1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_RUNTIME_UTILS_H_ 18 #define ART_RUNTIME_UTILS_H_ 19 20 #include <pthread.h> 21 22 #include <limits> 23 #include <memory> 24 #include <string> 25 #include <vector> 26 27 #include "base/logging.h" 28 #include "base/mutex.h" 29 #include "globals.h" 30 #include "instruction_set.h" 31 #include "primitive.h" 32 33 #ifdef HAVE_ANDROID_OS 34 #include "cutils/properties.h" 35 #endif 36 37 namespace art { 38 39 class DexFile; 40 41 namespace mirror { 42 class ArtField; 43 class ArtMethod; 44 class Class; 45 class Object; 46 class String; 47 } // namespace mirror 48 49 enum TimeUnit { 50 kTimeUnitNanosecond, 51 kTimeUnitMicrosecond, 52 kTimeUnitMillisecond, 53 kTimeUnitSecond, 54 }; 55 56 template <typename T> 57 bool ParseUint(const char *in, T* out) { 58 char* end; 59 unsigned long long int result = strtoull(in, &end, 0); // NOLINT(runtime/int) 60 if (in == end || *end != '\0') { 61 return false; 62 } 63 if (std::numeric_limits<T>::max() < result) { 64 return false; 65 } 66 *out = static_cast<T>(result); 67 return true; 68 } 69 70 template <typename T> 71 bool ParseInt(const char* in, T* out) { 72 char* end; 73 long long int result = strtoll(in, &end, 0); // NOLINT(runtime/int) 74 if (in == end || *end != '\0') { 75 return false; 76 } 77 if (result < std::numeric_limits<T>::min() || std::numeric_limits<T>::max() < result) { 78 return false; 79 } 80 *out = static_cast<T>(result); 81 return true; 82 } 83 84 template<typename T> 85 static constexpr bool IsPowerOfTwo(T x) { 86 return (x & (x - 1)) == 0; 87 } 88 89 template<int n, typename T> 90 static inline bool IsAligned(T x) { 91 COMPILE_ASSERT((n & (n - 1)) == 0, n_not_power_of_two); 92 return (x & (n - 1)) == 0; 93 } 94 95 template<int n, typename T> 96 static inline bool IsAligned(T* x) { 97 return IsAligned<n>(reinterpret_cast<const uintptr_t>(x)); 98 } 99 100 template<typename T> 101 static inline bool IsAlignedParam(T x, int n) { 102 return (x & (n - 1)) == 0; 103 } 104 105 #define CHECK_ALIGNED(value, alignment) \ 106 CHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value) 107 108 #define DCHECK_ALIGNED(value, alignment) \ 109 DCHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value) 110 111 #define DCHECK_ALIGNED_PARAM(value, alignment) \ 112 DCHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value) 113 114 // Check whether an N-bit two's-complement representation can hold value. 115 static inline bool IsInt(int N, word value) { 116 CHECK_LT(0, N); 117 CHECK_LT(N, kBitsPerWord); 118 word limit = static_cast<word>(1) << (N - 1); 119 return (-limit <= value) && (value < limit); 120 } 121 122 static inline bool IsUint(int N, word value) { 123 CHECK_LT(0, N); 124 CHECK_LT(N, kBitsPerWord); 125 word limit = static_cast<word>(1) << N; 126 return (0 <= value) && (value < limit); 127 } 128 129 static inline bool IsAbsoluteUint(int N, word value) { 130 CHECK_LT(0, N); 131 CHECK_LT(N, kBitsPerWord); 132 if (value < 0) value = -value; 133 return IsUint(N, value); 134 } 135 136 static inline uint16_t Low16Bits(uint32_t value) { 137 return static_cast<uint16_t>(value); 138 } 139 140 static inline uint16_t High16Bits(uint32_t value) { 141 return static_cast<uint16_t>(value >> 16); 142 } 143 144 static inline uint32_t Low32Bits(uint64_t value) { 145 return static_cast<uint32_t>(value); 146 } 147 148 static inline uint32_t High32Bits(uint64_t value) { 149 return static_cast<uint32_t>(value >> 32); 150 } 151 152 // A static if which determines whether to return type A or B based on the condition boolean. 153 template <bool condition, typename A, typename B> 154 struct TypeStaticIf { 155 typedef A type; 156 }; 157 158 // Specialization to handle the false case. 159 template <typename A, typename B> 160 struct TypeStaticIf<false, A, B> { 161 typedef B type; 162 }; 163 164 // Type identity. 165 template <typename T> 166 struct TypeIdentity { 167 typedef T type; 168 }; 169 170 // Like sizeof, but count how many bits a type takes. Pass type explicitly. 171 template <typename T> 172 static constexpr size_t BitSizeOf() { 173 return sizeof(T) * CHAR_BIT; 174 } 175 176 // Like sizeof, but count how many bits a type takes. Infers type from parameter. 177 template <typename T> 178 static constexpr size_t BitSizeOf(T x) { 179 return sizeof(T) * CHAR_BIT; 180 } 181 182 // For rounding integers. 183 template<typename T> 184 static constexpr T RoundDown(T x, typename TypeIdentity<T>::type n) WARN_UNUSED; 185 186 template<typename T> 187 static constexpr T RoundDown(T x, typename TypeIdentity<T>::type n) { 188 return 189 DCHECK_CONSTEXPR(IsPowerOfTwo(n), , T(0)) 190 (x & -n); 191 } 192 193 template<typename T> 194 static constexpr T RoundUp(T x, typename TypeIdentity<T>::type n) WARN_UNUSED; 195 196 template<typename T> 197 static constexpr T RoundUp(T x, typename TypeIdentity<T>::type n) { 198 return RoundDown(x + n - 1, n); 199 } 200 201 // For aligning pointers. 202 template<typename T> 203 static inline T* AlignDown(T* x, uintptr_t n) WARN_UNUSED; 204 205 template<typename T> 206 static inline T* AlignDown(T* x, uintptr_t n) { 207 return reinterpret_cast<T*>(RoundDown(reinterpret_cast<uintptr_t>(x), n)); 208 } 209 210 template<typename T> 211 static inline T* AlignUp(T* x, uintptr_t n) WARN_UNUSED; 212 213 template<typename T> 214 static inline T* AlignUp(T* x, uintptr_t n) { 215 return reinterpret_cast<T*>(RoundUp(reinterpret_cast<uintptr_t>(x), n)); 216 } 217 218 namespace utils { 219 namespace detail { // Private, implementation-specific namespace. Do not poke outside of this file. 220 template <typename T> 221 static constexpr inline T RoundUpToPowerOfTwoRecursive(T x, size_t bit) { 222 return bit == (BitSizeOf<T>()) ? x: RoundUpToPowerOfTwoRecursive(x | x >> bit, bit << 1); 223 } 224 } // namespace detail 225 } // namespace utils 226 227 // Recursive implementation is from "Hacker's Delight" by Henry S. Warren, Jr., 228 // figure 3-3, page 48, where the function is called clp2. 229 template <typename T> 230 static constexpr inline T RoundUpToPowerOfTwo(T x) { 231 return art::utils::detail::RoundUpToPowerOfTwoRecursive(x - 1, 1) + 1; 232 } 233 234 // Implementation is from "Hacker's Delight" by Henry S. Warren, Jr., 235 // figure 3-3, page 48, where the function is called clp2. 236 static inline uint32_t RoundUpToPowerOfTwo(uint32_t x) { 237 x = x - 1; 238 x = x | (x >> 1); 239 x = x | (x >> 2); 240 x = x | (x >> 4); 241 x = x | (x >> 8); 242 x = x | (x >> 16); 243 return x + 1; 244 } 245 246 // Find the bit position of the most significant bit (0-based), or -1 if there were no bits set. 247 template <typename T> 248 static constexpr ssize_t MostSignificantBit(T value) { 249 return (value == 0) ? -1 : (MostSignificantBit(value >> 1) + 1); 250 } 251 252 // How many bits (minimally) does it take to store the constant 'value'? i.e. 1 for 1, 3 for 5, etc. 253 template <typename T> 254 static constexpr size_t MinimumBitsToStore(T value) { 255 return static_cast<size_t>(MostSignificantBit(value) + 1); 256 } 257 258 template<typename T> 259 static constexpr int CLZ(T x) { 260 static_assert(sizeof(T) <= sizeof(long long), "T too large, must be smaller than long long"); // NOLINT [runtime/int] [4] 261 return (sizeof(T) == sizeof(uint32_t)) 262 ? __builtin_clz(x) // TODO: __builtin_clz[ll] has undefined behavior for x=0 263 : __builtin_clzll(x); 264 } 265 266 template<typename T> 267 static constexpr int CTZ(T x) { 268 return (sizeof(T) == sizeof(uint32_t)) 269 ? __builtin_ctz(x) 270 : __builtin_ctzll(x); 271 } 272 273 template<typename T> 274 static constexpr int POPCOUNT(T x) { 275 return (sizeof(T) == sizeof(uint32_t)) 276 ? __builtin_popcount(x) 277 : __builtin_popcountll(x); 278 } 279 280 static inline uint32_t PointerToLowMemUInt32(const void* p) { 281 uintptr_t intp = reinterpret_cast<uintptr_t>(p); 282 DCHECK_LE(intp, 0xFFFFFFFFU); 283 return intp & 0xFFFFFFFFU; 284 } 285 286 static inline bool NeedsEscaping(uint16_t ch) { 287 return (ch < ' ' || ch > '~'); 288 } 289 290 // Interpret the bit pattern of input (type U) as type V. Requires the size 291 // of V >= size of U (compile-time checked). 292 template<typename U, typename V> 293 static inline V bit_cast(U in) { 294 COMPILE_ASSERT(sizeof(U) <= sizeof(V), size_of_u_not_le_size_of_v); 295 union { 296 U u; 297 V v; 298 } tmp; 299 tmp.u = in; 300 return tmp.v; 301 } 302 303 std::string PrintableChar(uint16_t ch); 304 305 // Returns an ASCII string corresponding to the given UTF-8 string. 306 // Java escapes are used for non-ASCII characters. 307 std::string PrintableString(const char* utf8); 308 309 // Tests whether 's' starts with 'prefix'. 310 bool StartsWith(const std::string& s, const char* prefix); 311 312 // Tests whether 's' starts with 'suffix'. 313 bool EndsWith(const std::string& s, const char* suffix); 314 315 // Used to implement PrettyClass, PrettyField, PrettyMethod, and PrettyTypeOf, 316 // one of which is probably more useful to you. 317 // Returns a human-readable equivalent of 'descriptor'. So "I" would be "int", 318 // "[[I" would be "int[][]", "[Ljava/lang/String;" would be 319 // "java.lang.String[]", and so forth. 320 std::string PrettyDescriptor(mirror::String* descriptor) 321 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 322 std::string PrettyDescriptor(const char* descriptor); 323 std::string PrettyDescriptor(mirror::Class* klass) 324 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 325 std::string PrettyDescriptor(Primitive::Type type); 326 327 // Returns a human-readable signature for 'f'. Something like "a.b.C.f" or 328 // "int a.b.C.f" (depending on the value of 'with_type'). 329 std::string PrettyField(mirror::ArtField* f, bool with_type = true) 330 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 331 std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type = true); 332 333 // Returns a human-readable signature for 'm'. Something like "a.b.C.m" or 334 // "a.b.C.m(II)V" (depending on the value of 'with_signature'). 335 std::string PrettyMethod(mirror::ArtMethod* m, bool with_signature = true) 336 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 337 std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature = true); 338 339 // Returns a human-readable form of the name of the *class* of the given object. 340 // So given an instance of java.lang.String, the output would 341 // be "java.lang.String". Given an array of int, the output would be "int[]". 342 // Given String.class, the output would be "java.lang.Class<java.lang.String>". 343 std::string PrettyTypeOf(mirror::Object* obj) 344 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 345 346 // Returns a human-readable form of the type at an index in the specified dex file. 347 // Example outputs: char[], java.lang.String. 348 std::string PrettyType(uint32_t type_idx, const DexFile& dex_file); 349 350 // Returns a human-readable form of the name of the given class. 351 // Given String.class, the output would be "java.lang.Class<java.lang.String>". 352 std::string PrettyClass(mirror::Class* c) 353 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 354 355 // Returns a human-readable form of the name of the given class with its class loader. 356 std::string PrettyClassAndClassLoader(mirror::Class* c) 357 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 358 359 // Returns a human-readable size string such as "1MB". 360 std::string PrettySize(int64_t size_in_bytes); 361 362 // Returns a human-readable time string which prints every nanosecond while trying to limit the 363 // number of trailing zeros. Prints using the largest human readable unit up to a second. 364 // e.g. "1ms", "1.000000001s", "1.001us" 365 std::string PrettyDuration(uint64_t nano_duration, size_t max_fraction_digits = 3); 366 367 // Format a nanosecond time to specified units. 368 std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit, 369 size_t max_fraction_digits); 370 371 // Get the appropriate unit for a nanosecond duration. 372 TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration); 373 374 // Get the divisor to convert from a nanoseconds to a time unit. 375 uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit); 376 377 // Performs JNI name mangling as described in section 11.3 "Linking Native Methods" 378 // of the JNI spec. 379 std::string MangleForJni(const std::string& s); 380 381 // Turn "java.lang.String" into "Ljava/lang/String;". 382 std::string DotToDescriptor(const char* class_name); 383 384 // Turn "Ljava/lang/String;" into "java.lang.String" using the conventions of 385 // java.lang.Class.getName(). 386 std::string DescriptorToDot(const char* descriptor); 387 388 // Turn "Ljava/lang/String;" into "java/lang/String" using the opposite conventions of 389 // java.lang.Class.getName(). 390 std::string DescriptorToName(const char* descriptor); 391 392 // Tests for whether 's' is a valid class name in the three common forms: 393 bool IsValidBinaryClassName(const char* s); // "java.lang.String" 394 bool IsValidJniClassName(const char* s); // "java/lang/String" 395 bool IsValidDescriptor(const char* s); // "Ljava/lang/String;" 396 397 // Returns whether the given string is a valid field or method name, 398 // additionally allowing names that begin with '<' and end with '>'. 399 bool IsValidMemberName(const char* s); 400 401 // Returns the JNI native function name for the non-overloaded method 'm'. 402 std::string JniShortName(mirror::ArtMethod* m) 403 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 404 // Returns the JNI native function name for the overloaded method 'm'. 405 std::string JniLongName(mirror::ArtMethod* m) 406 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 407 408 bool ReadFileToString(const std::string& file_name, std::string* result); 409 410 // Returns the current date in ISO yyyy-mm-dd hh:mm:ss format. 411 std::string GetIsoDate(); 412 413 // Returns the monotonic time since some unspecified starting point in milliseconds. 414 uint64_t MilliTime(); 415 416 // Returns the monotonic time since some unspecified starting point in microseconds. 417 uint64_t MicroTime(); 418 419 // Returns the monotonic time since some unspecified starting point in nanoseconds. 420 uint64_t NanoTime(); 421 422 // Returns the thread-specific CPU-time clock in nanoseconds or -1 if unavailable. 423 uint64_t ThreadCpuNanoTime(); 424 425 // Converts the given number of nanoseconds to milliseconds. 426 static constexpr inline uint64_t NsToMs(uint64_t ns) { 427 return ns / 1000 / 1000; 428 } 429 430 // Converts the given number of milliseconds to nanoseconds 431 static constexpr inline uint64_t MsToNs(uint64_t ns) { 432 return ns * 1000 * 1000; 433 } 434 435 #if defined(__APPLE__) 436 // No clocks to specify on OS/X, fake value to pass to routines that require a clock. 437 #define CLOCK_REALTIME 0xebadf00d 438 #endif 439 440 // Sleep for the given number of nanoseconds, a bad way to handle contention. 441 void NanoSleep(uint64_t ns); 442 443 // Initialize a timespec to either a relative time (ms,ns), or to the absolute 444 // time corresponding to the indicated clock value plus the supplied offset. 445 void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts); 446 447 // Splits a string using the given separator character into a vector of 448 // strings. Empty strings will be omitted. 449 void Split(const std::string& s, char separator, std::vector<std::string>& result); 450 451 // Trims whitespace off both ends of the given string. 452 std::string Trim(std::string s); 453 454 // Joins a vector of strings into a single string, using the given separator. 455 template <typename StringT> std::string Join(std::vector<StringT>& strings, char separator); 456 457 // Returns the calling thread's tid. (The C libraries don't expose this.) 458 pid_t GetTid(); 459 460 // Returns the given thread's name. 461 std::string GetThreadName(pid_t tid); 462 463 // Returns details of the given thread's stack. 464 void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size, size_t* guard_size); 465 466 // Reads data from "/proc/self/task/${tid}/stat". 467 void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu); 468 469 // Returns the name of the scheduler group for the given thread the current process, or the empty string. 470 std::string GetSchedulerGroupName(pid_t tid); 471 472 // Sets the name of the current thread. The name may be truncated to an 473 // implementation-defined limit. 474 void SetThreadName(const char* thread_name); 475 476 // Dumps the native stack for thread 'tid' to 'os'. 477 void DumpNativeStack(std::ostream& os, pid_t tid, const char* prefix = "", 478 mirror::ArtMethod* current_method = nullptr) 479 NO_THREAD_SAFETY_ANALYSIS; 480 481 // Dumps the kernel stack for thread 'tid' to 'os'. Note that this is only available on linux-x86. 482 void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix = "", bool include_count = true); 483 484 // Find $ANDROID_ROOT, /system, or abort. 485 const char* GetAndroidRoot(); 486 487 // Find $ANDROID_DATA, /data, or abort. 488 const char* GetAndroidData(); 489 // Find $ANDROID_DATA, /data, or return nullptr. 490 const char* GetAndroidDataSafe(std::string* error_msg); 491 492 // Returns the dalvik-cache location, or dies trying. subdir will be 493 // appended to the cache location. 494 std::string GetDalvikCacheOrDie(const char* subdir, bool create_if_absent = true); 495 // Return true if we found the dalvik cache and stored it in the dalvik_cache argument. 496 // have_android_data will be set to true if we have an ANDROID_DATA that exists, 497 // dalvik_cache_exists will be true if there is a dalvik-cache directory that is present. 498 // The flag is_global_cache tells whether this cache is /data/dalvik-cache. 499 void GetDalvikCache(const char* subdir, bool create_if_absent, std::string* dalvik_cache, 500 bool* have_android_data, bool* dalvik_cache_exists, bool* is_global_cache); 501 502 // Returns the absolute dalvik-cache path for a DexFile or OatFile. The path returned will be 503 // rooted at cache_location. 504 bool GetDalvikCacheFilename(const char* file_location, const char* cache_location, 505 std::string* filename, std::string* error_msg); 506 // Returns the absolute dalvik-cache path for a DexFile or OatFile, or 507 // dies trying. The path returned will be rooted at cache_location. 508 std::string GetDalvikCacheFilenameOrDie(const char* file_location, 509 const char* cache_location); 510 511 // Returns the system location for an image 512 std::string GetSystemImageFilename(const char* location, InstructionSet isa); 513 514 // Returns an .odex file name next adjacent to the dex location. 515 // For example, for "/foo/bar/baz.jar", return "/foo/bar/<isa>/baz.odex". 516 // Note: does not support multidex location strings. 517 std::string DexFilenameToOdexFilename(const std::string& location, InstructionSet isa); 518 519 // Check whether the given magic matches a known file type. 520 bool IsZipMagic(uint32_t magic); 521 bool IsDexMagic(uint32_t magic); 522 bool IsOatMagic(uint32_t magic); 523 524 // Wrapper on fork/execv to run a command in a subprocess. 525 bool Exec(std::vector<std::string>& arg_vector, std::string* error_msg); 526 527 class VoidFunctor { 528 public: 529 template <typename A> 530 inline void operator() (A a) const { 531 UNUSED(a); 532 } 533 534 template <typename A, typename B> 535 inline void operator() (A a, B b) const { 536 UNUSED(a); 537 UNUSED(b); 538 } 539 540 template <typename A, typename B, typename C> 541 inline void operator() (A a, B b, C c) const { 542 UNUSED(a); 543 UNUSED(b); 544 UNUSED(c); 545 } 546 }; 547 548 // Deleter using free() for use with std::unique_ptr<>. See also UniqueCPtr<> below. 549 struct FreeDelete { 550 // NOTE: Deleting a const object is valid but free() takes a non-const pointer. 551 void operator()(const void* ptr) const { 552 free(const_cast<void*>(ptr)); 553 } 554 }; 555 556 // Alias for std::unique_ptr<> that uses the C function free() to delete objects. 557 template <typename T> 558 using UniqueCPtr = std::unique_ptr<T, FreeDelete>; 559 560 } // namespace art 561 562 #endif // ART_RUNTIME_UTILS_H_ 563