Home | History | Annotate | Download | only in concurrent
      1 /*
      2  * Written by Doug Lea with assistance from members of JCP JSR-166
      3  * Expert Group and released to the public domain, as explained at
      4  * http://creativecommons.org/publicdomain/zero/1.0/
      5  */
      6 
      7 package java.util.concurrent;
      8 
      9 import java.util.concurrent.TimeUnit;
     10 import java.util.concurrent.TimeoutException;
     11 import java.util.concurrent.atomic.AtomicReference;
     12 import java.util.concurrent.locks.LockSupport;
     13 
     14 /**
     15  * A reusable synchronization barrier, similar in functionality to
     16  * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
     17  * {@link java.util.concurrent.CountDownLatch CountDownLatch}
     18  * but supporting more flexible usage.
     19  *
     20  * <p><b>Registration.</b> Unlike the case for other barriers, the
     21  * number of parties <em>registered</em> to synchronize on a phaser
     22  * may vary over time.  Tasks may be registered at any time (using
     23  * methods {@link #register}, {@link #bulkRegister}, or forms of
     24  * constructors establishing initial numbers of parties), and
     25  * optionally deregistered upon any arrival (using {@link
     26  * #arriveAndDeregister}).  As is the case with most basic
     27  * synchronization constructs, registration and deregistration affect
     28  * only internal counts; they do not establish any further internal
     29  * bookkeeping, so tasks cannot query whether they are registered.
     30  * (However, you can introduce such bookkeeping by subclassing this
     31  * class.)
     32  *
     33  * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
     34  * Phaser} may be repeatedly awaited.  Method {@link
     35  * #arriveAndAwaitAdvance} has effect analogous to {@link
     36  * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
     37  * generation of a phaser has an associated phase number. The phase
     38  * number starts at zero, and advances when all parties arrive at the
     39  * phaser, wrapping around to zero after reaching {@code
     40  * Integer.MAX_VALUE}. The use of phase numbers enables independent
     41  * control of actions upon arrival at a phaser and upon awaiting
     42  * others, via two kinds of methods that may be invoked by any
     43  * registered party:
     44  *
     45  * <ul>
     46  *
     47  *   <li> <b>Arrival.</b> Methods {@link #arrive} and
     48  *       {@link #arriveAndDeregister} record arrival.  These methods
     49  *       do not block, but return an associated <em>arrival phase
     50  *       number</em>; that is, the phase number of the phaser to which
     51  *       the arrival applied. When the final party for a given phase
     52  *       arrives, an optional action is performed and the phase
     53  *       advances.  These actions are performed by the party
     54  *       triggering a phase advance, and are arranged by overriding
     55  *       method {@link #onAdvance(int, int)}, which also controls
     56  *       termination. Overriding this method is similar to, but more
     57  *       flexible than, providing a barrier action to a {@code
     58  *       CyclicBarrier}.
     59  *
     60  *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
     61  *       argument indicating an arrival phase number, and returns when
     62  *       the phaser advances to (or is already at) a different phase.
     63  *       Unlike similar constructions using {@code CyclicBarrier},
     64  *       method {@code awaitAdvance} continues to wait even if the
     65  *       waiting thread is interrupted. Interruptible and timeout
     66  *       versions are also available, but exceptions encountered while
     67  *       tasks wait interruptibly or with timeout do not change the
     68  *       state of the phaser. If necessary, you can perform any
     69  *       associated recovery within handlers of those exceptions,
     70  *       often after invoking {@code forceTermination}.  Phasers may
     71  *       also be used by tasks executing in a {@link ForkJoinPool},
     72  *       which will ensure sufficient parallelism to execute tasks
     73  *       when others are blocked waiting for a phase to advance.
     74  *
     75  * </ul>
     76  *
     77  * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
     78  * state, that may be checked using method {@link #isTerminated}. Upon
     79  * termination, all synchronization methods immediately return without
     80  * waiting for advance, as indicated by a negative return value.
     81  * Similarly, attempts to register upon termination have no effect.
     82  * Termination is triggered when an invocation of {@code onAdvance}
     83  * returns {@code true}. The default implementation returns {@code
     84  * true} if a deregistration has caused the number of registered
     85  * parties to become zero.  As illustrated below, when phasers control
     86  * actions with a fixed number of iterations, it is often convenient
     87  * to override this method to cause termination when the current phase
     88  * number reaches a threshold. Method {@link #forceTermination} is
     89  * also available to abruptly release waiting threads and allow them
     90  * to terminate.
     91  *
     92  * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
     93  * constructed in tree structures) to reduce contention. Phasers with
     94  * large numbers of parties that would otherwise experience heavy
     95  * synchronization contention costs may instead be set up so that
     96  * groups of sub-phasers share a common parent.  This may greatly
     97  * increase throughput even though it incurs greater per-operation
     98  * overhead.
     99  *
    100  * <p>In a tree of tiered phasers, registration and deregistration of
    101  * child phasers with their parent are managed automatically.
    102  * Whenever the number of registered parties of a child phaser becomes
    103  * non-zero (as established in the {@link #Phaser(Phaser,int)}
    104  * constructor, {@link #register}, or {@link #bulkRegister}), the
    105  * child phaser is registered with its parent.  Whenever the number of
    106  * registered parties becomes zero as the result of an invocation of
    107  * {@link #arriveAndDeregister}, the child phaser is deregistered
    108  * from its parent.
    109  *
    110  * <p><b>Monitoring.</b> While synchronization methods may be invoked
    111  * only by registered parties, the current state of a phaser may be
    112  * monitored by any caller.  At any given moment there are {@link
    113  * #getRegisteredParties} parties in total, of which {@link
    114  * #getArrivedParties} have arrived at the current phase ({@link
    115  * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
    116  * parties arrive, the phase advances.  The values returned by these
    117  * methods may reflect transient states and so are not in general
    118  * useful for synchronization control.  Method {@link #toString}
    119  * returns snapshots of these state queries in a form convenient for
    120  * informal monitoring.
    121  *
    122  * <p><b>Sample usages:</b>
    123  *
    124  * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
    125  * to control a one-shot action serving a variable number of parties.
    126  * The typical idiom is for the method setting this up to first
    127  * register, then start the actions, then deregister, as in:
    128  *
    129  *  <pre> {@code
    130  * void runTasks(List<Runnable> tasks) {
    131  *   final Phaser phaser = new Phaser(1); // "1" to register self
    132  *   // create and start threads
    133  *   for (final Runnable task : tasks) {
    134  *     phaser.register();
    135  *     new Thread() {
    136  *       public void run() {
    137  *         phaser.arriveAndAwaitAdvance(); // await all creation
    138  *         task.run();
    139  *       }
    140  *     }.start();
    141  *   }
    142  *
    143  *   // allow threads to start and deregister self
    144  *   phaser.arriveAndDeregister();
    145  * }}</pre>
    146  *
    147  * <p>One way to cause a set of threads to repeatedly perform actions
    148  * for a given number of iterations is to override {@code onAdvance}:
    149  *
    150  *  <pre> {@code
    151  * void startTasks(List<Runnable> tasks, final int iterations) {
    152  *   final Phaser phaser = new Phaser() {
    153  *     protected boolean onAdvance(int phase, int registeredParties) {
    154  *       return phase >= iterations || registeredParties == 0;
    155  *     }
    156  *   };
    157  *   phaser.register();
    158  *   for (final Runnable task : tasks) {
    159  *     phaser.register();
    160  *     new Thread() {
    161  *       public void run() {
    162  *         do {
    163  *           task.run();
    164  *           phaser.arriveAndAwaitAdvance();
    165  *         } while (!phaser.isTerminated());
    166  *       }
    167  *     }.start();
    168  *   }
    169  *   phaser.arriveAndDeregister(); // deregister self, don't wait
    170  * }}</pre>
    171  *
    172  * If the main task must later await termination, it
    173  * may re-register and then execute a similar loop:
    174  *  <pre> {@code
    175  *   // ...
    176  *   phaser.register();
    177  *   while (!phaser.isTerminated())
    178  *     phaser.arriveAndAwaitAdvance();}</pre>
    179  *
    180  * <p>Related constructions may be used to await particular phase numbers
    181  * in contexts where you are sure that the phase will never wrap around
    182  * {@code Integer.MAX_VALUE}. For example:
    183  *
    184  *  <pre> {@code
    185  * void awaitPhase(Phaser phaser, int phase) {
    186  *   int p = phaser.register(); // assumes caller not already registered
    187  *   while (p < phase) {
    188  *     if (phaser.isTerminated())
    189  *       // ... deal with unexpected termination
    190  *     else
    191  *       p = phaser.arriveAndAwaitAdvance();
    192  *   }
    193  *   phaser.arriveAndDeregister();
    194  * }}</pre>
    195  *
    196  *
    197  * <p>To create a set of {@code n} tasks using a tree of phasers, you
    198  * could use code of the following form, assuming a Task class with a
    199  * constructor accepting a {@code Phaser} that it registers with upon
    200  * construction. After invocation of {@code build(new Task[n], 0, n,
    201  * new Phaser())}, these tasks could then be started, for example by
    202  * submitting to a pool:
    203  *
    204  *  <pre> {@code
    205  * void build(Task[] tasks, int lo, int hi, Phaser ph) {
    206  *   if (hi - lo > TASKS_PER_PHASER) {
    207  *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
    208  *       int j = Math.min(i + TASKS_PER_PHASER, hi);
    209  *       build(tasks, i, j, new Phaser(ph));
    210  *     }
    211  *   } else {
    212  *     for (int i = lo; i < hi; ++i)
    213  *       tasks[i] = new Task(ph);
    214  *       // assumes new Task(ph) performs ph.register()
    215  *   }
    216  * }}</pre>
    217  *
    218  * The best value of {@code TASKS_PER_PHASER} depends mainly on
    219  * expected synchronization rates. A value as low as four may
    220  * be appropriate for extremely small per-phase task bodies (thus
    221  * high rates), or up to hundreds for extremely large ones.
    222  *
    223  * <p><b>Implementation notes</b>: This implementation restricts the
    224  * maximum number of parties to 65535. Attempts to register additional
    225  * parties result in {@code IllegalStateException}. However, you can and
    226  * should create tiered phasers to accommodate arbitrarily large sets
    227  * of participants.
    228  *
    229  * @since 1.7
    230  * @author Doug Lea
    231  */
    232 public class Phaser {
    233     /*
    234      * This class implements an extension of X10 "clocks".  Thanks to
    235      * Vijay Saraswat for the idea, and to Vivek Sarkar for
    236      * enhancements to extend functionality.
    237      */
    238 
    239     /**
    240      * Primary state representation, holding four bit-fields:
    241      *
    242      * unarrived  -- the number of parties yet to hit barrier (bits  0-15)
    243      * parties    -- the number of parties to wait            (bits 16-31)
    244      * phase      -- the generation of the barrier            (bits 32-62)
    245      * terminated -- set if barrier is terminated             (bit  63 / sign)
    246      *
    247      * Except that a phaser with no registered parties is
    248      * distinguished by the otherwise illegal state of having zero
    249      * parties and one unarrived parties (encoded as EMPTY below).
    250      *
    251      * To efficiently maintain atomicity, these values are packed into
    252      * a single (atomic) long. Good performance relies on keeping
    253      * state decoding and encoding simple, and keeping race windows
    254      * short.
    255      *
    256      * All state updates are performed via CAS except initial
    257      * registration of a sub-phaser (i.e., one with a non-null
    258      * parent).  In this (relatively rare) case, we use built-in
    259      * synchronization to lock while first registering with its
    260      * parent.
    261      *
    262      * The phase of a subphaser is allowed to lag that of its
    263      * ancestors until it is actually accessed -- see method
    264      * reconcileState.
    265      */
    266     private volatile long state;
    267 
    268     private static final int  MAX_PARTIES     = 0xffff;
    269     private static final int  MAX_PHASE       = Integer.MAX_VALUE;
    270     private static final int  PARTIES_SHIFT   = 16;
    271     private static final int  PHASE_SHIFT     = 32;
    272     private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
    273     private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
    274     private static final long COUNTS_MASK     = 0xffffffffL;
    275     private static final long TERMINATION_BIT = 1L << 63;
    276 
    277     // some special values
    278     private static final int  ONE_ARRIVAL     = 1;
    279     private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
    280     private static final int  ONE_DEREGISTER  = ONE_ARRIVAL|ONE_PARTY;
    281     private static final int  EMPTY           = 1;
    282 
    283     // The following unpacking methods are usually manually inlined
    284 
    285     private static int unarrivedOf(long s) {
    286         int counts = (int)s;
    287         return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
    288     }
    289 
    290     private static int partiesOf(long s) {
    291         return (int)s >>> PARTIES_SHIFT;
    292     }
    293 
    294     private static int phaseOf(long s) {
    295         return (int)(s >>> PHASE_SHIFT);
    296     }
    297 
    298     private static int arrivedOf(long s) {
    299         int counts = (int)s;
    300         return (counts == EMPTY) ? 0 :
    301             (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
    302     }
    303 
    304     /**
    305      * The parent of this phaser, or null if none
    306      */
    307     private final Phaser parent;
    308 
    309     /**
    310      * The root of phaser tree. Equals this if not in a tree.
    311      */
    312     private final Phaser root;
    313 
    314     /**
    315      * Heads of Treiber stacks for waiting threads. To eliminate
    316      * contention when releasing some threads while adding others, we
    317      * use two of them, alternating across even and odd phases.
    318      * Subphasers share queues with root to speed up releases.
    319      */
    320     private final AtomicReference<QNode> evenQ;
    321     private final AtomicReference<QNode> oddQ;
    322 
    323     private AtomicReference<QNode> queueFor(int phase) {
    324         return ((phase & 1) == 0) ? evenQ : oddQ;
    325     }
    326 
    327     /**
    328      * Returns message string for bounds exceptions on arrival.
    329      */
    330     private String badArrive(long s) {
    331         return "Attempted arrival of unregistered party for " +
    332             stateToString(s);
    333     }
    334 
    335     /**
    336      * Returns message string for bounds exceptions on registration.
    337      */
    338     private String badRegister(long s) {
    339         return "Attempt to register more than " +
    340             MAX_PARTIES + " parties for " + stateToString(s);
    341     }
    342 
    343     /**
    344      * Main implementation for methods arrive and arriveAndDeregister.
    345      * Manually tuned to speed up and minimize race windows for the
    346      * common case of just decrementing unarrived field.
    347      *
    348      * @param adjust value to subtract from state;
    349      *               ONE_ARRIVAL for arrive,
    350      *               ONE_DEREGISTER for arriveAndDeregister
    351      */
    352     private int doArrive(int adjust) {
    353         final Phaser root = this.root;
    354         for (;;) {
    355             long s = (root == this) ? state : reconcileState();
    356             int phase = (int)(s >>> PHASE_SHIFT);
    357             if (phase < 0)
    358                 return phase;
    359             int counts = (int)s;
    360             int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
    361             if (unarrived <= 0)
    362                 throw new IllegalStateException(badArrive(s));
    363             if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust)) {
    364                 if (unarrived == 1) {
    365                     long n = s & PARTIES_MASK;  // base of next state
    366                     int nextUnarrived = (int)n >>> PARTIES_SHIFT;
    367                     if (root == this) {
    368                         if (onAdvance(phase, nextUnarrived))
    369                             n |= TERMINATION_BIT;
    370                         else if (nextUnarrived == 0)
    371                             n |= EMPTY;
    372                         else
    373                             n |= nextUnarrived;
    374                         int nextPhase = (phase + 1) & MAX_PHASE;
    375                         n |= (long)nextPhase << PHASE_SHIFT;
    376                         UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
    377                         releaseWaiters(phase);
    378                     }
    379                     else if (nextUnarrived == 0) { // propagate deregistration
    380                         phase = parent.doArrive(ONE_DEREGISTER);
    381                         UNSAFE.compareAndSwapLong(this, stateOffset,
    382                                                   s, s | EMPTY);
    383                     }
    384                     else
    385                         phase = parent.doArrive(ONE_ARRIVAL);
    386                 }
    387                 return phase;
    388             }
    389         }
    390     }
    391 
    392     /**
    393      * Implementation of register, bulkRegister
    394      *
    395      * @param registrations number to add to both parties and
    396      * unarrived fields. Must be greater than zero.
    397      */
    398     private int doRegister(int registrations) {
    399         // adjustment to state
    400         long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
    401         final Phaser parent = this.parent;
    402         int phase;
    403         for (;;) {
    404             long s = (parent == null) ? state : reconcileState();
    405             int counts = (int)s;
    406             int parties = counts >>> PARTIES_SHIFT;
    407             int unarrived = counts & UNARRIVED_MASK;
    408             if (registrations > MAX_PARTIES - parties)
    409                 throw new IllegalStateException(badRegister(s));
    410             phase = (int)(s >>> PHASE_SHIFT);
    411             if (phase < 0)
    412                 break;
    413             if (counts != EMPTY) {                  // not 1st registration
    414                 if (parent == null || reconcileState() == s) {
    415                     if (unarrived == 0)             // wait out advance
    416                         root.internalAwaitAdvance(phase, null);
    417                     else if (UNSAFE.compareAndSwapLong(this, stateOffset,
    418                                                        s, s + adjust))
    419                         break;
    420                 }
    421             }
    422             else if (parent == null) {              // 1st root registration
    423                 long next = ((long)phase << PHASE_SHIFT) | adjust;
    424                 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
    425                     break;
    426             }
    427             else {
    428                 synchronized (this) {               // 1st sub registration
    429                     if (state == s) {               // recheck under lock
    430                         phase = parent.doRegister(1);
    431                         if (phase < 0)
    432                             break;
    433                         // finish registration whenever parent registration
    434                         // succeeded, even when racing with termination,
    435                         // since these are part of the same "transaction".
    436                         while (!UNSAFE.compareAndSwapLong
    437                                (this, stateOffset, s,
    438                                 ((long)phase << PHASE_SHIFT) | adjust)) {
    439                             s = state;
    440                             phase = (int)(root.state >>> PHASE_SHIFT);
    441                             // assert (int)s == EMPTY;
    442                         }
    443                         break;
    444                     }
    445                 }
    446             }
    447         }
    448         return phase;
    449     }
    450 
    451     /**
    452      * Resolves lagged phase propagation from root if necessary.
    453      * Reconciliation normally occurs when root has advanced but
    454      * subphasers have not yet done so, in which case they must finish
    455      * their own advance by setting unarrived to parties (or if
    456      * parties is zero, resetting to unregistered EMPTY state).
    457      *
    458      * @return reconciled state
    459      */
    460     private long reconcileState() {
    461         final Phaser root = this.root;
    462         long s = state;
    463         if (root != this) {
    464             int phase, p;
    465             // CAS to root phase with current parties, tripping unarrived
    466             while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
    467                    (int)(s >>> PHASE_SHIFT) &&
    468                    !UNSAFE.compareAndSwapLong
    469                    (this, stateOffset, s,
    470                     s = (((long)phase << PHASE_SHIFT) |
    471                          ((phase < 0) ? (s & COUNTS_MASK) :
    472                           (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
    473                            ((s & PARTIES_MASK) | p))))))
    474                 s = state;
    475         }
    476         return s;
    477     }
    478 
    479     /**
    480      * Creates a new phaser with no initially registered parties, no
    481      * parent, and initial phase number 0. Any thread using this
    482      * phaser will need to first register for it.
    483      */
    484     public Phaser() {
    485         this(null, 0);
    486     }
    487 
    488     /**
    489      * Creates a new phaser with the given number of registered
    490      * unarrived parties, no parent, and initial phase number 0.
    491      *
    492      * @param parties the number of parties required to advance to the
    493      * next phase
    494      * @throws IllegalArgumentException if parties less than zero
    495      * or greater than the maximum number of parties supported
    496      */
    497     public Phaser(int parties) {
    498         this(null, parties);
    499     }
    500 
    501     /**
    502      * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
    503      *
    504      * @param parent the parent phaser
    505      */
    506     public Phaser(Phaser parent) {
    507         this(parent, 0);
    508     }
    509 
    510     /**
    511      * Creates a new phaser with the given parent and number of
    512      * registered unarrived parties.  When the given parent is non-null
    513      * and the given number of parties is greater than zero, this
    514      * child phaser is registered with its parent.
    515      *
    516      * @param parent the parent phaser
    517      * @param parties the number of parties required to advance to the
    518      * next phase
    519      * @throws IllegalArgumentException if parties less than zero
    520      * or greater than the maximum number of parties supported
    521      */
    522     public Phaser(Phaser parent, int parties) {
    523         if (parties >>> PARTIES_SHIFT != 0)
    524             throw new IllegalArgumentException("Illegal number of parties");
    525         int phase = 0;
    526         this.parent = parent;
    527         if (parent != null) {
    528             final Phaser root = parent.root;
    529             this.root = root;
    530             this.evenQ = root.evenQ;
    531             this.oddQ = root.oddQ;
    532             if (parties != 0)
    533                 phase = parent.doRegister(1);
    534         }
    535         else {
    536             this.root = this;
    537             this.evenQ = new AtomicReference<QNode>();
    538             this.oddQ = new AtomicReference<QNode>();
    539         }
    540         this.state = (parties == 0) ? (long)EMPTY :
    541             ((long)phase << PHASE_SHIFT) |
    542             ((long)parties << PARTIES_SHIFT) |
    543             ((long)parties);
    544     }
    545 
    546     /**
    547      * Adds a new unarrived party to this phaser.  If an ongoing
    548      * invocation of {@link #onAdvance} is in progress, this method
    549      * may await its completion before returning.  If this phaser has
    550      * a parent, and this phaser previously had no registered parties,
    551      * this child phaser is also registered with its parent. If
    552      * this phaser is terminated, the attempt to register has
    553      * no effect, and a negative value is returned.
    554      *
    555      * @return the arrival phase number to which this registration
    556      * applied.  If this value is negative, then this phaser has
    557      * terminated, in which case registration has no effect.
    558      * @throws IllegalStateException if attempting to register more
    559      * than the maximum supported number of parties
    560      */
    561     public int register() {
    562         return doRegister(1);
    563     }
    564 
    565     /**
    566      * Adds the given number of new unarrived parties to this phaser.
    567      * If an ongoing invocation of {@link #onAdvance} is in progress,
    568      * this method may await its completion before returning.  If this
    569      * phaser has a parent, and the given number of parties is greater
    570      * than zero, and this phaser previously had no registered
    571      * parties, this child phaser is also registered with its parent.
    572      * If this phaser is terminated, the attempt to register has no
    573      * effect, and a negative value is returned.
    574      *
    575      * @param parties the number of additional parties required to
    576      * advance to the next phase
    577      * @return the arrival phase number to which this registration
    578      * applied.  If this value is negative, then this phaser has
    579      * terminated, in which case registration has no effect.
    580      * @throws IllegalStateException if attempting to register more
    581      * than the maximum supported number of parties
    582      * @throws IllegalArgumentException if {@code parties < 0}
    583      */
    584     public int bulkRegister(int parties) {
    585         if (parties < 0)
    586             throw new IllegalArgumentException();
    587         if (parties == 0)
    588             return getPhase();
    589         return doRegister(parties);
    590     }
    591 
    592     /**
    593      * Arrives at this phaser, without waiting for others to arrive.
    594      *
    595      * <p>It is a usage error for an unregistered party to invoke this
    596      * method.  However, this error may result in an {@code
    597      * IllegalStateException} only upon some subsequent operation on
    598      * this phaser, if ever.
    599      *
    600      * @return the arrival phase number, or a negative value if terminated
    601      * @throws IllegalStateException if not terminated and the number
    602      * of unarrived parties would become negative
    603      */
    604     public int arrive() {
    605         return doArrive(ONE_ARRIVAL);
    606     }
    607 
    608     /**
    609      * Arrives at this phaser and deregisters from it without waiting
    610      * for others to arrive. Deregistration reduces the number of
    611      * parties required to advance in future phases.  If this phaser
    612      * has a parent, and deregistration causes this phaser to have
    613      * zero parties, this phaser is also deregistered from its parent.
    614      *
    615      * <p>It is a usage error for an unregistered party to invoke this
    616      * method.  However, this error may result in an {@code
    617      * IllegalStateException} only upon some subsequent operation on
    618      * this phaser, if ever.
    619      *
    620      * @return the arrival phase number, or a negative value if terminated
    621      * @throws IllegalStateException if not terminated and the number
    622      * of registered or unarrived parties would become negative
    623      */
    624     public int arriveAndDeregister() {
    625         return doArrive(ONE_DEREGISTER);
    626     }
    627 
    628     /**
    629      * Arrives at this phaser and awaits others. Equivalent in effect
    630      * to {@code awaitAdvance(arrive())}.  If you need to await with
    631      * interruption or timeout, you can arrange this with an analogous
    632      * construction using one of the other forms of the {@code
    633      * awaitAdvance} method.  If instead you need to deregister upon
    634      * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
    635      *
    636      * <p>It is a usage error for an unregistered party to invoke this
    637      * method.  However, this error may result in an {@code
    638      * IllegalStateException} only upon some subsequent operation on
    639      * this phaser, if ever.
    640      *
    641      * @return the arrival phase number, or the (negative)
    642      * {@linkplain #getPhase() current phase} if terminated
    643      * @throws IllegalStateException if not terminated and the number
    644      * of unarrived parties would become negative
    645      */
    646     public int arriveAndAwaitAdvance() {
    647         // Specialization of doArrive+awaitAdvance eliminating some reads/paths
    648         final Phaser root = this.root;
    649         for (;;) {
    650             long s = (root == this) ? state : reconcileState();
    651             int phase = (int)(s >>> PHASE_SHIFT);
    652             if (phase < 0)
    653                 return phase;
    654             int counts = (int)s;
    655             int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
    656             if (unarrived <= 0)
    657                 throw new IllegalStateException(badArrive(s));
    658             if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
    659                                           s -= ONE_ARRIVAL)) {
    660                 if (unarrived > 1)
    661                     return root.internalAwaitAdvance(phase, null);
    662                 if (root != this)
    663                     return parent.arriveAndAwaitAdvance();
    664                 long n = s & PARTIES_MASK;  // base of next state
    665                 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
    666                 if (onAdvance(phase, nextUnarrived))
    667                     n |= TERMINATION_BIT;
    668                 else if (nextUnarrived == 0)
    669                     n |= EMPTY;
    670                 else
    671                     n |= nextUnarrived;
    672                 int nextPhase = (phase + 1) & MAX_PHASE;
    673                 n |= (long)nextPhase << PHASE_SHIFT;
    674                 if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
    675                     return (int)(state >>> PHASE_SHIFT); // terminated
    676                 releaseWaiters(phase);
    677                 return nextPhase;
    678             }
    679         }
    680     }
    681 
    682     /**
    683      * Awaits the phase of this phaser to advance from the given phase
    684      * value, returning immediately if the current phase is not equal
    685      * to the given phase value or this phaser is terminated.
    686      *
    687      * @param phase an arrival phase number, or negative value if
    688      * terminated; this argument is normally the value returned by a
    689      * previous call to {@code arrive} or {@code arriveAndDeregister}.
    690      * @return the next arrival phase number, or the argument if it is
    691      * negative, or the (negative) {@linkplain #getPhase() current phase}
    692      * if terminated
    693      */
    694     public int awaitAdvance(int phase) {
    695         final Phaser root = this.root;
    696         long s = (root == this) ? state : reconcileState();
    697         int p = (int)(s >>> PHASE_SHIFT);
    698         if (phase < 0)
    699             return phase;
    700         if (p == phase)
    701             return root.internalAwaitAdvance(phase, null);
    702         return p;
    703     }
    704 
    705     /**
    706      * Awaits the phase of this phaser to advance from the given phase
    707      * value, throwing {@code InterruptedException} if interrupted
    708      * while waiting, or returning immediately if the current phase is
    709      * not equal to the given phase value or this phaser is
    710      * terminated.
    711      *
    712      * @param phase an arrival phase number, or negative value if
    713      * terminated; this argument is normally the value returned by a
    714      * previous call to {@code arrive} or {@code arriveAndDeregister}.
    715      * @return the next arrival phase number, or the argument if it is
    716      * negative, or the (negative) {@linkplain #getPhase() current phase}
    717      * if terminated
    718      * @throws InterruptedException if thread interrupted while waiting
    719      */
    720     public int awaitAdvanceInterruptibly(int phase)
    721         throws InterruptedException {
    722         final Phaser root = this.root;
    723         long s = (root == this) ? state : reconcileState();
    724         int p = (int)(s >>> PHASE_SHIFT);
    725         if (phase < 0)
    726             return phase;
    727         if (p == phase) {
    728             QNode node = new QNode(this, phase, true, false, 0L);
    729             p = root.internalAwaitAdvance(phase, node);
    730             if (node.wasInterrupted)
    731                 throw new InterruptedException();
    732         }
    733         return p;
    734     }
    735 
    736     /**
    737      * Awaits the phase of this phaser to advance from the given phase
    738      * value or the given timeout to elapse, throwing {@code
    739      * InterruptedException} if interrupted while waiting, or
    740      * returning immediately if the current phase is not equal to the
    741      * given phase value or this phaser is terminated.
    742      *
    743      * @param phase an arrival phase number, or negative value if
    744      * terminated; this argument is normally the value returned by a
    745      * previous call to {@code arrive} or {@code arriveAndDeregister}.
    746      * @param timeout how long to wait before giving up, in units of
    747      *        {@code unit}
    748      * @param unit a {@code TimeUnit} determining how to interpret the
    749      *        {@code timeout} parameter
    750      * @return the next arrival phase number, or the argument if it is
    751      * negative, or the (negative) {@linkplain #getPhase() current phase}
    752      * if terminated
    753      * @throws InterruptedException if thread interrupted while waiting
    754      * @throws TimeoutException if timed out while waiting
    755      */
    756     public int awaitAdvanceInterruptibly(int phase,
    757                                          long timeout, TimeUnit unit)
    758         throws InterruptedException, TimeoutException {
    759         long nanos = unit.toNanos(timeout);
    760         final Phaser root = this.root;
    761         long s = (root == this) ? state : reconcileState();
    762         int p = (int)(s >>> PHASE_SHIFT);
    763         if (phase < 0)
    764             return phase;
    765         if (p == phase) {
    766             QNode node = new QNode(this, phase, true, true, nanos);
    767             p = root.internalAwaitAdvance(phase, node);
    768             if (node.wasInterrupted)
    769                 throw new InterruptedException();
    770             else if (p == phase)
    771                 throw new TimeoutException();
    772         }
    773         return p;
    774     }
    775 
    776     /**
    777      * Forces this phaser to enter termination state.  Counts of
    778      * registered parties are unaffected.  If this phaser is a member
    779      * of a tiered set of phasers, then all of the phasers in the set
    780      * are terminated.  If this phaser is already terminated, this
    781      * method has no effect.  This method may be useful for
    782      * coordinating recovery after one or more tasks encounter
    783      * unexpected exceptions.
    784      */
    785     public void forceTermination() {
    786         // Only need to change root state
    787         final Phaser root = this.root;
    788         long s;
    789         while ((s = root.state) >= 0) {
    790             if (UNSAFE.compareAndSwapLong(root, stateOffset,
    791                                           s, s | TERMINATION_BIT)) {
    792                 // signal all threads
    793                 releaseWaiters(0); // Waiters on evenQ
    794                 releaseWaiters(1); // Waiters on oddQ
    795                 return;
    796             }
    797         }
    798     }
    799 
    800     /**
    801      * Returns the current phase number. The maximum phase number is
    802      * {@code Integer.MAX_VALUE}, after which it restarts at
    803      * zero. Upon termination, the phase number is negative,
    804      * in which case the prevailing phase prior to termination
    805      * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
    806      *
    807      * @return the phase number, or a negative value if terminated
    808      */
    809     public final int getPhase() {
    810         return (int)(root.state >>> PHASE_SHIFT);
    811     }
    812 
    813     /**
    814      * Returns the number of parties registered at this phaser.
    815      *
    816      * @return the number of parties
    817      */
    818     public int getRegisteredParties() {
    819         return partiesOf(state);
    820     }
    821 
    822     /**
    823      * Returns the number of registered parties that have arrived at
    824      * the current phase of this phaser. If this phaser has terminated,
    825      * the returned value is meaningless and arbitrary.
    826      *
    827      * @return the number of arrived parties
    828      */
    829     public int getArrivedParties() {
    830         return arrivedOf(reconcileState());
    831     }
    832 
    833     /**
    834      * Returns the number of registered parties that have not yet
    835      * arrived at the current phase of this phaser. If this phaser has
    836      * terminated, the returned value is meaningless and arbitrary.
    837      *
    838      * @return the number of unarrived parties
    839      */
    840     public int getUnarrivedParties() {
    841         return unarrivedOf(reconcileState());
    842     }
    843 
    844     /**
    845      * Returns the parent of this phaser, or {@code null} if none.
    846      *
    847      * @return the parent of this phaser, or {@code null} if none
    848      */
    849     public Phaser getParent() {
    850         return parent;
    851     }
    852 
    853     /**
    854      * Returns the root ancestor of this phaser, which is the same as
    855      * this phaser if it has no parent.
    856      *
    857      * @return the root ancestor of this phaser
    858      */
    859     public Phaser getRoot() {
    860         return root;
    861     }
    862 
    863     /**
    864      * Returns {@code true} if this phaser has been terminated.
    865      *
    866      * @return {@code true} if this phaser has been terminated
    867      */
    868     public boolean isTerminated() {
    869         return root.state < 0L;
    870     }
    871 
    872     /**
    873      * Overridable method to perform an action upon impending phase
    874      * advance, and to control termination. This method is invoked
    875      * upon arrival of the party advancing this phaser (when all other
    876      * waiting parties are dormant).  If this method returns {@code
    877      * true}, this phaser will be set to a final termination state
    878      * upon advance, and subsequent calls to {@link #isTerminated}
    879      * will return true. Any (unchecked) Exception or Error thrown by
    880      * an invocation of this method is propagated to the party
    881      * attempting to advance this phaser, in which case no advance
    882      * occurs.
    883      *
    884      * <p>The arguments to this method provide the state of the phaser
    885      * prevailing for the current transition.  The effects of invoking
    886      * arrival, registration, and waiting methods on this phaser from
    887      * within {@code onAdvance} are unspecified and should not be
    888      * relied on.
    889      *
    890      * <p>If this phaser is a member of a tiered set of phasers, then
    891      * {@code onAdvance} is invoked only for its root phaser on each
    892      * advance.
    893      *
    894      * <p>To support the most common use cases, the default
    895      * implementation of this method returns {@code true} when the
    896      * number of registered parties has become zero as the result of a
    897      * party invoking {@code arriveAndDeregister}.  You can disable
    898      * this behavior, thus enabling continuation upon future
    899      * registrations, by overriding this method to always return
    900      * {@code false}:
    901      *
    902      * <pre> {@code
    903      * Phaser phaser = new Phaser() {
    904      *   protected boolean onAdvance(int phase, int parties) { return false; }
    905      * }}</pre>
    906      *
    907      * @param phase the current phase number on entry to this method,
    908      * before this phaser is advanced
    909      * @param registeredParties the current number of registered parties
    910      * @return {@code true} if this phaser should terminate
    911      */
    912     protected boolean onAdvance(int phase, int registeredParties) {
    913         return registeredParties == 0;
    914     }
    915 
    916     /**
    917      * Returns a string identifying this phaser, as well as its
    918      * state.  The state, in brackets, includes the String {@code
    919      * "phase = "} followed by the phase number, {@code "parties = "}
    920      * followed by the number of registered parties, and {@code
    921      * "arrived = "} followed by the number of arrived parties.
    922      *
    923      * @return a string identifying this phaser, as well as its state
    924      */
    925     public String toString() {
    926         return stateToString(reconcileState());
    927     }
    928 
    929     /**
    930      * Implementation of toString and string-based error messages
    931      */
    932     private String stateToString(long s) {
    933         return super.toString() +
    934             "[phase = " + phaseOf(s) +
    935             " parties = " + partiesOf(s) +
    936             " arrived = " + arrivedOf(s) + "]";
    937     }
    938 
    939     // Waiting mechanics
    940 
    941     /**
    942      * Removes and signals threads from queue for phase.
    943      */
    944     private void releaseWaiters(int phase) {
    945         QNode q;   // first element of queue
    946         Thread t;  // its thread
    947         AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
    948         while ((q = head.get()) != null &&
    949                q.phase != (int)(root.state >>> PHASE_SHIFT)) {
    950             if (head.compareAndSet(q, q.next) &&
    951                 (t = q.thread) != null) {
    952                 q.thread = null;
    953                 LockSupport.unpark(t);
    954             }
    955         }
    956     }
    957 
    958     /**
    959      * Variant of releaseWaiters that additionally tries to remove any
    960      * nodes no longer waiting for advance due to timeout or
    961      * interrupt. Currently, nodes are removed only if they are at
    962      * head of queue, which suffices to reduce memory footprint in
    963      * most usages.
    964      *
    965      * @return current phase on exit
    966      */
    967     private int abortWait(int phase) {
    968         AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
    969         for (;;) {
    970             Thread t;
    971             QNode q = head.get();
    972             int p = (int)(root.state >>> PHASE_SHIFT);
    973             if (q == null || ((t = q.thread) != null && q.phase == p))
    974                 return p;
    975             if (head.compareAndSet(q, q.next) && t != null) {
    976                 q.thread = null;
    977                 LockSupport.unpark(t);
    978             }
    979         }
    980     }
    981 
    982     /** The number of CPUs, for spin control */
    983     private static final int NCPU = Runtime.getRuntime().availableProcessors();
    984 
    985     /**
    986      * The number of times to spin before blocking while waiting for
    987      * advance, per arrival while waiting. On multiprocessors, fully
    988      * blocking and waking up a large number of threads all at once is
    989      * usually a very slow process, so we use rechargeable spins to
    990      * avoid it when threads regularly arrive: When a thread in
    991      * internalAwaitAdvance notices another arrival before blocking,
    992      * and there appear to be enough CPUs available, it spins
    993      * SPINS_PER_ARRIVAL more times before blocking. The value trades
    994      * off good-citizenship vs big unnecessary slowdowns.
    995      */
    996     static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
    997 
    998     /**
    999      * Possibly blocks and waits for phase to advance unless aborted.
   1000      * Call only on root phaser.
   1001      *
   1002      * @param phase current phase
   1003      * @param node if non-null, the wait node to track interrupt and timeout;
   1004      * if null, denotes noninterruptible wait
   1005      * @return current phase
   1006      */
   1007     private int internalAwaitAdvance(int phase, QNode node) {
   1008         // assert root == this;
   1009         releaseWaiters(phase-1);          // ensure old queue clean
   1010         boolean queued = false;           // true when node is enqueued
   1011         int lastUnarrived = 0;            // to increase spins upon change
   1012         int spins = SPINS_PER_ARRIVAL;
   1013         long s;
   1014         int p;
   1015         while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
   1016             if (node == null) {           // spinning in noninterruptible mode
   1017                 int unarrived = (int)s & UNARRIVED_MASK;
   1018                 if (unarrived != lastUnarrived &&
   1019                     (lastUnarrived = unarrived) < NCPU)
   1020                     spins += SPINS_PER_ARRIVAL;
   1021                 boolean interrupted = Thread.interrupted();
   1022                 if (interrupted || --spins < 0) { // need node to record intr
   1023                     node = new QNode(this, phase, false, false, 0L);
   1024                     node.wasInterrupted = interrupted;
   1025                 }
   1026             }
   1027             else if (node.isReleasable()) // done or aborted
   1028                 break;
   1029             else if (!queued) {           // push onto queue
   1030                 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
   1031                 QNode q = node.next = head.get();
   1032                 if ((q == null || q.phase == phase) &&
   1033                     (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
   1034                     queued = head.compareAndSet(q, node);
   1035             }
   1036             else {
   1037                 try {
   1038                     ForkJoinPool.managedBlock(node);
   1039                 } catch (InterruptedException ie) {
   1040                     node.wasInterrupted = true;
   1041                 }
   1042             }
   1043         }
   1044 
   1045         if (node != null) {
   1046             if (node.thread != null)
   1047                 node.thread = null;       // avoid need for unpark()
   1048             if (node.wasInterrupted && !node.interruptible)
   1049                 Thread.currentThread().interrupt();
   1050             if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
   1051                 return abortWait(phase); // possibly clean up on abort
   1052         }
   1053         releaseWaiters(phase);
   1054         return p;
   1055     }
   1056 
   1057     /**
   1058      * Wait nodes for Treiber stack representing wait queue
   1059      */
   1060     static final class QNode implements ForkJoinPool.ManagedBlocker {
   1061         final Phaser phaser;
   1062         final int phase;
   1063         final boolean interruptible;
   1064         final boolean timed;
   1065         boolean wasInterrupted;
   1066         long nanos;
   1067         final long deadline;
   1068         volatile Thread thread; // nulled to cancel wait
   1069         QNode next;
   1070 
   1071         QNode(Phaser phaser, int phase, boolean interruptible,
   1072               boolean timed, long nanos) {
   1073             this.phaser = phaser;
   1074             this.phase = phase;
   1075             this.interruptible = interruptible;
   1076             this.nanos = nanos;
   1077             this.timed = timed;
   1078             this.deadline = timed ? System.nanoTime() + nanos : 0L;
   1079             thread = Thread.currentThread();
   1080         }
   1081 
   1082         public boolean isReleasable() {
   1083             if (thread == null)
   1084                 return true;
   1085             if (phaser.getPhase() != phase) {
   1086                 thread = null;
   1087                 return true;
   1088             }
   1089             if (Thread.interrupted())
   1090                 wasInterrupted = true;
   1091             if (wasInterrupted && interruptible) {
   1092                 thread = null;
   1093                 return true;
   1094             }
   1095             if (timed) {
   1096                 if (nanos > 0L) {
   1097                     nanos = deadline - System.nanoTime();
   1098                 }
   1099                 if (nanos <= 0L) {
   1100                     thread = null;
   1101                     return true;
   1102                 }
   1103             }
   1104             return false;
   1105         }
   1106 
   1107         public boolean block() {
   1108             if (isReleasable())
   1109                 return true;
   1110             else if (!timed)
   1111                 LockSupport.park(this);
   1112             else if (nanos > 0L)
   1113                 LockSupport.parkNanos(this, nanos);
   1114             return isReleasable();
   1115         }
   1116     }
   1117 
   1118     // Unsafe mechanics
   1119 
   1120     private static final sun.misc.Unsafe UNSAFE;
   1121     private static final long stateOffset;
   1122     static {
   1123         try {
   1124             UNSAFE = sun.misc.Unsafe.getUnsafe();
   1125             Class<?> k = Phaser.class;
   1126             stateOffset = UNSAFE.objectFieldOffset
   1127                 (k.getDeclaredField("state"));
   1128         } catch (Exception e) {
   1129             throw new Error(e);
   1130         }
   1131     }
   1132 }
   1133