Home | History | Annotate | Download | only in sanitizer_common
      1 //===-- sanitizer_deadlock_detector.h ---------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is a part of Sanitizer runtime.
     11 // The deadlock detector maintains a directed graph of lock acquisitions.
     12 // When a lock event happens, the detector checks if the locks already held by
     13 // the current thread are reachable from the newly acquired lock.
     14 //
     15 // The detector can handle only a fixed amount of simultaneously live locks
     16 // (a lock is alive if it has been locked at least once and has not been
     17 // destroyed). When the maximal number of locks is reached the entire graph
     18 // is flushed and the new lock epoch is started. The node ids from the old
     19 // epochs can not be used with any of the detector methods except for
     20 // nodeBelongsToCurrentEpoch().
     21 //
     22 // FIXME: this is work in progress, nothing really works yet.
     23 //
     24 //===----------------------------------------------------------------------===//
     25 
     26 #ifndef SANITIZER_DEADLOCK_DETECTOR_H
     27 #define SANITIZER_DEADLOCK_DETECTOR_H
     28 
     29 #include "sanitizer_common.h"
     30 #include "sanitizer_bvgraph.h"
     31 
     32 namespace __sanitizer {
     33 
     34 // Thread-local state for DeadlockDetector.
     35 // It contains the locks currently held by the owning thread.
     36 template <class BV>
     37 class DeadlockDetectorTLS {
     38  public:
     39   // No CTOR.
     40   void clear() {
     41     bv_.clear();
     42     epoch_ = 0;
     43     n_recursive_locks = 0;
     44     n_all_locks_ = 0;
     45   }
     46 
     47   bool empty() const { return bv_.empty(); }
     48 
     49   void ensureCurrentEpoch(uptr current_epoch) {
     50     if (epoch_ == current_epoch) return;
     51     bv_.clear();
     52     epoch_ = current_epoch;
     53   }
     54 
     55   uptr getEpoch() const { return epoch_; }
     56 
     57   // Returns true if this is the first (non-recursive) acquisition of this lock.
     58   bool addLock(uptr lock_id, uptr current_epoch, u32 stk) {
     59     // Printf("addLock: %zx %zx stk %u\n", lock_id, current_epoch, stk);
     60     CHECK_EQ(epoch_, current_epoch);
     61     if (!bv_.setBit(lock_id)) {
     62       // The lock is already held by this thread, it must be recursive.
     63       CHECK_LT(n_recursive_locks, ARRAY_SIZE(recursive_locks));
     64       recursive_locks[n_recursive_locks++] = lock_id;
     65       return false;
     66     }
     67     CHECK_LT(n_all_locks_, ARRAY_SIZE(all_locks_with_contexts_));
     68     // lock_id < BV::kSize, can cast to a smaller int.
     69     u32 lock_id_short = static_cast<u32>(lock_id);
     70     LockWithContext l = {lock_id_short, stk};
     71     all_locks_with_contexts_[n_all_locks_++] = l;
     72     return true;
     73   }
     74 
     75   void removeLock(uptr lock_id) {
     76     if (n_recursive_locks) {
     77       for (sptr i = n_recursive_locks - 1; i >= 0; i--) {
     78         if (recursive_locks[i] == lock_id) {
     79           n_recursive_locks--;
     80           Swap(recursive_locks[i], recursive_locks[n_recursive_locks]);
     81           return;
     82         }
     83       }
     84     }
     85     // Printf("remLock: %zx %zx\n", lock_id, epoch_);
     86     CHECK(bv_.clearBit(lock_id));
     87     if (n_all_locks_) {
     88       for (sptr i = n_all_locks_ - 1; i >= 0; i--) {
     89         if (all_locks_with_contexts_[i].lock == static_cast<u32>(lock_id)) {
     90           Swap(all_locks_with_contexts_[i],
     91                all_locks_with_contexts_[n_all_locks_ - 1]);
     92           n_all_locks_--;
     93           break;
     94         }
     95       }
     96     }
     97   }
     98 
     99   u32 findLockContext(uptr lock_id) {
    100     for (uptr i = 0; i < n_all_locks_; i++)
    101       if (all_locks_with_contexts_[i].lock == static_cast<u32>(lock_id))
    102         return all_locks_with_contexts_[i].stk;
    103     return 0;
    104   }
    105 
    106   const BV &getLocks(uptr current_epoch) const {
    107     CHECK_EQ(epoch_, current_epoch);
    108     return bv_;
    109   }
    110 
    111   uptr getNumLocks() const { return n_all_locks_; }
    112   uptr getLock(uptr idx) const { return all_locks_with_contexts_[idx].lock; }
    113 
    114  private:
    115   BV bv_;
    116   uptr epoch_;
    117   uptr recursive_locks[64];
    118   uptr n_recursive_locks;
    119   struct LockWithContext {
    120     u32 lock;
    121     u32 stk;
    122   };
    123   LockWithContext all_locks_with_contexts_[64];
    124   uptr n_all_locks_;
    125 };
    126 
    127 // DeadlockDetector.
    128 // For deadlock detection to work we need one global DeadlockDetector object
    129 // and one DeadlockDetectorTLS object per evey thread.
    130 // This class is not thread safe, all concurrent accesses should be guarded
    131 // by an external lock.
    132 // Most of the methods of this class are not thread-safe (i.e. should
    133 // be protected by an external lock) unless explicitly told otherwise.
    134 template <class BV>
    135 class DeadlockDetector {
    136  public:
    137   typedef BV BitVector;
    138 
    139   uptr size() const { return g_.size(); }
    140 
    141   // No CTOR.
    142   void clear() {
    143     current_epoch_ = 0;
    144     available_nodes_.clear();
    145     recycled_nodes_.clear();
    146     g_.clear();
    147     n_edges_ = 0;
    148   }
    149 
    150   // Allocate new deadlock detector node.
    151   // If we are out of available nodes first try to recycle some.
    152   // If there is nothing to recycle, flush the graph and increment the epoch.
    153   // Associate 'data' (opaque user's object) with the new node.
    154   uptr newNode(uptr data) {
    155     if (!available_nodes_.empty())
    156       return getAvailableNode(data);
    157     if (!recycled_nodes_.empty()) {
    158       // Printf("recycling: n_edges_ %zd\n", n_edges_);
    159       for (sptr i = n_edges_ - 1; i >= 0; i--) {
    160         if (recycled_nodes_.getBit(edges_[i].from) ||
    161             recycled_nodes_.getBit(edges_[i].to)) {
    162           Swap(edges_[i], edges_[n_edges_ - 1]);
    163           n_edges_--;
    164         }
    165       }
    166       CHECK(available_nodes_.empty());
    167       // removeEdgesFrom was called in removeNode.
    168       g_.removeEdgesTo(recycled_nodes_);
    169       available_nodes_.setUnion(recycled_nodes_);
    170       recycled_nodes_.clear();
    171       return getAvailableNode(data);
    172     }
    173     // We are out of vacant nodes. Flush and increment the current_epoch_.
    174     current_epoch_ += size();
    175     recycled_nodes_.clear();
    176     available_nodes_.setAll();
    177     g_.clear();
    178     return getAvailableNode(data);
    179   }
    180 
    181   // Get data associated with the node created by newNode().
    182   uptr getData(uptr node) const { return data_[nodeToIndex(node)]; }
    183 
    184   bool nodeBelongsToCurrentEpoch(uptr node) {
    185     return node && (node / size() * size()) == current_epoch_;
    186   }
    187 
    188   void removeNode(uptr node) {
    189     uptr idx = nodeToIndex(node);
    190     CHECK(!available_nodes_.getBit(idx));
    191     CHECK(recycled_nodes_.setBit(idx));
    192     g_.removeEdgesFrom(idx);
    193   }
    194 
    195   void ensureCurrentEpoch(DeadlockDetectorTLS<BV> *dtls) {
    196     dtls->ensureCurrentEpoch(current_epoch_);
    197   }
    198 
    199   // Returns true if there is a cycle in the graph after this lock event.
    200   // Ideally should be called before the lock is acquired so that we can
    201   // report a deadlock before a real deadlock happens.
    202   bool onLockBefore(DeadlockDetectorTLS<BV> *dtls, uptr cur_node) {
    203     ensureCurrentEpoch(dtls);
    204     uptr cur_idx = nodeToIndex(cur_node);
    205     return g_.isReachable(cur_idx, dtls->getLocks(current_epoch_));
    206   }
    207 
    208   u32 findLockContext(DeadlockDetectorTLS<BV> *dtls, uptr node) {
    209     return dtls->findLockContext(nodeToIndex(node));
    210   }
    211 
    212   // Add cur_node to the set of locks held currently by dtls.
    213   void onLockAfter(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk = 0) {
    214     ensureCurrentEpoch(dtls);
    215     uptr cur_idx = nodeToIndex(cur_node);
    216     dtls->addLock(cur_idx, current_epoch_, stk);
    217   }
    218 
    219   // Experimental *racy* fast path function.
    220   // Returns true if all edges from the currently held locks to cur_node exist.
    221   bool hasAllEdges(DeadlockDetectorTLS<BV> *dtls, uptr cur_node) {
    222     uptr local_epoch = dtls->getEpoch();
    223     // Read from current_epoch_ is racy.
    224     if (cur_node && local_epoch == current_epoch_ &&
    225         local_epoch == nodeToEpoch(cur_node)) {
    226       uptr cur_idx = nodeToIndexUnchecked(cur_node);
    227       for (uptr i = 0, n = dtls->getNumLocks(); i < n; i++) {
    228         if (!g_.hasEdge(dtls->getLock(i), cur_idx))
    229           return false;
    230       }
    231       return true;
    232     }
    233     return false;
    234   }
    235 
    236   // Adds edges from currently held locks to cur_node,
    237   // returns the number of added edges, and puts the sources of added edges
    238   // into added_edges[].
    239   // Should be called before onLockAfter.
    240   uptr addEdges(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk,
    241                 int unique_tid) {
    242     ensureCurrentEpoch(dtls);
    243     uptr cur_idx = nodeToIndex(cur_node);
    244     uptr added_edges[40];
    245     uptr n_added_edges = g_.addEdges(dtls->getLocks(current_epoch_), cur_idx,
    246                                      added_edges, ARRAY_SIZE(added_edges));
    247     for (uptr i = 0; i < n_added_edges; i++) {
    248       if (n_edges_ < ARRAY_SIZE(edges_)) {
    249         Edge e = {(u16)added_edges[i], (u16)cur_idx,
    250                   dtls->findLockContext(added_edges[i]), stk,
    251                   unique_tid};
    252         edges_[n_edges_++] = e;
    253       }
    254       // Printf("Edge%zd: %u %zd=>%zd in T%d\n",
    255       //        n_edges_, stk, added_edges[i], cur_idx, unique_tid);
    256     }
    257     return n_added_edges;
    258   }
    259 
    260   bool findEdge(uptr from_node, uptr to_node, u32 *stk_from, u32 *stk_to,
    261                 int *unique_tid) {
    262     uptr from_idx = nodeToIndex(from_node);
    263     uptr to_idx = nodeToIndex(to_node);
    264     for (uptr i = 0; i < n_edges_; i++) {
    265       if (edges_[i].from == from_idx && edges_[i].to == to_idx) {
    266         *stk_from = edges_[i].stk_from;
    267         *stk_to = edges_[i].stk_to;
    268         *unique_tid = edges_[i].unique_tid;
    269         return true;
    270       }
    271     }
    272     return false;
    273   }
    274 
    275   // Test-only function. Handles the before/after lock events,
    276   // returns true if there is a cycle.
    277   bool onLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk = 0) {
    278     ensureCurrentEpoch(dtls);
    279     bool is_reachable = !isHeld(dtls, cur_node) && onLockBefore(dtls, cur_node);
    280     addEdges(dtls, cur_node, stk, 0);
    281     onLockAfter(dtls, cur_node, stk);
    282     return is_reachable;
    283   }
    284 
    285   // Handles the try_lock event, returns false.
    286   // When a try_lock event happens (i.e. a try_lock call succeeds) we need
    287   // to add this lock to the currently held locks, but we should not try to
    288   // change the lock graph or to detect a cycle.  We may want to investigate
    289   // whether a more aggressive strategy is possible for try_lock.
    290   bool onTryLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk = 0) {
    291     ensureCurrentEpoch(dtls);
    292     uptr cur_idx = nodeToIndex(cur_node);
    293     dtls->addLock(cur_idx, current_epoch_, stk);
    294     return false;
    295   }
    296 
    297   // Returns true iff dtls is empty (no locks are currently held) and we can
    298   // add the node to the currently held locks w/o chanding the global state.
    299   // This operation is thread-safe as it only touches the dtls.
    300   bool onFirstLock(DeadlockDetectorTLS<BV> *dtls, uptr node, u32 stk = 0) {
    301     if (!dtls->empty()) return false;
    302     if (dtls->getEpoch() && dtls->getEpoch() == nodeToEpoch(node)) {
    303       dtls->addLock(nodeToIndexUnchecked(node), nodeToEpoch(node), stk);
    304       return true;
    305     }
    306     return false;
    307   }
    308 
    309   // Finds a path between the lock 'cur_node' (currently not held in dtls)
    310   // and some currently held lock, returns the length of the path
    311   // or 0 on failure.
    312   uptr findPathToLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, uptr *path,
    313                       uptr path_size) {
    314     tmp_bv_.copyFrom(dtls->getLocks(current_epoch_));
    315     uptr idx = nodeToIndex(cur_node);
    316     CHECK(!tmp_bv_.getBit(idx));
    317     uptr res = g_.findShortestPath(idx, tmp_bv_, path, path_size);
    318     for (uptr i = 0; i < res; i++)
    319       path[i] = indexToNode(path[i]);
    320     if (res)
    321       CHECK_EQ(path[0], cur_node);
    322     return res;
    323   }
    324 
    325   // Handle the unlock event.
    326   // This operation is thread-safe as it only touches the dtls.
    327   void onUnlock(DeadlockDetectorTLS<BV> *dtls, uptr node) {
    328     if (dtls->getEpoch() == nodeToEpoch(node))
    329       dtls->removeLock(nodeToIndexUnchecked(node));
    330   }
    331 
    332   // Tries to handle the lock event w/o writing to global state.
    333   // Returns true on success.
    334   // This operation is thread-safe as it only touches the dtls
    335   // (modulo racy nature of hasAllEdges).
    336   bool onLockFast(DeadlockDetectorTLS<BV> *dtls, uptr node, u32 stk = 0) {
    337     if (hasAllEdges(dtls, node)) {
    338       dtls->addLock(nodeToIndexUnchecked(node), nodeToEpoch(node), stk);
    339       return true;
    340     }
    341     return false;
    342   }
    343 
    344   bool isHeld(DeadlockDetectorTLS<BV> *dtls, uptr node) const {
    345     return dtls->getLocks(current_epoch_).getBit(nodeToIndex(node));
    346   }
    347 
    348   uptr testOnlyGetEpoch() const { return current_epoch_; }
    349   bool testOnlyHasEdge(uptr l1, uptr l2) {
    350     return g_.hasEdge(nodeToIndex(l1), nodeToIndex(l2));
    351   }
    352   // idx1 and idx2 are raw indices to g_, not lock IDs.
    353   bool testOnlyHasEdgeRaw(uptr idx1, uptr idx2) {
    354     return g_.hasEdge(idx1, idx2);
    355   }
    356 
    357   void Print() {
    358     for (uptr from = 0; from < size(); from++)
    359       for (uptr to = 0; to < size(); to++)
    360         if (g_.hasEdge(from, to))
    361           Printf("  %zx => %zx\n", from, to);
    362   }
    363 
    364  private:
    365   void check_idx(uptr idx) const { CHECK_LT(idx, size()); }
    366 
    367   void check_node(uptr node) const {
    368     CHECK_GE(node, size());
    369     CHECK_EQ(current_epoch_, nodeToEpoch(node));
    370   }
    371 
    372   uptr indexToNode(uptr idx) const {
    373     check_idx(idx);
    374     return idx + current_epoch_;
    375   }
    376 
    377   uptr nodeToIndexUnchecked(uptr node) const { return node % size(); }
    378 
    379   uptr nodeToIndex(uptr node) const {
    380     check_node(node);
    381     return nodeToIndexUnchecked(node);
    382   }
    383 
    384   uptr nodeToEpoch(uptr node) const { return node / size() * size(); }
    385 
    386   uptr getAvailableNode(uptr data) {
    387     uptr idx = available_nodes_.getAndClearFirstOne();
    388     data_[idx] = data;
    389     return indexToNode(idx);
    390   }
    391 
    392   struct Edge {
    393     u16 from;
    394     u16 to;
    395     u32 stk_from;
    396     u32 stk_to;
    397     int unique_tid;
    398   };
    399 
    400   uptr current_epoch_;
    401   BV available_nodes_;
    402   BV recycled_nodes_;
    403   BV tmp_bv_;
    404   BVGraph<BV> g_;
    405   uptr data_[BV::kSize];
    406   Edge edges_[BV::kSize * 32];
    407   uptr n_edges_;
    408 };
    409 
    410 } // namespace __sanitizer
    411 
    412 #endif // SANITIZER_DEADLOCK_DETECTOR_H
    413