHINode>(BB->front()).getNumIncomingValues()) {
   1307     if (!SplitVal) {
   1308       // If all preds provide undef, just nuke the xor, because it is undef too.
   1309       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
   1310       BO->eraseFromParent();
   1311     } else if (SplitVal->isZero()) {
   1312       // If all preds provide 0, replace the xor with the other input.
   1313       BO->replaceAllUsesWith(BO->getOperand(isLHS));
   1314       BO->eraseFromParent();
   1315     } else {
   1316       // If all preds provide 1, set the computed value to 1.
   1317       BO->setOperand(!isLHS, SplitVal);
   1318     }
   1319 
   1320     return true;
   1321   }
   1322 
   1323   // Try to duplicate BB into PredBB.
   1324   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
   1325 }
   1326 
   1327 
   1328 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
   1329 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
   1330 /// NewPred using the entries from OldPred (suitably mapped).
   1331 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
   1332                                             BasicBlock *OldPred,
   1333                                             BasicBlock *NewPred,
   1334                                      DenseMap<Instruction*, Value*> &ValueMap) {
   1335   for (BasicBlock::iterator PNI = PHIBB->begin();
   1336        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
   1337     // Ok, we have a PHI node.  Figure out what the incoming value was for the
   1338     // DestBlock.
   1339     Value *IV = PN->getIncomingValueForBlock(OldPred);
   1340 
   1341     // Remap the value if necessary.
   1342     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
   1343       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
   1344       if (I != ValueMap.end())
   1345         IV = I->second;
   1346     }
   1347 
   1348     PN->addIncoming(IV, NewPred);
   1349   }
   1350 }
   1351 
   1352 /// ThreadEdge - We have decided that it is safe and profitable to factor the
   1353 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
   1354 /// across BB.  Transform the IR to reflect this change.
   1355 bool JumpThreading::ThreadEdge(BasicBlock *BB,
   1356                                const SmallVectorImpl<BasicBlock*> &PredBBs,
   1357                                BasicBlock *SuccBB) {
   1358   // If threading to the same block as we come from, we would infinite loop.
   1359   if (SuccBB == BB) {
   1360     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
   1361           << "' - would thread to self!\n");
   1362     return false;
   1363   }
   1364 
   1365   // If threading this would thread across a loop header, don't thread the edge.
   1366   // See the comments above FindLoopHeaders for justifications and caveats.
   1367   if (LoopHeaders.count(BB)) {
   1368     DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
   1369           << "' to dest BB '" << SuccBB->getName()
   1370           << "' - it might create an irreducible loop!\n");
   1371     return false;
   1372   }
   1373 
   1374   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, Threshold);
   1375   if (JumpThreadCost > Threshold) {
   1376     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
   1377           << "' - Cost is too high: " << JumpThreadCost << "\n");
   1378     return false;
   1379   }
   1380 
   1381   // And finally, do it!  Start by factoring the predecessors is needed.
   1382   BasicBlock *PredBB;
   1383   if (PredBBs.size() == 1)
   1384     PredBB = PredBBs[0];
   1385   else {
   1386     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
   1387           << " common predecessors.\n");
   1388     PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
   1389   }
   1390 
   1391   // And finally, do it!
   1392   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
   1393         << SuccBB->getName() << "' with cost: " << JumpThreadCost
   1394         << ", across block:\n    "
   1395         << *BB << "\n");
   1396 
   1397   LVI->threadEdge(PredBB, BB, SuccBB);
   1398 
   1399   // We are going to have to map operands from the original BB block to the new
   1400   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
   1401   // account for entry from PredBB.
   1402   DenseMap<Instruction*, Value*> ValueMapping;
   1403 
   1404   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
   1405                                          BB->getName()+".thread",
   1406                                          BB->getParent(), BB);
   1407   NewBB->moveAfter(PredBB);
   1408 
   1409   BasicBlock::iterator BI = BB->begin();
   1410   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
   1411     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
   1412 
   1413   // Clone the non-phi instructions of BB into NewBB, keeping track of the
   1414   // mapping and using it to remap operands in the cloned instructions.
   1415   for (; !isa<TerminatorInst>(BI); ++BI) {
   1416     Instruction *New = BI->clone();
   1417     New->setName(BI->getName());
   1418     NewBB->getInstList().push_back(New);
   1419     ValueMapping[BI] = New;
   1420 
   1421     // Remap operands to patch up intra-block references.
   1422     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
   1423       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
   1424         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
   1425         if (I != ValueMapping.end())
   1426           New->setOperand(i, I->second);
   1427       }
   1428   }
   1429 
   1430   // We didn't copy the terminator from BB over to NewBB, because there is now
   1431   // an unconditional jump to SuccBB.  Insert the unconditional jump.
   1432   BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB);
   1433   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
   1434 
   1435   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
   1436   // PHI nodes for NewBB now.
   1437   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
   1438 
   1439   // If there were values defined in BB that are used outside the block, then we
   1440   // now have to update all uses of the value to use either the original value,
   1441   // the cloned value, or some PHI derived value.  This can require arbitrary
   1442   // PHI insertion, of which we are prepared to do, clean these up now.
   1443   SSAUpdater SSAUpdate;
   1444   SmallVector<Use*, 16> UsesToRename;
   1445   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
   1446     // Scan all uses of this instruction to see if it is used outside of its
   1447     // block, and if so, record them in UsesToRename.
   1448     for (Use &U : I->uses()) {
   1449       Instruction *User = cast<Instruction>(U.getUser());
   1450       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
   1451         if (UserPN->getIncomingBlock(U) == BB)
   1452           continue;
   1453       } else if (User->getParent() == BB)
   1454         continue;
   1455 
   1456       UsesToRename.push_back(&U);
   1457     }
   1458 
   1459     // If there are no uses outside the block, we're done with this instruction.
   1460     if (UsesToRename.empty())
   1461       continue;
   1462 
   1463     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
   1464 
   1465     // We found a use of I outside of BB.  Rename all uses of I that are outside
   1466     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
   1467     // with the two values we know.
   1468     SSAUpdate.Initialize(I->getType(), I->getName());
   1469     SSAUpdate.AddAvailableValue(BB, I);
   1470     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
   1471 
   1472     while (!UsesToRename.empty())
   1473       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
   1474     DEBUG(dbgs() << "\n");
   1475   }
   1476 
   1477 
   1478   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
   1479   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
   1480   // us to simplify any PHI nodes in BB.
   1481   TerminatorInst *PredTerm = PredBB->getTerminator();
   1482   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
   1483     if (PredTerm->getSuccessor(i) == BB) {
   1484       BB->removePredecessor(PredBB, true);
   1485       PredTerm->setSuccessor(i, NewBB);
   1486     }
   1487 
   1488   // At this point, the IR is fully up to date and consistent.  Do a quick scan
   1489   // over the new instructions and zap any that are constants or dead.  This
   1490   // frequently happens because of phi translation.
   1491   SimplifyInstructionsInBlock(NewBB, DL, TLI);
   1492 
   1493   // Threaded an edge!
   1494   ++NumThreads;
   1495   return true;
   1496 }
   1497 
   1498 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
   1499 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
   1500 /// If we can duplicate the contents of BB up into PredBB do so now, this
   1501 /// improves the odds that the branch will be on an analyzable instruction like
   1502 /// a compare.
   1503 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
   1504                                  const SmallVectorImpl<BasicBlock *> &PredBBs) {
   1505   assert(!PredBBs.empty() && "Can't handle an empty set");
   1506 
   1507   // If BB is a loop header, then duplicating this block outside the loop would
   1508   // cause us to transform this into an irreducible loop, don't do this.
   1509   // See the comments above FindLoopHeaders for justifications and caveats.
   1510   if (LoopHeaders.count(BB)) {
   1511     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
   1512           << "' into predecessor block '" << PredBBs[0]->getName()
   1513           << "' - it might create an irreducible loop!\n");
   1514     return false;
   1515   }
   1516 
   1517   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, Threshold);
   1518   if (DuplicationCost > Threshold) {
   1519     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
   1520           << "' - Cost is too high: " << DuplicationCost << "\n");
   1521     return false;
   1522   }
   1523 
   1524   // And finally, do it!  Start by factoring the predecessors is needed.
   1525   BasicBlock *PredBB;
   1526   if (PredBBs.size() == 1)
   1527     PredBB = PredBBs[0];
   1528   else {
   1529     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
   1530           << " common predecessors.\n");
   1531     PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
   1532   }
   1533 
   1534   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
   1535   // of PredBB.
   1536   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
   1537         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
   1538         << DuplicationCost << " block is:" << *BB << "\n");
   1539 
   1540   // Unless PredBB ends with an unconditional branch, split the edge so that we
   1541   // can just clone the bits from BB into the end of the new PredBB.
   1542   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
   1543 
   1544   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
   1545     PredBB = SplitEdge(PredBB, BB, this);
   1546     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
   1547   }
   1548 
   1549   // We are going to have to map operands from the original BB block into the
   1550   // PredBB block.  Evaluate PHI nodes in BB.
   1551   DenseMap<Instruction*, Value*> ValueMapping;
   1552 
   1553   BasicBlock::iterator BI = BB->begin();
   1554   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
   1555     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
   1556 
   1557   // Clone the non-phi instructions of BB into PredBB, keeping track of the
   1558   // mapping and using it to remap operands in the cloned instructions.
   1559   for (; BI != BB->end(); ++BI) {
   1560     Instruction *New = BI->clone();
   1561 
   1562     // Remap operands to patch up intra-block references.
   1563     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
   1564       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
   1565         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
   1566         if (I != ValueMapping.end())
   1567           New->setOperand(i, I->second);
   1568       }
   1569 
   1570     // If this instruction can be simplified after the operands are updated,
   1571     // just use the simplified value instead.  This frequently happens due to
   1572     // phi translation.
   1573     if (Value *IV = SimplifyInstruction(New, DL)) {
   1574       delete New;
   1575       ValueMapping[BI] = IV;
   1576     } else {
   1577       // Otherwise, insert the new instruction into the block.
   1578       New->setName(BI->getName());
   1579       PredBB->getInstList().insert(OldPredBranch, New);
   1580       ValueMapping[BI] = New;
   1581     }
   1582   }
   1583 
   1584   // Check to see if the targets of the branch had PHI nodes. If so, we need to
   1585   // add entries to the PHI nodes for branch from PredBB now.
   1586   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
   1587   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
   1588                                   ValueMapping);
   1589   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
   1590                                   ValueMapping);
   1591 
   1592   // If there were values defined in BB that are used outside the block, then we
   1593   // now have to update all uses of the value to use either the original value,
   1594   // the cloned value, or some PHI derived value.  This can require arbitrary
   1595   // PHI insertion, of which we are prepared to do, clean these up now.
   1596   SSAUpdater SSAUpdate;
   1597   SmallVector<Use*, 16> UsesToRename;
   1598   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
   1599     // Scan all uses of this instruction to see if it is used outside of its
   1600     // block, and if so, record them in UsesToRename.
   1601     for (Use &U : I->uses()) {
   1602       Instruction *User = cast<Instruction>(U.getUser());
   1603       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
   1604         if (UserPN->getIncomingBlock(U) == BB)
   1605           continue;
   1606       } else if (User->getParent() == BB)
   1607         continue;
   1608 
   1609       UsesToRename.push_back(&U);
   1610     }
   1611 
   1612     // If there are no uses outside the block, we're done with this instruction.
   1613     if (UsesToRename.empty())
   1614       continue;
   1615 
   1616     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
   1617 
   1618     // We found a use of I outside of BB.  Rename all uses of I that are outside
   1619     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
   1620     // with the two values we know.
   1621     SSAUpdate.Initialize(I->getType(), I->getName());
   1622     SSAUpdate.AddAvailableValue(BB, I);
   1623     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
   1624 
   1625     while (!UsesToRename.empty())
   1626       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
   1627     DEBUG(dbgs() << "\n");
   1628   }
   1629 
   1630   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
   1631   // that we nuked.
   1632   BB->removePredecessor(PredBB, true);
   1633 
   1634   // Remove the unconditional branch at the end of the PredBB block.
   1635   OldPredBranch->eraseFromParent();
   1636 
   1637   ++NumDupes;
   1638   return true;
   1639 }
   1640 
   1641 /// TryToUnfoldSelect - Look for blocks of the form
   1642 /// bb1:
   1643 ///   %a = select
   1644 ///   br bb
   1645 ///
   1646 /// bb2:
   1647 ///   %p = phi [%a, %bb] ...
   1648 ///   %c = icmp %p
   1649 ///   br i1 %c
   1650 ///
   1651 /// And expand the select into a branch structure if one of its arms allows %c
   1652 /// to be folded. This later enables threading from bb1 over bb2.
   1653 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
   1654   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
   1655   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
   1656   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
   1657 
   1658   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
   1659       CondLHS->getParent() != BB)
   1660     return false;
   1661 
   1662   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
   1663     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
   1664     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
   1665 
   1666     // Look if one of the incoming values is a select in the corresponding
   1667     // predecessor.
   1668     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
   1669       continue;
   1670 
   1671     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
   1672     if (!PredTerm || !PredTerm->isUnconditional())
   1673       continue;
   1674 
   1675     // Now check if one of the select values would allow us to constant fold the
   1676     // terminator in BB. We don't do the transform if both sides fold, those
   1677     // cases will be threaded in any case.
   1678     LazyValueInfo::Tristate LHSFolds =
   1679         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
   1680                                 CondRHS, Pred, BB);
   1681     LazyValueInfo::Tristate RHSFolds =
   1682         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
   1683                                 CondRHS, Pred, BB);
   1684     if ((LHSFolds != LazyValueInfo::Unknown ||
   1685          RHSFolds != LazyValueInfo::Unknown) &&
   1686         LHSFolds != RHSFolds) {
   1687       // Expand the select.
   1688       //
   1689       // Pred --
   1690       //  |    v
   1691       //  |  NewBB
   1692       //  |    |
   1693       //  |-----
   1694       //  v
   1695       // BB
   1696       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
   1697                                              BB->getParent(), BB);
   1698       // Move the unconditional branch to NewBB.
   1699       PredTerm->removeFromParent();
   1700       NewBB->getInstList().insert(NewBB->end(), PredTerm);
   1701       // Create a conditional branch and update PHI nodes.
   1702       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
   1703       CondLHS->setIncomingValue(I, SI->getFalseValue());
   1704       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
   1705       // The select is now dead.
   1706       SI->eraseFromParent();
   1707 
   1708       // Update any other PHI nodes in BB.
   1709       for (BasicBlock::iterator BI = BB->begin();
   1710            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
   1711         if (Phi != CondLHS)
   1712           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
   1713       return true;
   1714     }
   1715   }
   1716   return false;
   1717 }
   1718