Home | History | Annotate | Download | only in message_loop
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_
      6 #define BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_
      7 
      8 #include <windows.h>
      9 
     10 #include <list>
     11 
     12 #include "base/base_export.h"
     13 #include "base/basictypes.h"
     14 #include "base/message_loop/message_pump.h"
     15 #include "base/message_loop/message_pump_dispatcher.h"
     16 #include "base/observer_list.h"
     17 #include "base/time/time.h"
     18 #include "base/win/scoped_handle.h"
     19 
     20 namespace base {
     21 
     22 // MessagePumpWin serves as the base for specialized versions of the MessagePump
     23 // for Windows. It provides basic functionality like handling of observers and
     24 // controlling the lifetime of the message pump.
     25 class BASE_EXPORT MessagePumpWin : public MessagePump {
     26  public:
     27   MessagePumpWin() : have_work_(0), state_(NULL) {}
     28   virtual ~MessagePumpWin() {}
     29 
     30   // Like MessagePump::Run, but MSG objects are routed through dispatcher.
     31   void RunWithDispatcher(Delegate* delegate, MessagePumpDispatcher* dispatcher);
     32 
     33   // MessagePump methods:
     34   virtual void Run(Delegate* delegate) { RunWithDispatcher(delegate, NULL); }
     35   virtual void Quit();
     36 
     37  protected:
     38   struct RunState {
     39     Delegate* delegate;
     40     MessagePumpDispatcher* dispatcher;
     41 
     42     // Used to flag that the current Run() invocation should return ASAP.
     43     bool should_quit;
     44 
     45     // Used to count how many Run() invocations are on the stack.
     46     int run_depth;
     47   };
     48 
     49   virtual void DoRunLoop() = 0;
     50   int GetCurrentDelay() const;
     51 
     52   // The time at which delayed work should run.
     53   TimeTicks delayed_work_time_;
     54 
     55   // A boolean value used to indicate if there is a kMsgDoWork message pending
     56   // in the Windows Message queue.  There is at most one such message, and it
     57   // can drive execution of tasks when a native message pump is running.
     58   LONG have_work_;
     59 
     60   // State for the current invocation of Run.
     61   RunState* state_;
     62 };
     63 
     64 //-----------------------------------------------------------------------------
     65 // MessagePumpForUI extends MessagePumpWin with methods that are particular to a
     66 // MessageLoop instantiated with TYPE_UI.
     67 //
     68 // MessagePumpForUI implements a "traditional" Windows message pump. It contains
     69 // a nearly infinite loop that peeks out messages, and then dispatches them.
     70 // Intermixed with those peeks are callouts to DoWork for pending tasks, and
     71 // DoDelayedWork for pending timers. When there are no events to be serviced,
     72 // this pump goes into a wait state. In most cases, this message pump handles
     73 // all processing.
     74 //
     75 // However, when a task, or windows event, invokes on the stack a native dialog
     76 // box or such, that window typically provides a bare bones (native?) message
     77 // pump.  That bare-bones message pump generally supports little more than a
     78 // peek of the Windows message queue, followed by a dispatch of the peeked
     79 // message.  MessageLoop extends that bare-bones message pump to also service
     80 // Tasks, at the cost of some complexity.
     81 //
     82 // The basic structure of the extension (refered to as a sub-pump) is that a
     83 // special message, kMsgHaveWork, is repeatedly injected into the Windows
     84 // Message queue.  Each time the kMsgHaveWork message is peeked, checks are
     85 // made for an extended set of events, including the availability of Tasks to
     86 // run.
     87 //
     88 // After running a task, the special message kMsgHaveWork is again posted to
     89 // the Windows Message queue, ensuring a future time slice for processing a
     90 // future event.  To prevent flooding the Windows Message queue, care is taken
     91 // to be sure that at most one kMsgHaveWork message is EVER pending in the
     92 // Window's Message queue.
     93 //
     94 // There are a few additional complexities in this system where, when there are
     95 // no Tasks to run, this otherwise infinite stream of messages which drives the
     96 // sub-pump is halted.  The pump is automatically re-started when Tasks are
     97 // queued.
     98 //
     99 // A second complexity is that the presence of this stream of posted tasks may
    100 // prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER.
    101 // Such paint and timer events always give priority to a posted message, such as
    102 // kMsgHaveWork messages.  As a result, care is taken to do some peeking in
    103 // between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork
    104 // is peeked, and before a replacement kMsgHaveWork is posted).
    105 //
    106 // NOTE: Although it may seem odd that messages are used to start and stop this
    107 // flow (as opposed to signaling objects, etc.), it should be understood that
    108 // the native message pump will *only* respond to messages.  As a result, it is
    109 // an excellent choice.  It is also helpful that the starter messages that are
    110 // placed in the queue when new task arrive also awakens DoRunLoop.
    111 //
    112 class BASE_EXPORT MessagePumpForUI : public MessagePumpWin {
    113  public:
    114   // The application-defined code passed to the hook procedure.
    115   static const int kMessageFilterCode = 0x5001;
    116 
    117   MessagePumpForUI();
    118   virtual ~MessagePumpForUI();
    119 
    120   // MessagePump methods:
    121   virtual void ScheduleWork();
    122   virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time);
    123 
    124  private:
    125   static LRESULT CALLBACK WndProcThunk(HWND window_handle,
    126                                        UINT message,
    127                                        WPARAM wparam,
    128                                        LPARAM lparam);
    129   virtual void DoRunLoop();
    130   void InitMessageWnd();
    131   void WaitForWork();
    132   void HandleWorkMessage();
    133   void HandleTimerMessage();
    134   bool ProcessNextWindowsMessage();
    135   bool ProcessMessageHelper(const MSG& msg);
    136   bool ProcessPumpReplacementMessage();
    137 
    138   // Atom representing the registered window class.
    139   ATOM atom_;
    140 
    141   // A hidden message-only window.
    142   HWND message_hwnd_;
    143 };
    144 
    145 //-----------------------------------------------------------------------------
    146 // MessagePumpForIO extends MessagePumpWin with methods that are particular to a
    147 // MessageLoop instantiated with TYPE_IO. This version of MessagePump does not
    148 // deal with Windows mesagges, and instead has a Run loop based on Completion
    149 // Ports so it is better suited for IO operations.
    150 //
    151 class BASE_EXPORT MessagePumpForIO : public MessagePumpWin {
    152  public:
    153   struct IOContext;
    154 
    155   // Clients interested in receiving OS notifications when asynchronous IO
    156   // operations complete should implement this interface and register themselves
    157   // with the message pump.
    158   //
    159   // Typical use #1:
    160   //   // Use only when there are no user's buffers involved on the actual IO,
    161   //   // so that all the cleanup can be done by the message pump.
    162   //   class MyFile : public IOHandler {
    163   //     MyFile() {
    164   //       ...
    165   //       context_ = new IOContext;
    166   //       context_->handler = this;
    167   //       message_pump->RegisterIOHandler(file_, this);
    168   //     }
    169   //     ~MyFile() {
    170   //       if (pending_) {
    171   //         // By setting the handler to NULL, we're asking for this context
    172   //         // to be deleted when received, without calling back to us.
    173   //         context_->handler = NULL;
    174   //       } else {
    175   //         delete context_;
    176   //      }
    177   //     }
    178   //     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
    179   //                                DWORD error) {
    180   //         pending_ = false;
    181   //     }
    182   //     void DoSomeIo() {
    183   //       ...
    184   //       // The only buffer required for this operation is the overlapped
    185   //       // structure.
    186   //       ConnectNamedPipe(file_, &context_->overlapped);
    187   //       pending_ = true;
    188   //     }
    189   //     bool pending_;
    190   //     IOContext* context_;
    191   //     HANDLE file_;
    192   //   };
    193   //
    194   // Typical use #2:
    195   //   class MyFile : public IOHandler {
    196   //     MyFile() {
    197   //       ...
    198   //       message_pump->RegisterIOHandler(file_, this);
    199   //     }
    200   //     // Plus some code to make sure that this destructor is not called
    201   //     // while there are pending IO operations.
    202   //     ~MyFile() {
    203   //     }
    204   //     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
    205   //                                DWORD error) {
    206   //       ...
    207   //       delete context;
    208   //     }
    209   //     void DoSomeIo() {
    210   //       ...
    211   //       IOContext* context = new IOContext;
    212   //       // This is not used for anything. It just prevents the context from
    213   //       // being considered "abandoned".
    214   //       context->handler = this;
    215   //       ReadFile(file_, buffer, num_bytes, &read, &context->overlapped);
    216   //     }
    217   //     HANDLE file_;
    218   //   };
    219   //
    220   // Typical use #3:
    221   // Same as the previous example, except that in order to deal with the
    222   // requirement stated for the destructor, the class calls WaitForIOCompletion
    223   // from the destructor to block until all IO finishes.
    224   //     ~MyFile() {
    225   //       while(pending_)
    226   //         message_pump->WaitForIOCompletion(INFINITE, this);
    227   //     }
    228   //
    229   class IOHandler {
    230    public:
    231     virtual ~IOHandler() {}
    232     // This will be called once the pending IO operation associated with
    233     // |context| completes. |error| is the Win32 error code of the IO operation
    234     // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero
    235     // on error.
    236     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
    237                                DWORD error) = 0;
    238   };
    239 
    240   // An IOObserver is an object that receives IO notifications from the
    241   // MessagePump.
    242   //
    243   // NOTE: An IOObserver implementation should be extremely fast!
    244   class IOObserver {
    245    public:
    246     IOObserver() {}
    247 
    248     virtual void WillProcessIOEvent() = 0;
    249     virtual void DidProcessIOEvent() = 0;
    250 
    251    protected:
    252     virtual ~IOObserver() {}
    253   };
    254 
    255   // The extended context that should be used as the base structure on every
    256   // overlapped IO operation. |handler| must be set to the registered IOHandler
    257   // for the given file when the operation is started, and it can be set to NULL
    258   // before the operation completes to indicate that the handler should not be
    259   // called anymore, and instead, the IOContext should be deleted when the OS
    260   // notifies the completion of this operation. Please remember that any buffers
    261   // involved with an IO operation should be around until the callback is
    262   // received, so this technique can only be used for IO that do not involve
    263   // additional buffers (other than the overlapped structure itself).
    264   struct IOContext {
    265     OVERLAPPED overlapped;
    266     IOHandler* handler;
    267   };
    268 
    269   MessagePumpForIO();
    270   virtual ~MessagePumpForIO() {}
    271 
    272   // MessagePump methods:
    273   virtual void ScheduleWork();
    274   virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time);
    275 
    276   // Register the handler to be used when asynchronous IO for the given file
    277   // completes. The registration persists as long as |file_handle| is valid, so
    278   // |handler| must be valid as long as there is pending IO for the given file.
    279   void RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
    280 
    281   // Register the handler to be used to process job events. The registration
    282   // persists as long as the job object is live, so |handler| must be valid
    283   // until the job object is destroyed. Returns true if the registration
    284   // succeeded, and false otherwise.
    285   bool RegisterJobObject(HANDLE job_handle, IOHandler* handler);
    286 
    287   // Waits for the next IO completion that should be processed by |filter|, for
    288   // up to |timeout| milliseconds. Return true if any IO operation completed,
    289   // regardless of the involved handler, and false if the timeout expired. If
    290   // the completion port received any message and the involved IO handler
    291   // matches |filter|, the callback is called before returning from this code;
    292   // if the handler is not the one that we are looking for, the callback will
    293   // be postponed for another time, so reentrancy problems can be avoided.
    294   // External use of this method should be reserved for the rare case when the
    295   // caller is willing to allow pausing regular task dispatching on this thread.
    296   bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
    297 
    298   void AddIOObserver(IOObserver* obs);
    299   void RemoveIOObserver(IOObserver* obs);
    300 
    301  private:
    302   struct IOItem {
    303     IOHandler* handler;
    304     IOContext* context;
    305     DWORD bytes_transfered;
    306     DWORD error;
    307 
    308     // In some cases |context| can be a non-pointer value casted to a pointer.
    309     // |has_valid_io_context| is true if |context| is a valid IOContext
    310     // pointer, and false otherwise.
    311     bool has_valid_io_context;
    312   };
    313 
    314   virtual void DoRunLoop();
    315   void WaitForWork();
    316   bool MatchCompletedIOItem(IOHandler* filter, IOItem* item);
    317   bool GetIOItem(DWORD timeout, IOItem* item);
    318   bool ProcessInternalIOItem(const IOItem& item);
    319   void WillProcessIOEvent();
    320   void DidProcessIOEvent();
    321 
    322   // Converts an IOHandler pointer to a completion port key.
    323   // |has_valid_io_context| specifies whether completion packets posted to
    324   // |handler| will have valid OVERLAPPED pointers.
    325   static ULONG_PTR HandlerToKey(IOHandler* handler, bool has_valid_io_context);
    326 
    327   // Converts a completion port key to an IOHandler pointer.
    328   static IOHandler* KeyToHandler(ULONG_PTR key, bool* has_valid_io_context);
    329 
    330   // The completion port associated with this thread.
    331   win::ScopedHandle port_;
    332   // This list will be empty almost always. It stores IO completions that have
    333   // not been delivered yet because somebody was doing cleanup.
    334   std::list<IOItem> completed_io_;
    335 
    336   ObserverList<IOObserver> io_observers_;
    337 };
    338 
    339 }  // namespace base
    340 
    341 #endif  // BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_
    342