Home | History | Annotate | Download | only in surfaceflinger
      1 /*
      2  * Copyright (C) 2007 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include <math.h>
     18 
     19 #include <cutils/compiler.h>
     20 #include <utils/String8.h>
     21 #include <ui/Region.h>
     22 
     23 #include "clz.h"
     24 #include "Transform.h"
     25 
     26 // ---------------------------------------------------------------------------
     27 
     28 namespace android {
     29 
     30 // ---------------------------------------------------------------------------
     31 
     32 Transform::Transform() {
     33     reset();
     34 }
     35 
     36 Transform::Transform(const Transform&  other)
     37     : mMatrix(other.mMatrix), mType(other.mType) {
     38 }
     39 
     40 Transform::Transform(uint32_t orientation) {
     41     set(orientation, 0, 0);
     42 }
     43 
     44 Transform::~Transform() {
     45 }
     46 
     47 static const float EPSILON = 0.0f;
     48 
     49 bool Transform::isZero(float f) {
     50     return fabs(f) <= EPSILON;
     51 }
     52 
     53 bool Transform::absIsOne(float f) {
     54     return isZero(fabs(f) - 1.0f);
     55 }
     56 
     57 Transform Transform::operator * (const Transform& rhs) const
     58 {
     59     if (CC_LIKELY(mType == IDENTITY))
     60         return rhs;
     61 
     62     Transform r(*this);
     63     if (rhs.mType == IDENTITY)
     64         return r;
     65 
     66     // TODO: we could use mType to optimize the matrix multiply
     67     const mat33& A(mMatrix);
     68     const mat33& B(rhs.mMatrix);
     69           mat33& D(r.mMatrix);
     70     for (int i=0 ; i<3 ; i++) {
     71         const float v0 = A[0][i];
     72         const float v1 = A[1][i];
     73         const float v2 = A[2][i];
     74         D[0][i] = v0*B[0][0] + v1*B[0][1] + v2*B[0][2];
     75         D[1][i] = v0*B[1][0] + v1*B[1][1] + v2*B[1][2];
     76         D[2][i] = v0*B[2][0] + v1*B[2][1] + v2*B[2][2];
     77     }
     78     r.mType |= rhs.mType;
     79 
     80     // TODO: we could recompute this value from r and rhs
     81     r.mType &= 0xFF;
     82     r.mType |= UNKNOWN_TYPE;
     83     return r;
     84 }
     85 
     86 const vec3& Transform::operator [] (size_t i) const {
     87     return mMatrix[i];
     88 }
     89 
     90 bool Transform::transformed() const {
     91     return type() > TRANSLATE;
     92 }
     93 
     94 float Transform::tx() const {
     95     return mMatrix[2][0];
     96 }
     97 
     98 float Transform::ty() const {
     99     return mMatrix[2][1];
    100 }
    101 
    102 void Transform::reset() {
    103     mType = IDENTITY;
    104     for(int i=0 ; i<3 ; i++) {
    105         vec3& v(mMatrix[i]);
    106         for (int j=0 ; j<3 ; j++)
    107             v[j] = ((i==j) ? 1.0f : 0.0f);
    108     }
    109 }
    110 
    111 void Transform::set(float tx, float ty)
    112 {
    113     mMatrix[2][0] = tx;
    114     mMatrix[2][1] = ty;
    115     mMatrix[2][2] = 1.0f;
    116 
    117     if (isZero(tx) && isZero(ty)) {
    118         mType &= ~TRANSLATE;
    119     } else {
    120         mType |= TRANSLATE;
    121     }
    122 }
    123 
    124 void Transform::set(float a, float b, float c, float d)
    125 {
    126     mat33& M(mMatrix);
    127     M[0][0] = a;    M[1][0] = b;
    128     M[0][1] = c;    M[1][1] = d;
    129     M[0][2] = 0;    M[1][2] = 0;
    130     mType = UNKNOWN_TYPE;
    131 }
    132 
    133 status_t Transform::set(uint32_t flags, float w, float h)
    134 {
    135     if (flags & ROT_INVALID) {
    136         // that's not allowed!
    137         reset();
    138         return BAD_VALUE;
    139     }
    140 
    141     Transform H, V, R;
    142     if (flags & ROT_90) {
    143         // w & h are inverted when rotating by 90 degrees
    144         swap(w, h);
    145     }
    146 
    147     if (flags & FLIP_H) {
    148         H.mType = (FLIP_H << 8) | SCALE;
    149         H.mType |= isZero(w) ? IDENTITY : TRANSLATE;
    150         mat33& M(H.mMatrix);
    151         M[0][0] = -1;
    152         M[2][0] = w;
    153     }
    154 
    155     if (flags & FLIP_V) {
    156         V.mType = (FLIP_V << 8) | SCALE;
    157         V.mType |= isZero(h) ? IDENTITY : TRANSLATE;
    158         mat33& M(V.mMatrix);
    159         M[1][1] = -1;
    160         M[2][1] = h;
    161     }
    162 
    163     if (flags & ROT_90) {
    164         const float original_w = h;
    165         R.mType = (ROT_90 << 8) | ROTATE;
    166         R.mType |= isZero(original_w) ? IDENTITY : TRANSLATE;
    167         mat33& M(R.mMatrix);
    168         M[0][0] = 0;    M[1][0] =-1;    M[2][0] = original_w;
    169         M[0][1] = 1;    M[1][1] = 0;
    170     }
    171 
    172     *this = (R*(H*V));
    173     return NO_ERROR;
    174 }
    175 
    176 vec2 Transform::transform(const vec2& v) const {
    177     vec2 r;
    178     const mat33& M(mMatrix);
    179     r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0];
    180     r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1];
    181     return r;
    182 }
    183 
    184 vec3 Transform::transform(const vec3& v) const {
    185     vec3 r;
    186     const mat33& M(mMatrix);
    187     r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0]*v[2];
    188     r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1]*v[2];
    189     r[2] = M[0][2]*v[0] + M[1][2]*v[1] + M[2][2]*v[2];
    190     return r;
    191 }
    192 
    193 vec2 Transform::transform(int x, int y) const
    194 {
    195     return transform(vec2(x,y));
    196 }
    197 
    198 Rect Transform::makeBounds(int w, int h) const
    199 {
    200     return transform( Rect(w, h) );
    201 }
    202 
    203 Rect Transform::transform(const Rect& bounds) const
    204 {
    205     Rect r;
    206     vec2 lt( bounds.left,  bounds.top    );
    207     vec2 rt( bounds.right, bounds.top    );
    208     vec2 lb( bounds.left,  bounds.bottom );
    209     vec2 rb( bounds.right, bounds.bottom );
    210 
    211     lt = transform(lt);
    212     rt = transform(rt);
    213     lb = transform(lb);
    214     rb = transform(rb);
    215 
    216     r.left   = floorf(min(lt[0], rt[0], lb[0], rb[0]) + 0.5f);
    217     r.top    = floorf(min(lt[1], rt[1], lb[1], rb[1]) + 0.5f);
    218     r.right  = floorf(max(lt[0], rt[0], lb[0], rb[0]) + 0.5f);
    219     r.bottom = floorf(max(lt[1], rt[1], lb[1], rb[1]) + 0.5f);
    220 
    221     return r;
    222 }
    223 
    224 Region Transform::transform(const Region& reg) const
    225 {
    226     Region out;
    227     if (CC_UNLIKELY(transformed())) {
    228         if (CC_LIKELY(preserveRects())) {
    229             Region::const_iterator it = reg.begin();
    230             Region::const_iterator const end = reg.end();
    231             while (it != end) {
    232                 out.orSelf(transform(*it++));
    233             }
    234         } else {
    235             out.set(transform(reg.bounds()));
    236         }
    237     } else {
    238         int xpos = floorf(tx() + 0.5f);
    239         int ypos = floorf(ty() + 0.5f);
    240         out = reg.translate(xpos, ypos);
    241     }
    242     return out;
    243 }
    244 
    245 uint32_t Transform::type() const
    246 {
    247     if (mType & UNKNOWN_TYPE) {
    248         // recompute what this transform is
    249 
    250         const mat33& M(mMatrix);
    251         const float a = M[0][0];
    252         const float b = M[1][0];
    253         const float c = M[0][1];
    254         const float d = M[1][1];
    255         const float x = M[2][0];
    256         const float y = M[2][1];
    257 
    258         bool scale = false;
    259         uint32_t flags = ROT_0;
    260         if (isZero(b) && isZero(c)) {
    261             if (a<0)    flags |= FLIP_H;
    262             if (d<0)    flags |= FLIP_V;
    263             if (!absIsOne(a) || !absIsOne(d)) {
    264                 scale = true;
    265             }
    266         } else if (isZero(a) && isZero(d)) {
    267             flags |= ROT_90;
    268             if (b>0)    flags |= FLIP_V;
    269             if (c<0)    flags |= FLIP_H;
    270             if (!absIsOne(b) || !absIsOne(c)) {
    271                 scale = true;
    272             }
    273         } else {
    274             // there is a skew component and/or a non 90 degrees rotation
    275             flags = ROT_INVALID;
    276         }
    277 
    278         mType = flags << 8;
    279         if (flags & ROT_INVALID) {
    280             mType |= UNKNOWN;
    281         } else {
    282             if ((flags & ROT_90) || ((flags & ROT_180) == ROT_180))
    283                 mType |= ROTATE;
    284             if (flags & FLIP_H)
    285                 mType ^= SCALE;
    286             if (flags & FLIP_V)
    287                 mType ^= SCALE;
    288             if (scale)
    289                 mType |= SCALE;
    290         }
    291 
    292         if (!isZero(x) || !isZero(y))
    293             mType |= TRANSLATE;
    294     }
    295     return mType;
    296 }
    297 
    298 Transform Transform::inverse() const {
    299     // our 3x3 matrix is always of the form of a 2x2 transformation
    300     // followed by a translation: T*M, therefore:
    301     // (T*M)^-1 = M^-1 * T^-1
    302     Transform result;
    303     if (mType <= TRANSLATE) {
    304         // 1 0 0
    305         // 0 1 0
    306         // x y 1
    307         result = *this;
    308         result.mMatrix[2][0] = -result.mMatrix[2][0];
    309         result.mMatrix[2][1] = -result.mMatrix[2][1];
    310     } else {
    311         // a c 0
    312         // b d 0
    313         // x y 1
    314         const mat33& M(mMatrix);
    315         const float a = M[0][0];
    316         const float b = M[1][0];
    317         const float c = M[0][1];
    318         const float d = M[1][1];
    319         const float x = M[2][0];
    320         const float y = M[2][1];
    321 
    322         const float idet = 1.0 / (a*d - b*c);
    323         result.mMatrix[0][0] =  d*idet;
    324         result.mMatrix[0][1] = -c*idet;
    325         result.mMatrix[1][0] = -b*idet;
    326         result.mMatrix[1][1] =  a*idet;
    327         result.mType = mType;
    328 
    329         vec2 T(-x, -y);
    330         T = result.transform(T);
    331         result.mMatrix[2][0] = T[0];
    332         result.mMatrix[2][1] = T[1];
    333     }
    334     return result;
    335 }
    336 
    337 uint32_t Transform::getType() const {
    338     return type() & 0xFF;
    339 }
    340 
    341 uint32_t Transform::getOrientation() const
    342 {
    343     return (type() >> 8) & 0xFF;
    344 }
    345 
    346 bool Transform::preserveRects() const
    347 {
    348     return (getOrientation() & ROT_INVALID) ? false : true;
    349 }
    350 
    351 void Transform::dump(const char* name) const
    352 {
    353     type(); // updates the type
    354 
    355     String8 flags, type;
    356     const mat33& m(mMatrix);
    357     uint32_t orient = mType >> 8;
    358 
    359     if (orient&ROT_INVALID) {
    360         flags.append("ROT_INVALID ");
    361     } else {
    362         if (orient&ROT_90) {
    363             flags.append("ROT_90 ");
    364         } else {
    365             flags.append("ROT_0 ");
    366         }
    367         if (orient&FLIP_V)
    368             flags.append("FLIP_V ");
    369         if (orient&FLIP_H)
    370             flags.append("FLIP_H ");
    371     }
    372 
    373     if (!(mType&(SCALE|ROTATE|TRANSLATE)))
    374         type.append("IDENTITY ");
    375     if (mType&SCALE)
    376         type.append("SCALE ");
    377     if (mType&ROTATE)
    378         type.append("ROTATE ");
    379     if (mType&TRANSLATE)
    380         type.append("TRANSLATE ");
    381 
    382     ALOGD("%s 0x%08x (%s, %s)", name, mType, flags.string(), type.string());
    383     ALOGD("%.4f  %.4f  %.4f", m[0][0], m[1][0], m[2][0]);
    384     ALOGD("%.4f  %.4f  %.4f", m[0][1], m[1][1], m[2][1]);
    385     ALOGD("%.4f  %.4f  %.4f", m[0][2], m[1][2], m[2][2]);
    386 }
    387 
    388 // ---------------------------------------------------------------------------
    389 
    390 }; // namespace android
    391