Home | History | Annotate | Download | only in fio
      1 #include <unistd.h>
      2 #include <fcntl.h>
      3 #include <string.h>
      4 #include <signal.h>
      5 #include <time.h>
      6 #include <assert.h>
      7 
      8 #include "fio.h"
      9 #include "hash.h"
     10 #include "verify.h"
     11 #include "trim.h"
     12 #include "lib/rand.h"
     13 #include "lib/axmap.h"
     14 #include "err.h"
     15 
     16 struct io_completion_data {
     17 	int nr;				/* input */
     18 
     19 	int error;			/* output */
     20 	uint64_t bytes_done[DDIR_RWDIR_CNT];	/* output */
     21 	struct timeval time;		/* output */
     22 };
     23 
     24 /*
     25  * The ->io_axmap contains a map of blocks we have or have not done io
     26  * to yet. Used to make sure we cover the entire range in a fair fashion.
     27  */
     28 static int random_map_free(struct fio_file *f, const uint64_t block)
     29 {
     30 	return !axmap_isset(f->io_axmap, block);
     31 }
     32 
     33 /*
     34  * Mark a given offset as used in the map.
     35  */
     36 static void mark_random_map(struct thread_data *td, struct io_u *io_u)
     37 {
     38 	unsigned int min_bs = td->o.rw_min_bs;
     39 	struct fio_file *f = io_u->file;
     40 	unsigned int nr_blocks;
     41 	uint64_t block;
     42 
     43 	block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
     44 	nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
     45 
     46 	if (!(io_u->flags & IO_U_F_BUSY_OK))
     47 		nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
     48 
     49 	if ((nr_blocks * min_bs) < io_u->buflen)
     50 		io_u->buflen = nr_blocks * min_bs;
     51 }
     52 
     53 static uint64_t last_block(struct thread_data *td, struct fio_file *f,
     54 			   enum fio_ddir ddir)
     55 {
     56 	uint64_t max_blocks;
     57 	uint64_t max_size;
     58 
     59 	assert(ddir_rw(ddir));
     60 
     61 	/*
     62 	 * Hmm, should we make sure that ->io_size <= ->real_file_size?
     63 	 */
     64 	max_size = f->io_size;
     65 	if (max_size > f->real_file_size)
     66 		max_size = f->real_file_size;
     67 
     68 	if (td->o.zone_range)
     69 		max_size = td->o.zone_range;
     70 
     71 	max_blocks = max_size / (uint64_t) td->o.ba[ddir];
     72 	if (!max_blocks)
     73 		return 0;
     74 
     75 	return max_blocks;
     76 }
     77 
     78 struct rand_off {
     79 	struct flist_head list;
     80 	uint64_t off;
     81 };
     82 
     83 static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
     84 				  enum fio_ddir ddir, uint64_t *b)
     85 {
     86 	uint64_t r, lastb;
     87 
     88 	lastb = last_block(td, f, ddir);
     89 	if (!lastb)
     90 		return 1;
     91 
     92 	if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) {
     93 		uint64_t rmax;
     94 
     95 		rmax = td->o.use_os_rand ? OS_RAND_MAX : FRAND_MAX;
     96 
     97 		if (td->o.use_os_rand) {
     98 			rmax = OS_RAND_MAX;
     99 			r = os_random_long(&td->random_state);
    100 		} else {
    101 			rmax = FRAND_MAX;
    102 			r = __rand(&td->__random_state);
    103 		}
    104 
    105 		dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
    106 
    107 		*b = lastb * (r / ((uint64_t) rmax + 1.0));
    108 	} else {
    109 		uint64_t off = 0;
    110 
    111 		if (lfsr_next(&f->lfsr, &off, lastb))
    112 			return 1;
    113 
    114 		*b = off;
    115 	}
    116 
    117 	/*
    118 	 * if we are not maintaining a random map, we are done.
    119 	 */
    120 	if (!file_randommap(td, f))
    121 		goto ret;
    122 
    123 	/*
    124 	 * calculate map offset and check if it's free
    125 	 */
    126 	if (random_map_free(f, *b))
    127 		goto ret;
    128 
    129 	dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
    130 						(unsigned long long) *b);
    131 
    132 	*b = axmap_next_free(f->io_axmap, *b);
    133 	if (*b == (uint64_t) -1ULL)
    134 		return 1;
    135 ret:
    136 	return 0;
    137 }
    138 
    139 static int __get_next_rand_offset_zipf(struct thread_data *td,
    140 				       struct fio_file *f, enum fio_ddir ddir,
    141 				       uint64_t *b)
    142 {
    143 	*b = zipf_next(&f->zipf);
    144 	return 0;
    145 }
    146 
    147 static int __get_next_rand_offset_pareto(struct thread_data *td,
    148 					 struct fio_file *f, enum fio_ddir ddir,
    149 					 uint64_t *b)
    150 {
    151 	*b = pareto_next(&f->zipf);
    152 	return 0;
    153 }
    154 
    155 static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
    156 {
    157 	struct rand_off *r1 = flist_entry(a, struct rand_off, list);
    158 	struct rand_off *r2 = flist_entry(b, struct rand_off, list);
    159 
    160 	return r1->off - r2->off;
    161 }
    162 
    163 static int get_off_from_method(struct thread_data *td, struct fio_file *f,
    164 			       enum fio_ddir ddir, uint64_t *b)
    165 {
    166 	if (td->o.random_distribution == FIO_RAND_DIST_RANDOM)
    167 		return __get_next_rand_offset(td, f, ddir, b);
    168 	else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
    169 		return __get_next_rand_offset_zipf(td, f, ddir, b);
    170 	else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
    171 		return __get_next_rand_offset_pareto(td, f, ddir, b);
    172 
    173 	log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
    174 	return 1;
    175 }
    176 
    177 /*
    178  * Sort the reads for a verify phase in batches of verifysort_nr, if
    179  * specified.
    180  */
    181 static inline int should_sort_io(struct thread_data *td)
    182 {
    183 	if (!td->o.verifysort_nr || !td->o.do_verify)
    184 		return 0;
    185 	if (!td_random(td))
    186 		return 0;
    187 	if (td->runstate != TD_VERIFYING)
    188 		return 0;
    189 	if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE)
    190 		return 0;
    191 
    192 	return 1;
    193 }
    194 
    195 static int should_do_random(struct thread_data *td, enum fio_ddir ddir)
    196 {
    197 	unsigned int v;
    198 	unsigned long r;
    199 
    200 	if (td->o.perc_rand[ddir] == 100)
    201 		return 1;
    202 
    203 	if (td->o.use_os_rand) {
    204 		r = os_random_long(&td->seq_rand_state[ddir]);
    205 		v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
    206 	} else {
    207 		r = __rand(&td->__seq_rand_state[ddir]);
    208 		v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
    209 	}
    210 
    211 	return v <= td->o.perc_rand[ddir];
    212 }
    213 
    214 static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
    215 				enum fio_ddir ddir, uint64_t *b)
    216 {
    217 	struct rand_off *r;
    218 	int i, ret = 1;
    219 
    220 	if (!should_sort_io(td))
    221 		return get_off_from_method(td, f, ddir, b);
    222 
    223 	if (!flist_empty(&td->next_rand_list)) {
    224 		struct rand_off *r;
    225 fetch:
    226 		r = flist_entry(td->next_rand_list.next, struct rand_off, list);
    227 		flist_del(&r->list);
    228 		*b = r->off;
    229 		free(r);
    230 		return 0;
    231 	}
    232 
    233 	for (i = 0; i < td->o.verifysort_nr; i++) {
    234 		r = malloc(sizeof(*r));
    235 
    236 		ret = get_off_from_method(td, f, ddir, &r->off);
    237 		if (ret) {
    238 			free(r);
    239 			break;
    240 		}
    241 
    242 		flist_add(&r->list, &td->next_rand_list);
    243 	}
    244 
    245 	if (ret && !i)
    246 		return ret;
    247 
    248 	assert(!flist_empty(&td->next_rand_list));
    249 	flist_sort(NULL, &td->next_rand_list, flist_cmp);
    250 	goto fetch;
    251 }
    252 
    253 static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
    254 			       enum fio_ddir ddir, uint64_t *b)
    255 {
    256 	if (!get_next_rand_offset(td, f, ddir, b))
    257 		return 0;
    258 
    259 	if (td->o.time_based) {
    260 		fio_file_reset(td, f);
    261 		if (!get_next_rand_offset(td, f, ddir, b))
    262 			return 0;
    263 	}
    264 
    265 	dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
    266 			f->file_name, (unsigned long long) f->last_pos,
    267 			(unsigned long long) f->real_file_size);
    268 	return 1;
    269 }
    270 
    271 static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
    272 			       enum fio_ddir ddir, uint64_t *offset)
    273 {
    274 	assert(ddir_rw(ddir));
    275 
    276 	if (f->last_pos >= f->io_size + get_start_offset(td, f) && td->o.time_based)
    277 		f->last_pos = f->last_pos - f->io_size;
    278 
    279 	if (f->last_pos < f->real_file_size) {
    280 		uint64_t pos;
    281 
    282 		if (f->last_pos == f->file_offset && td->o.ddir_seq_add < 0)
    283 			f->last_pos = f->real_file_size;
    284 
    285 		pos = f->last_pos - f->file_offset;
    286 		if (pos)
    287 			pos += td->o.ddir_seq_add;
    288 
    289 		*offset = pos;
    290 		return 0;
    291 	}
    292 
    293 	return 1;
    294 }
    295 
    296 static int get_next_block(struct thread_data *td, struct io_u *io_u,
    297 			  enum fio_ddir ddir, int rw_seq,
    298 			  unsigned int *is_random)
    299 {
    300 	struct fio_file *f = io_u->file;
    301 	uint64_t b, offset;
    302 	int ret;
    303 
    304 	assert(ddir_rw(ddir));
    305 
    306 	b = offset = -1ULL;
    307 
    308 	if (rw_seq) {
    309 		if (td_random(td)) {
    310 			if (should_do_random(td, ddir)) {
    311 				ret = get_next_rand_block(td, f, ddir, &b);
    312 				*is_random = 1;
    313 			} else {
    314 				*is_random = 0;
    315 				io_u->flags |= IO_U_F_BUSY_OK;
    316 				ret = get_next_seq_offset(td, f, ddir, &offset);
    317 				if (ret)
    318 					ret = get_next_rand_block(td, f, ddir, &b);
    319 			}
    320 		} else {
    321 			*is_random = 0;
    322 			ret = get_next_seq_offset(td, f, ddir, &offset);
    323 		}
    324 	} else {
    325 		io_u->flags |= IO_U_F_BUSY_OK;
    326 		*is_random = 0;
    327 
    328 		if (td->o.rw_seq == RW_SEQ_SEQ) {
    329 			ret = get_next_seq_offset(td, f, ddir, &offset);
    330 			if (ret) {
    331 				ret = get_next_rand_block(td, f, ddir, &b);
    332 				*is_random = 0;
    333 			}
    334 		} else if (td->o.rw_seq == RW_SEQ_IDENT) {
    335 			if (f->last_start != -1ULL)
    336 				offset = f->last_start - f->file_offset;
    337 			else
    338 				offset = 0;
    339 			ret = 0;
    340 		} else {
    341 			log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
    342 			ret = 1;
    343 		}
    344 	}
    345 
    346 	if (!ret) {
    347 		if (offset != -1ULL)
    348 			io_u->offset = offset;
    349 		else if (b != -1ULL)
    350 			io_u->offset = b * td->o.ba[ddir];
    351 		else {
    352 			log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
    353 			ret = 1;
    354 		}
    355 	}
    356 
    357 	return ret;
    358 }
    359 
    360 /*
    361  * For random io, generate a random new block and see if it's used. Repeat
    362  * until we find a free one. For sequential io, just return the end of
    363  * the last io issued.
    364  */
    365 static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
    366 			     unsigned int *is_random)
    367 {
    368 	struct fio_file *f = io_u->file;
    369 	enum fio_ddir ddir = io_u->ddir;
    370 	int rw_seq_hit = 0;
    371 
    372 	assert(ddir_rw(ddir));
    373 
    374 	if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
    375 		rw_seq_hit = 1;
    376 		td->ddir_seq_nr = td->o.ddir_seq_nr;
    377 	}
    378 
    379 	if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
    380 		return 1;
    381 
    382 	if (io_u->offset >= f->io_size) {
    383 		dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
    384 					(unsigned long long) io_u->offset,
    385 					(unsigned long long) f->io_size);
    386 		return 1;
    387 	}
    388 
    389 	io_u->offset += f->file_offset;
    390 	if (io_u->offset >= f->real_file_size) {
    391 		dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
    392 					(unsigned long long) io_u->offset,
    393 					(unsigned long long) f->real_file_size);
    394 		return 1;
    395 	}
    396 
    397 	return 0;
    398 }
    399 
    400 static int get_next_offset(struct thread_data *td, struct io_u *io_u,
    401 			   unsigned int *is_random)
    402 {
    403 	if (td->flags & TD_F_PROFILE_OPS) {
    404 		struct prof_io_ops *ops = &td->prof_io_ops;
    405 
    406 		if (ops->fill_io_u_off)
    407 			return ops->fill_io_u_off(td, io_u, is_random);
    408 	}
    409 
    410 	return __get_next_offset(td, io_u, is_random);
    411 }
    412 
    413 static inline int io_u_fits(struct thread_data *td, struct io_u *io_u,
    414 			    unsigned int buflen)
    415 {
    416 	struct fio_file *f = io_u->file;
    417 
    418 	return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
    419 }
    420 
    421 static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
    422 				      unsigned int is_random)
    423 {
    424 	int ddir = io_u->ddir;
    425 	unsigned int buflen = 0;
    426 	unsigned int minbs, maxbs;
    427 	unsigned long r, rand_max;
    428 
    429 	assert(ddir_rw(ddir));
    430 
    431 	if (td->o.bs_is_seq_rand)
    432 		ddir = is_random ? DDIR_WRITE: DDIR_READ;
    433 
    434 	minbs = td->o.min_bs[ddir];
    435 	maxbs = td->o.max_bs[ddir];
    436 
    437 	if (minbs == maxbs)
    438 		return minbs;
    439 
    440 	/*
    441 	 * If we can't satisfy the min block size from here, then fail
    442 	 */
    443 	if (!io_u_fits(td, io_u, minbs))
    444 		return 0;
    445 
    446 	if (td->o.use_os_rand)
    447 		rand_max = OS_RAND_MAX;
    448 	else
    449 		rand_max = FRAND_MAX;
    450 
    451 	do {
    452 		if (td->o.use_os_rand)
    453 			r = os_random_long(&td->bsrange_state);
    454 		else
    455 			r = __rand(&td->__bsrange_state);
    456 
    457 		if (!td->o.bssplit_nr[ddir]) {
    458 			buflen = 1 + (unsigned int) ((double) maxbs *
    459 					(r / (rand_max + 1.0)));
    460 			if (buflen < minbs)
    461 				buflen = minbs;
    462 		} else {
    463 			long perc = 0;
    464 			unsigned int i;
    465 
    466 			for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
    467 				struct bssplit *bsp = &td->o.bssplit[ddir][i];
    468 
    469 				buflen = bsp->bs;
    470 				perc += bsp->perc;
    471 				if ((r <= ((rand_max / 100L) * perc)) &&
    472 				    io_u_fits(td, io_u, buflen))
    473 					break;
    474 			}
    475 		}
    476 
    477 		if (td->o.do_verify && td->o.verify != VERIFY_NONE)
    478 			buflen = (buflen + td->o.verify_interval - 1) &
    479 				~(td->o.verify_interval - 1);
    480 
    481 		if (!td->o.bs_unaligned && is_power_of_2(minbs))
    482 			buflen = (buflen + minbs - 1) & ~(minbs - 1);
    483 
    484 	} while (!io_u_fits(td, io_u, buflen));
    485 
    486 	return buflen;
    487 }
    488 
    489 static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
    490 				    unsigned int is_random)
    491 {
    492 	if (td->flags & TD_F_PROFILE_OPS) {
    493 		struct prof_io_ops *ops = &td->prof_io_ops;
    494 
    495 		if (ops->fill_io_u_size)
    496 			return ops->fill_io_u_size(td, io_u, is_random);
    497 	}
    498 
    499 	return __get_next_buflen(td, io_u, is_random);
    500 }
    501 
    502 static void set_rwmix_bytes(struct thread_data *td)
    503 {
    504 	unsigned int diff;
    505 
    506 	/*
    507 	 * we do time or byte based switch. this is needed because
    508 	 * buffered writes may issue a lot quicker than they complete,
    509 	 * whereas reads do not.
    510 	 */
    511 	diff = td->o.rwmix[td->rwmix_ddir ^ 1];
    512 	td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
    513 }
    514 
    515 static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
    516 {
    517 	unsigned int v;
    518 	unsigned long r;
    519 
    520 	if (td->o.use_os_rand) {
    521 		r = os_random_long(&td->rwmix_state);
    522 		v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0)));
    523 	} else {
    524 		r = __rand(&td->__rwmix_state);
    525 		v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0)));
    526 	}
    527 
    528 	if (v <= td->o.rwmix[DDIR_READ])
    529 		return DDIR_READ;
    530 
    531 	return DDIR_WRITE;
    532 }
    533 
    534 void io_u_quiesce(struct thread_data *td)
    535 {
    536 	/*
    537 	 * We are going to sleep, ensure that we flush anything pending as
    538 	 * not to skew our latency numbers.
    539 	 *
    540 	 * Changed to only monitor 'in flight' requests here instead of the
    541 	 * td->cur_depth, b/c td->cur_depth does not accurately represent
    542 	 * io's that have been actually submitted to an async engine,
    543 	 * and cur_depth is meaningless for sync engines.
    544 	 */
    545 	while (td->io_u_in_flight) {
    546 		int fio_unused ret;
    547 
    548 		ret = io_u_queued_complete(td, 1, NULL);
    549 	}
    550 }
    551 
    552 static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
    553 {
    554 	enum fio_ddir odir = ddir ^ 1;
    555 	struct timeval t;
    556 	long usec;
    557 
    558 	assert(ddir_rw(ddir));
    559 
    560 	if (td->rate_pending_usleep[ddir] <= 0)
    561 		return ddir;
    562 
    563 	/*
    564 	 * We have too much pending sleep in this direction. See if we
    565 	 * should switch.
    566 	 */
    567 	if (td_rw(td) && td->o.rwmix[odir]) {
    568 		/*
    569 		 * Other direction does not have too much pending, switch
    570 		 */
    571 		if (td->rate_pending_usleep[odir] < 100000)
    572 			return odir;
    573 
    574 		/*
    575 		 * Both directions have pending sleep. Sleep the minimum time
    576 		 * and deduct from both.
    577 		 */
    578 		if (td->rate_pending_usleep[ddir] <=
    579 			td->rate_pending_usleep[odir]) {
    580 			usec = td->rate_pending_usleep[ddir];
    581 		} else {
    582 			usec = td->rate_pending_usleep[odir];
    583 			ddir = odir;
    584 		}
    585 	} else
    586 		usec = td->rate_pending_usleep[ddir];
    587 
    588 	io_u_quiesce(td);
    589 
    590 	fio_gettime(&t, NULL);
    591 	usec_sleep(td, usec);
    592 	usec = utime_since_now(&t);
    593 
    594 	td->rate_pending_usleep[ddir] -= usec;
    595 
    596 	odir = ddir ^ 1;
    597 	if (td_rw(td) && __should_check_rate(td, odir))
    598 		td->rate_pending_usleep[odir] -= usec;
    599 
    600 	if (ddir_trim(ddir))
    601 		return ddir;
    602 
    603 	return ddir;
    604 }
    605 
    606 /*
    607  * Return the data direction for the next io_u. If the job is a
    608  * mixed read/write workload, check the rwmix cycle and switch if
    609  * necessary.
    610  */
    611 static enum fio_ddir get_rw_ddir(struct thread_data *td)
    612 {
    613 	enum fio_ddir ddir;
    614 
    615 	/*
    616 	 * see if it's time to fsync
    617 	 */
    618 	if (td->o.fsync_blocks &&
    619 	   !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) &&
    620 	     td->io_issues[DDIR_WRITE] && should_fsync(td))
    621 		return DDIR_SYNC;
    622 
    623 	/*
    624 	 * see if it's time to fdatasync
    625 	 */
    626 	if (td->o.fdatasync_blocks &&
    627 	   !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) &&
    628 	     td->io_issues[DDIR_WRITE] && should_fsync(td))
    629 		return DDIR_DATASYNC;
    630 
    631 	/*
    632 	 * see if it's time to sync_file_range
    633 	 */
    634 	if (td->sync_file_range_nr &&
    635 	   !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) &&
    636 	     td->io_issues[DDIR_WRITE] && should_fsync(td))
    637 		return DDIR_SYNC_FILE_RANGE;
    638 
    639 	if (td_rw(td)) {
    640 		/*
    641 		 * Check if it's time to seed a new data direction.
    642 		 */
    643 		if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
    644 			/*
    645 			 * Put a top limit on how many bytes we do for
    646 			 * one data direction, to avoid overflowing the
    647 			 * ranges too much
    648 			 */
    649 			ddir = get_rand_ddir(td);
    650 
    651 			if (ddir != td->rwmix_ddir)
    652 				set_rwmix_bytes(td);
    653 
    654 			td->rwmix_ddir = ddir;
    655 		}
    656 		ddir = td->rwmix_ddir;
    657 	} else if (td_read(td))
    658 		ddir = DDIR_READ;
    659 	else if (td_write(td))
    660 		ddir = DDIR_WRITE;
    661 	else
    662 		ddir = DDIR_TRIM;
    663 
    664 	td->rwmix_ddir = rate_ddir(td, ddir);
    665 	return td->rwmix_ddir;
    666 }
    667 
    668 static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
    669 {
    670 	io_u->ddir = io_u->acct_ddir = get_rw_ddir(td);
    671 
    672 	if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) &&
    673 	    td->o.barrier_blocks &&
    674 	   !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
    675 	     td->io_issues[DDIR_WRITE])
    676 		io_u->flags |= IO_U_F_BARRIER;
    677 }
    678 
    679 void put_file_log(struct thread_data *td, struct fio_file *f)
    680 {
    681 	unsigned int ret = put_file(td, f);
    682 
    683 	if (ret)
    684 		td_verror(td, ret, "file close");
    685 }
    686 
    687 void put_io_u(struct thread_data *td, struct io_u *io_u)
    688 {
    689 	td_io_u_lock(td);
    690 
    691 	if (io_u->file && !(io_u->flags & IO_U_F_FREE_DEF))
    692 		put_file_log(td, io_u->file);
    693 	io_u->file = NULL;
    694 	io_u->flags &= ~IO_U_F_FREE_DEF;
    695 	io_u->flags |= IO_U_F_FREE;
    696 
    697 	if (io_u->flags & IO_U_F_IN_CUR_DEPTH)
    698 		td->cur_depth--;
    699 	io_u_qpush(&td->io_u_freelist, io_u);
    700 	td_io_u_unlock(td);
    701 	td_io_u_free_notify(td);
    702 }
    703 
    704 void clear_io_u(struct thread_data *td, struct io_u *io_u)
    705 {
    706 	io_u->flags &= ~IO_U_F_FLIGHT;
    707 	put_io_u(td, io_u);
    708 }
    709 
    710 void requeue_io_u(struct thread_data *td, struct io_u **io_u)
    711 {
    712 	struct io_u *__io_u = *io_u;
    713 	enum fio_ddir ddir = acct_ddir(__io_u);
    714 
    715 	dprint(FD_IO, "requeue %p\n", __io_u);
    716 
    717 	td_io_u_lock(td);
    718 
    719 	__io_u->flags |= IO_U_F_FREE;
    720 	if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
    721 		td->io_issues[ddir]--;
    722 
    723 	__io_u->flags &= ~IO_U_F_FLIGHT;
    724 	if (__io_u->flags & IO_U_F_IN_CUR_DEPTH)
    725 		td->cur_depth--;
    726 
    727 	io_u_rpush(&td->io_u_requeues, __io_u);
    728 	td_io_u_unlock(td);
    729 	*io_u = NULL;
    730 }
    731 
    732 static int fill_io_u(struct thread_data *td, struct io_u *io_u)
    733 {
    734 	unsigned int is_random;
    735 
    736 	if (td->io_ops->flags & FIO_NOIO)
    737 		goto out;
    738 
    739 	set_rw_ddir(td, io_u);
    740 
    741 	/*
    742 	 * fsync() or fdatasync() or trim etc, we are done
    743 	 */
    744 	if (!ddir_rw(io_u->ddir))
    745 		goto out;
    746 
    747 	/*
    748 	 * See if it's time to switch to a new zone
    749 	 */
    750 	if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
    751 		td->zone_bytes = 0;
    752 		io_u->file->file_offset += td->o.zone_range + td->o.zone_skip;
    753 		io_u->file->last_pos = io_u->file->file_offset;
    754 		td->io_skip_bytes += td->o.zone_skip;
    755 	}
    756 
    757 	/*
    758 	 * No log, let the seq/rand engine retrieve the next buflen and
    759 	 * position.
    760 	 */
    761 	if (get_next_offset(td, io_u, &is_random)) {
    762 		dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
    763 		return 1;
    764 	}
    765 
    766 	io_u->buflen = get_next_buflen(td, io_u, is_random);
    767 	if (!io_u->buflen) {
    768 		dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
    769 		return 1;
    770 	}
    771 
    772 	if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
    773 		dprint(FD_IO, "io_u %p, offset too large\n", io_u);
    774 		dprint(FD_IO, "  off=%llu/%lu > %llu\n",
    775 			(unsigned long long) io_u->offset, io_u->buflen,
    776 			(unsigned long long) io_u->file->real_file_size);
    777 		return 1;
    778 	}
    779 
    780 	/*
    781 	 * mark entry before potentially trimming io_u
    782 	 */
    783 	if (td_random(td) && file_randommap(td, io_u->file))
    784 		mark_random_map(td, io_u);
    785 
    786 out:
    787 	dprint_io_u(io_u, "fill_io_u");
    788 	td->zone_bytes += io_u->buflen;
    789 	return 0;
    790 }
    791 
    792 static void __io_u_mark_map(unsigned int *map, unsigned int nr)
    793 {
    794 	int idx = 0;
    795 
    796 	switch (nr) {
    797 	default:
    798 		idx = 6;
    799 		break;
    800 	case 33 ... 64:
    801 		idx = 5;
    802 		break;
    803 	case 17 ... 32:
    804 		idx = 4;
    805 		break;
    806 	case 9 ... 16:
    807 		idx = 3;
    808 		break;
    809 	case 5 ... 8:
    810 		idx = 2;
    811 		break;
    812 	case 1 ... 4:
    813 		idx = 1;
    814 	case 0:
    815 		break;
    816 	}
    817 
    818 	map[idx]++;
    819 }
    820 
    821 void io_u_mark_submit(struct thread_data *td, unsigned int nr)
    822 {
    823 	__io_u_mark_map(td->ts.io_u_submit, nr);
    824 	td->ts.total_submit++;
    825 }
    826 
    827 void io_u_mark_complete(struct thread_data *td, unsigned int nr)
    828 {
    829 	__io_u_mark_map(td->ts.io_u_complete, nr);
    830 	td->ts.total_complete++;
    831 }
    832 
    833 void io_u_mark_depth(struct thread_data *td, unsigned int nr)
    834 {
    835 	int idx = 0;
    836 
    837 	switch (td->cur_depth) {
    838 	default:
    839 		idx = 6;
    840 		break;
    841 	case 32 ... 63:
    842 		idx = 5;
    843 		break;
    844 	case 16 ... 31:
    845 		idx = 4;
    846 		break;
    847 	case 8 ... 15:
    848 		idx = 3;
    849 		break;
    850 	case 4 ... 7:
    851 		idx = 2;
    852 		break;
    853 	case 2 ... 3:
    854 		idx = 1;
    855 	case 1:
    856 		break;
    857 	}
    858 
    859 	td->ts.io_u_map[idx] += nr;
    860 }
    861 
    862 static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
    863 {
    864 	int idx = 0;
    865 
    866 	assert(usec < 1000);
    867 
    868 	switch (usec) {
    869 	case 750 ... 999:
    870 		idx = 9;
    871 		break;
    872 	case 500 ... 749:
    873 		idx = 8;
    874 		break;
    875 	case 250 ... 499:
    876 		idx = 7;
    877 		break;
    878 	case 100 ... 249:
    879 		idx = 6;
    880 		break;
    881 	case 50 ... 99:
    882 		idx = 5;
    883 		break;
    884 	case 20 ... 49:
    885 		idx = 4;
    886 		break;
    887 	case 10 ... 19:
    888 		idx = 3;
    889 		break;
    890 	case 4 ... 9:
    891 		idx = 2;
    892 		break;
    893 	case 2 ... 3:
    894 		idx = 1;
    895 	case 0 ... 1:
    896 		break;
    897 	}
    898 
    899 	assert(idx < FIO_IO_U_LAT_U_NR);
    900 	td->ts.io_u_lat_u[idx]++;
    901 }
    902 
    903 static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
    904 {
    905 	int idx = 0;
    906 
    907 	switch (msec) {
    908 	default:
    909 		idx = 11;
    910 		break;
    911 	case 1000 ... 1999:
    912 		idx = 10;
    913 		break;
    914 	case 750 ... 999:
    915 		idx = 9;
    916 		break;
    917 	case 500 ... 749:
    918 		idx = 8;
    919 		break;
    920 	case 250 ... 499:
    921 		idx = 7;
    922 		break;
    923 	case 100 ... 249:
    924 		idx = 6;
    925 		break;
    926 	case 50 ... 99:
    927 		idx = 5;
    928 		break;
    929 	case 20 ... 49:
    930 		idx = 4;
    931 		break;
    932 	case 10 ... 19:
    933 		idx = 3;
    934 		break;
    935 	case 4 ... 9:
    936 		idx = 2;
    937 		break;
    938 	case 2 ... 3:
    939 		idx = 1;
    940 	case 0 ... 1:
    941 		break;
    942 	}
    943 
    944 	assert(idx < FIO_IO_U_LAT_M_NR);
    945 	td->ts.io_u_lat_m[idx]++;
    946 }
    947 
    948 static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
    949 {
    950 	if (usec < 1000)
    951 		io_u_mark_lat_usec(td, usec);
    952 	else
    953 		io_u_mark_lat_msec(td, usec / 1000);
    954 }
    955 
    956 /*
    957  * Get next file to service by choosing one at random
    958  */
    959 static struct fio_file *get_next_file_rand(struct thread_data *td,
    960 					   enum fio_file_flags goodf,
    961 					   enum fio_file_flags badf)
    962 {
    963 	struct fio_file *f;
    964 	int fno;
    965 
    966 	do {
    967 		int opened = 0;
    968 		unsigned long r;
    969 
    970 		if (td->o.use_os_rand) {
    971 			r = os_random_long(&td->next_file_state);
    972 			fno = (unsigned int) ((double) td->o.nr_files
    973 				* (r / (OS_RAND_MAX + 1.0)));
    974 		} else {
    975 			r = __rand(&td->__next_file_state);
    976 			fno = (unsigned int) ((double) td->o.nr_files
    977 				* (r / (FRAND_MAX + 1.0)));
    978 		}
    979 
    980 		f = td->files[fno];
    981 		if (fio_file_done(f))
    982 			continue;
    983 
    984 		if (!fio_file_open(f)) {
    985 			int err;
    986 
    987 			if (td->nr_open_files >= td->o.open_files)
    988 				return ERR_PTR(-EBUSY);
    989 
    990 			err = td_io_open_file(td, f);
    991 			if (err)
    992 				continue;
    993 			opened = 1;
    994 		}
    995 
    996 		if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
    997 			dprint(FD_FILE, "get_next_file_rand: %p\n", f);
    998 			return f;
    999 		}
   1000 		if (opened)
   1001 			td_io_close_file(td, f);
   1002 	} while (1);
   1003 }
   1004 
   1005 /*
   1006  * Get next file to service by doing round robin between all available ones
   1007  */
   1008 static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
   1009 					 int badf)
   1010 {
   1011 	unsigned int old_next_file = td->next_file;
   1012 	struct fio_file *f;
   1013 
   1014 	do {
   1015 		int opened = 0;
   1016 
   1017 		f = td->files[td->next_file];
   1018 
   1019 		td->next_file++;
   1020 		if (td->next_file >= td->o.nr_files)
   1021 			td->next_file = 0;
   1022 
   1023 		dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
   1024 		if (fio_file_done(f)) {
   1025 			f = NULL;
   1026 			continue;
   1027 		}
   1028 
   1029 		if (!fio_file_open(f)) {
   1030 			int err;
   1031 
   1032 			if (td->nr_open_files >= td->o.open_files)
   1033 				return ERR_PTR(-EBUSY);
   1034 
   1035 			err = td_io_open_file(td, f);
   1036 			if (err) {
   1037 				dprint(FD_FILE, "error %d on open of %s\n",
   1038 					err, f->file_name);
   1039 				f = NULL;
   1040 				continue;
   1041 			}
   1042 			opened = 1;
   1043 		}
   1044 
   1045 		dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
   1046 								f->flags);
   1047 		if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
   1048 			break;
   1049 
   1050 		if (opened)
   1051 			td_io_close_file(td, f);
   1052 
   1053 		f = NULL;
   1054 	} while (td->next_file != old_next_file);
   1055 
   1056 	dprint(FD_FILE, "get_next_file_rr: %p\n", f);
   1057 	return f;
   1058 }
   1059 
   1060 static struct fio_file *__get_next_file(struct thread_data *td)
   1061 {
   1062 	struct fio_file *f;
   1063 
   1064 	assert(td->o.nr_files <= td->files_index);
   1065 
   1066 	if (td->nr_done_files >= td->o.nr_files) {
   1067 		dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
   1068 				" nr_files=%d\n", td->nr_open_files,
   1069 						  td->nr_done_files,
   1070 						  td->o.nr_files);
   1071 		return NULL;
   1072 	}
   1073 
   1074 	f = td->file_service_file;
   1075 	if (f && fio_file_open(f) && !fio_file_closing(f)) {
   1076 		if (td->o.file_service_type == FIO_FSERVICE_SEQ)
   1077 			goto out;
   1078 		if (td->file_service_left--)
   1079 			goto out;
   1080 	}
   1081 
   1082 	if (td->o.file_service_type == FIO_FSERVICE_RR ||
   1083 	    td->o.file_service_type == FIO_FSERVICE_SEQ)
   1084 		f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
   1085 	else
   1086 		f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
   1087 
   1088 	if (IS_ERR(f))
   1089 		return f;
   1090 
   1091 	td->file_service_file = f;
   1092 	td->file_service_left = td->file_service_nr - 1;
   1093 out:
   1094 	if (f)
   1095 		dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
   1096 	else
   1097 		dprint(FD_FILE, "get_next_file: NULL\n");
   1098 	return f;
   1099 }
   1100 
   1101 static struct fio_file *get_next_file(struct thread_data *td)
   1102 {
   1103 	if (!(td->flags & TD_F_PROFILE_OPS)) {
   1104 		struct prof_io_ops *ops = &td->prof_io_ops;
   1105 
   1106 		if (ops->get_next_file)
   1107 			return ops->get_next_file(td);
   1108 	}
   1109 
   1110 	return __get_next_file(td);
   1111 }
   1112 
   1113 static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
   1114 {
   1115 	struct fio_file *f;
   1116 
   1117 	do {
   1118 		f = get_next_file(td);
   1119 		if (IS_ERR_OR_NULL(f))
   1120 			return PTR_ERR(f);
   1121 
   1122 		io_u->file = f;
   1123 		get_file(f);
   1124 
   1125 		if (!fill_io_u(td, io_u))
   1126 			break;
   1127 
   1128 		put_file_log(td, f);
   1129 		td_io_close_file(td, f);
   1130 		io_u->file = NULL;
   1131 		fio_file_set_done(f);
   1132 		td->nr_done_files++;
   1133 		dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
   1134 					td->nr_done_files, td->o.nr_files);
   1135 	} while (1);
   1136 
   1137 	return 0;
   1138 }
   1139 
   1140 static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
   1141 		      unsigned long tusec, unsigned long max_usec)
   1142 {
   1143 	if (!td->error)
   1144 		log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec);
   1145 	td_verror(td, ETIMEDOUT, "max latency exceeded");
   1146 	icd->error = ETIMEDOUT;
   1147 }
   1148 
   1149 static void lat_new_cycle(struct thread_data *td)
   1150 {
   1151 	fio_gettime(&td->latency_ts, NULL);
   1152 	td->latency_ios = ddir_rw_sum(td->io_blocks);
   1153 	td->latency_failed = 0;
   1154 }
   1155 
   1156 /*
   1157  * We had an IO outside the latency target. Reduce the queue depth. If we
   1158  * are at QD=1, then it's time to give up.
   1159  */
   1160 static int __lat_target_failed(struct thread_data *td)
   1161 {
   1162 	if (td->latency_qd == 1)
   1163 		return 1;
   1164 
   1165 	td->latency_qd_high = td->latency_qd;
   1166 
   1167 	if (td->latency_qd == td->latency_qd_low)
   1168 		td->latency_qd_low--;
   1169 
   1170 	td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
   1171 
   1172 	dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
   1173 
   1174 	/*
   1175 	 * When we ramp QD down, quiesce existing IO to prevent
   1176 	 * a storm of ramp downs due to pending higher depth.
   1177 	 */
   1178 	io_u_quiesce(td);
   1179 	lat_new_cycle(td);
   1180 	return 0;
   1181 }
   1182 
   1183 static int lat_target_failed(struct thread_data *td)
   1184 {
   1185 	if (td->o.latency_percentile.u.f == 100.0)
   1186 		return __lat_target_failed(td);
   1187 
   1188 	td->latency_failed++;
   1189 	return 0;
   1190 }
   1191 
   1192 void lat_target_init(struct thread_data *td)
   1193 {
   1194 	td->latency_end_run = 0;
   1195 
   1196 	if (td->o.latency_target) {
   1197 		dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
   1198 		fio_gettime(&td->latency_ts, NULL);
   1199 		td->latency_qd = 1;
   1200 		td->latency_qd_high = td->o.iodepth;
   1201 		td->latency_qd_low = 1;
   1202 		td->latency_ios = ddir_rw_sum(td->io_blocks);
   1203 	} else
   1204 		td->latency_qd = td->o.iodepth;
   1205 }
   1206 
   1207 void lat_target_reset(struct thread_data *td)
   1208 {
   1209 	if (!td->latency_end_run)
   1210 		lat_target_init(td);
   1211 }
   1212 
   1213 static void lat_target_success(struct thread_data *td)
   1214 {
   1215 	const unsigned int qd = td->latency_qd;
   1216 	struct thread_options *o = &td->o;
   1217 
   1218 	td->latency_qd_low = td->latency_qd;
   1219 
   1220 	/*
   1221 	 * If we haven't failed yet, we double up to a failing value instead
   1222 	 * of bisecting from highest possible queue depth. If we have set
   1223 	 * a limit other than td->o.iodepth, bisect between that.
   1224 	 */
   1225 	if (td->latency_qd_high != o->iodepth)
   1226 		td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
   1227 	else
   1228 		td->latency_qd *= 2;
   1229 
   1230 	if (td->latency_qd > o->iodepth)
   1231 		td->latency_qd = o->iodepth;
   1232 
   1233 	dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
   1234 
   1235 	/*
   1236 	 * Same as last one, we are done. Let it run a latency cycle, so
   1237 	 * we get only the results from the targeted depth.
   1238 	 */
   1239 	if (td->latency_qd == qd) {
   1240 		if (td->latency_end_run) {
   1241 			dprint(FD_RATE, "We are done\n");
   1242 			td->done = 1;
   1243 		} else {
   1244 			dprint(FD_RATE, "Quiesce and final run\n");
   1245 			io_u_quiesce(td);
   1246 			td->latency_end_run = 1;
   1247 			reset_all_stats(td);
   1248 			reset_io_stats(td);
   1249 		}
   1250 	}
   1251 
   1252 	lat_new_cycle(td);
   1253 }
   1254 
   1255 /*
   1256  * Check if we can bump the queue depth
   1257  */
   1258 void lat_target_check(struct thread_data *td)
   1259 {
   1260 	uint64_t usec_window;
   1261 	uint64_t ios;
   1262 	double success_ios;
   1263 
   1264 	usec_window = utime_since_now(&td->latency_ts);
   1265 	if (usec_window < td->o.latency_window)
   1266 		return;
   1267 
   1268 	ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
   1269 	success_ios = (double) (ios - td->latency_failed) / (double) ios;
   1270 	success_ios *= 100.0;
   1271 
   1272 	dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
   1273 
   1274 	if (success_ios >= td->o.latency_percentile.u.f)
   1275 		lat_target_success(td);
   1276 	else
   1277 		__lat_target_failed(td);
   1278 }
   1279 
   1280 /*
   1281  * If latency target is enabled, we might be ramping up or down and not
   1282  * using the full queue depth available.
   1283  */
   1284 int queue_full(struct thread_data *td)
   1285 {
   1286 	const int qempty = io_u_qempty(&td->io_u_freelist);
   1287 
   1288 	if (qempty)
   1289 		return 1;
   1290 	if (!td->o.latency_target)
   1291 		return 0;
   1292 
   1293 	return td->cur_depth >= td->latency_qd;
   1294 }
   1295 
   1296 struct io_u *__get_io_u(struct thread_data *td)
   1297 {
   1298 	struct io_u *io_u = NULL;
   1299 
   1300 	td_io_u_lock(td);
   1301 
   1302 again:
   1303 	if (!io_u_rempty(&td->io_u_requeues))
   1304 		io_u = io_u_rpop(&td->io_u_requeues);
   1305 	else if (!queue_full(td)) {
   1306 		io_u = io_u_qpop(&td->io_u_freelist);
   1307 
   1308 		io_u->file = NULL;
   1309 		io_u->buflen = 0;
   1310 		io_u->resid = 0;
   1311 		io_u->end_io = NULL;
   1312 	}
   1313 
   1314 	if (io_u) {
   1315 		assert(io_u->flags & IO_U_F_FREE);
   1316 		io_u->flags &= ~(IO_U_F_FREE | IO_U_F_FREE_DEF);
   1317 		io_u->flags &= ~(IO_U_F_TRIMMED | IO_U_F_BARRIER);
   1318 		io_u->flags &= ~IO_U_F_VER_LIST;
   1319 
   1320 		io_u->error = 0;
   1321 		io_u->acct_ddir = -1;
   1322 		td->cur_depth++;
   1323 		io_u->flags |= IO_U_F_IN_CUR_DEPTH;
   1324 		io_u->ipo = NULL;
   1325 	} else if (td->o.verify_async) {
   1326 		/*
   1327 		 * We ran out, wait for async verify threads to finish and
   1328 		 * return one
   1329 		 */
   1330 		pthread_cond_wait(&td->free_cond, &td->io_u_lock);
   1331 		goto again;
   1332 	}
   1333 
   1334 	td_io_u_unlock(td);
   1335 	return io_u;
   1336 }
   1337 
   1338 static int check_get_trim(struct thread_data *td, struct io_u *io_u)
   1339 {
   1340 	if (!(td->flags & TD_F_TRIM_BACKLOG))
   1341 		return 0;
   1342 
   1343 	if (td->trim_entries) {
   1344 		int get_trim = 0;
   1345 
   1346 		if (td->trim_batch) {
   1347 			td->trim_batch--;
   1348 			get_trim = 1;
   1349 		} else if (!(td->io_hist_len % td->o.trim_backlog) &&
   1350 			 td->last_ddir != DDIR_READ) {
   1351 			td->trim_batch = td->o.trim_batch;
   1352 			if (!td->trim_batch)
   1353 				td->trim_batch = td->o.trim_backlog;
   1354 			get_trim = 1;
   1355 		}
   1356 
   1357 		if (get_trim && !get_next_trim(td, io_u))
   1358 			return 1;
   1359 	}
   1360 
   1361 	return 0;
   1362 }
   1363 
   1364 static int check_get_verify(struct thread_data *td, struct io_u *io_u)
   1365 {
   1366 	if (!(td->flags & TD_F_VER_BACKLOG))
   1367 		return 0;
   1368 
   1369 	if (td->io_hist_len) {
   1370 		int get_verify = 0;
   1371 
   1372 		if (td->verify_batch)
   1373 			get_verify = 1;
   1374 		else if (!(td->io_hist_len % td->o.verify_backlog) &&
   1375 			 td->last_ddir != DDIR_READ) {
   1376 			td->verify_batch = td->o.verify_batch;
   1377 			if (!td->verify_batch)
   1378 				td->verify_batch = td->o.verify_backlog;
   1379 			get_verify = 1;
   1380 		}
   1381 
   1382 		if (get_verify && !get_next_verify(td, io_u)) {
   1383 			td->verify_batch--;
   1384 			return 1;
   1385 		}
   1386 	}
   1387 
   1388 	return 0;
   1389 }
   1390 
   1391 /*
   1392  * Fill offset and start time into the buffer content, to prevent too
   1393  * easy compressible data for simple de-dupe attempts. Do this for every
   1394  * 512b block in the range, since that should be the smallest block size
   1395  * we can expect from a device.
   1396  */
   1397 static void small_content_scramble(struct io_u *io_u)
   1398 {
   1399 	unsigned int i, nr_blocks = io_u->buflen / 512;
   1400 	uint64_t boffset;
   1401 	unsigned int offset;
   1402 	void *p, *end;
   1403 
   1404 	if (!nr_blocks)
   1405 		return;
   1406 
   1407 	p = io_u->xfer_buf;
   1408 	boffset = io_u->offset;
   1409 	io_u->buf_filled_len = 0;
   1410 
   1411 	for (i = 0; i < nr_blocks; i++) {
   1412 		/*
   1413 		 * Fill the byte offset into a "random" start offset of
   1414 		 * the buffer, given by the product of the usec time
   1415 		 * and the actual offset.
   1416 		 */
   1417 		offset = (io_u->start_time.tv_usec ^ boffset) & 511;
   1418 		offset &= ~(sizeof(uint64_t) - 1);
   1419 		if (offset >= 512 - sizeof(uint64_t))
   1420 			offset -= sizeof(uint64_t);
   1421 		memcpy(p + offset, &boffset, sizeof(boffset));
   1422 
   1423 		end = p + 512 - sizeof(io_u->start_time);
   1424 		memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
   1425 		p += 512;
   1426 		boffset += 512;
   1427 	}
   1428 }
   1429 
   1430 /*
   1431  * Return an io_u to be processed. Gets a buflen and offset, sets direction,
   1432  * etc. The returned io_u is fully ready to be prepped and submitted.
   1433  */
   1434 struct io_u *get_io_u(struct thread_data *td)
   1435 {
   1436 	struct fio_file *f;
   1437 	struct io_u *io_u;
   1438 	int do_scramble = 0;
   1439 	long ret = 0;
   1440 
   1441 	io_u = __get_io_u(td);
   1442 	if (!io_u) {
   1443 		dprint(FD_IO, "__get_io_u failed\n");
   1444 		return NULL;
   1445 	}
   1446 
   1447 	if (check_get_verify(td, io_u))
   1448 		goto out;
   1449 	if (check_get_trim(td, io_u))
   1450 		goto out;
   1451 
   1452 	/*
   1453 	 * from a requeue, io_u already setup
   1454 	 */
   1455 	if (io_u->file)
   1456 		goto out;
   1457 
   1458 	/*
   1459 	 * If using an iolog, grab next piece if any available.
   1460 	 */
   1461 	if (td->flags & TD_F_READ_IOLOG) {
   1462 		if (read_iolog_get(td, io_u))
   1463 			goto err_put;
   1464 	} else if (set_io_u_file(td, io_u)) {
   1465 		ret = -EBUSY;
   1466 		dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
   1467 		goto err_put;
   1468 	}
   1469 
   1470 	f = io_u->file;
   1471 	if (!f) {
   1472 		dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
   1473 		goto err_put;
   1474 	}
   1475 
   1476 	assert(fio_file_open(f));
   1477 
   1478 	if (ddir_rw(io_u->ddir)) {
   1479 		if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) {
   1480 			dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
   1481 			goto err_put;
   1482 		}
   1483 
   1484 		f->last_start = io_u->offset;
   1485 		f->last_pos = io_u->offset + io_u->buflen;
   1486 
   1487 		if (io_u->ddir == DDIR_WRITE) {
   1488 			if (td->flags & TD_F_REFILL_BUFFERS) {
   1489 				io_u_fill_buffer(td, io_u,
   1490 					io_u->xfer_buflen, io_u->xfer_buflen);
   1491 			} else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
   1492 				   !(td->flags & TD_F_COMPRESS))
   1493 				do_scramble = 1;
   1494 			if (td->flags & TD_F_VER_NONE) {
   1495 				populate_verify_io_u(td, io_u);
   1496 				do_scramble = 0;
   1497 			}
   1498 		} else if (io_u->ddir == DDIR_READ) {
   1499 			/*
   1500 			 * Reset the buf_filled parameters so next time if the
   1501 			 * buffer is used for writes it is refilled.
   1502 			 */
   1503 			io_u->buf_filled_len = 0;
   1504 		}
   1505 	}
   1506 
   1507 	/*
   1508 	 * Set io data pointers.
   1509 	 */
   1510 	io_u->xfer_buf = io_u->buf;
   1511 	io_u->xfer_buflen = io_u->buflen;
   1512 
   1513 out:
   1514 	assert(io_u->file);
   1515 	if (!td_io_prep(td, io_u)) {
   1516 		if (!td->o.disable_slat)
   1517 			fio_gettime(&io_u->start_time, NULL);
   1518 		if (do_scramble)
   1519 			small_content_scramble(io_u);
   1520 		return io_u;
   1521 	}
   1522 err_put:
   1523 	dprint(FD_IO, "get_io_u failed\n");
   1524 	put_io_u(td, io_u);
   1525 	return ERR_PTR(ret);
   1526 }
   1527 
   1528 void io_u_log_error(struct thread_data *td, struct io_u *io_u)
   1529 {
   1530 	enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
   1531 	const char *msg[] = { "read", "write", "sync", "datasync",
   1532 				"sync_file_range", "wait", "trim" };
   1533 
   1534 	if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
   1535 		return;
   1536 
   1537 	log_err("fio: io_u error");
   1538 
   1539 	if (io_u->file)
   1540 		log_err(" on file %s", io_u->file->file_name);
   1541 
   1542 	log_err(": %s\n", strerror(io_u->error));
   1543 
   1544 	log_err("     %s offset=%llu, buflen=%lu\n", msg[io_u->ddir],
   1545 					io_u->offset, io_u->xfer_buflen);
   1546 
   1547 	if (!td->error)
   1548 		td_verror(td, io_u->error, "io_u error");
   1549 }
   1550 
   1551 static inline int gtod_reduce(struct thread_data *td)
   1552 {
   1553 	return td->o.disable_clat && td->o.disable_lat && td->o.disable_slat
   1554 		&& td->o.disable_bw;
   1555 }
   1556 
   1557 static void account_io_completion(struct thread_data *td, struct io_u *io_u,
   1558 				  struct io_completion_data *icd,
   1559 				  const enum fio_ddir idx, unsigned int bytes)
   1560 {
   1561 	unsigned long lusec = 0;
   1562 
   1563 	if (!gtod_reduce(td))
   1564 		lusec = utime_since(&io_u->issue_time, &icd->time);
   1565 
   1566 	if (!td->o.disable_lat) {
   1567 		unsigned long tusec;
   1568 
   1569 		tusec = utime_since(&io_u->start_time, &icd->time);
   1570 		add_lat_sample(td, idx, tusec, bytes);
   1571 
   1572 		if (td->flags & TD_F_PROFILE_OPS) {
   1573 			struct prof_io_ops *ops = &td->prof_io_ops;
   1574 
   1575 			if (ops->io_u_lat)
   1576 				icd->error = ops->io_u_lat(td, tusec);
   1577 		}
   1578 
   1579 		if (td->o.max_latency && tusec > td->o.max_latency)
   1580 			lat_fatal(td, icd, tusec, td->o.max_latency);
   1581 		if (td->o.latency_target && tusec > td->o.latency_target) {
   1582 			if (lat_target_failed(td))
   1583 				lat_fatal(td, icd, tusec, td->o.latency_target);
   1584 		}
   1585 	}
   1586 
   1587 	if (!td->o.disable_clat) {
   1588 		add_clat_sample(td, idx, lusec, bytes);
   1589 		io_u_mark_latency(td, lusec);
   1590 	}
   1591 
   1592 	if (!td->o.disable_bw)
   1593 		add_bw_sample(td, idx, bytes, &icd->time);
   1594 
   1595 	if (!gtod_reduce(td))
   1596 		add_iops_sample(td, idx, bytes, &icd->time);
   1597 }
   1598 
   1599 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
   1600 {
   1601 	uint64_t secs, remainder, bps, bytes;
   1602 
   1603 	bytes = td->this_io_bytes[ddir];
   1604 	bps = td->rate_bps[ddir];
   1605 	secs = bytes / bps;
   1606 	remainder = bytes % bps;
   1607 	return remainder * 1000000 / bps + secs * 1000000;
   1608 }
   1609 
   1610 static void io_completed(struct thread_data *td, struct io_u *io_u,
   1611 			 struct io_completion_data *icd)
   1612 {
   1613 	struct fio_file *f;
   1614 
   1615 	dprint_io_u(io_u, "io complete");
   1616 
   1617 	td_io_u_lock(td);
   1618 	assert(io_u->flags & IO_U_F_FLIGHT);
   1619 	io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
   1620 
   1621 	/*
   1622 	 * Mark IO ok to verify
   1623 	 */
   1624 	if (io_u->ipo) {
   1625 		/*
   1626 		 * Remove errored entry from the verification list
   1627 		 */
   1628 		if (io_u->error)
   1629 			unlog_io_piece(td, io_u);
   1630 		else {
   1631 			io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
   1632 			write_barrier();
   1633 		}
   1634 	}
   1635 
   1636 	td_io_u_unlock(td);
   1637 
   1638 	if (ddir_sync(io_u->ddir)) {
   1639 		td->last_was_sync = 1;
   1640 		f = io_u->file;
   1641 		if (f) {
   1642 			f->first_write = -1ULL;
   1643 			f->last_write = -1ULL;
   1644 		}
   1645 		return;
   1646 	}
   1647 
   1648 	td->last_was_sync = 0;
   1649 	td->last_ddir = io_u->ddir;
   1650 
   1651 	if (!io_u->error && ddir_rw(io_u->ddir)) {
   1652 		unsigned int bytes = io_u->buflen - io_u->resid;
   1653 		const enum fio_ddir idx = io_u->ddir;
   1654 		const enum fio_ddir odx = io_u->ddir ^ 1;
   1655 		int ret;
   1656 
   1657 		td->io_blocks[idx]++;
   1658 		td->this_io_blocks[idx]++;
   1659 		td->io_bytes[idx] += bytes;
   1660 
   1661 		if (!(io_u->flags & IO_U_F_VER_LIST))
   1662 			td->this_io_bytes[idx] += bytes;
   1663 
   1664 		if (idx == DDIR_WRITE) {
   1665 			f = io_u->file;
   1666 			if (f) {
   1667 				if (f->first_write == -1ULL ||
   1668 				    io_u->offset < f->first_write)
   1669 					f->first_write = io_u->offset;
   1670 				if (f->last_write == -1ULL ||
   1671 				    ((io_u->offset + bytes) > f->last_write))
   1672 					f->last_write = io_u->offset + bytes;
   1673 			}
   1674 		}
   1675 
   1676 		if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
   1677 					   td->runstate == TD_VERIFYING)) {
   1678 			account_io_completion(td, io_u, icd, idx, bytes);
   1679 
   1680 			if (__should_check_rate(td, idx)) {
   1681 				td->rate_pending_usleep[idx] =
   1682 					(usec_for_io(td, idx) -
   1683 					 utime_since_now(&td->start));
   1684 			}
   1685 			if (idx != DDIR_TRIM && __should_check_rate(td, odx))
   1686 				td->rate_pending_usleep[odx] =
   1687 					(usec_for_io(td, odx) -
   1688 					 utime_since_now(&td->start));
   1689 		}
   1690 
   1691 		icd->bytes_done[idx] += bytes;
   1692 
   1693 		if (io_u->end_io) {
   1694 			ret = io_u->end_io(td, io_u);
   1695 			if (ret && !icd->error)
   1696 				icd->error = ret;
   1697 		}
   1698 	} else if (io_u->error) {
   1699 		icd->error = io_u->error;
   1700 		io_u_log_error(td, io_u);
   1701 	}
   1702 	if (icd->error) {
   1703 		enum error_type_bit eb = td_error_type(io_u->ddir, icd->error);
   1704 		if (!td_non_fatal_error(td, eb, icd->error))
   1705 			return;
   1706 		/*
   1707 		 * If there is a non_fatal error, then add to the error count
   1708 		 * and clear all the errors.
   1709 		 */
   1710 		update_error_count(td, icd->error);
   1711 		td_clear_error(td);
   1712 		icd->error = 0;
   1713 		io_u->error = 0;
   1714 	}
   1715 }
   1716 
   1717 static void init_icd(struct thread_data *td, struct io_completion_data *icd,
   1718 		     int nr)
   1719 {
   1720 	int ddir;
   1721 
   1722 	if (!gtod_reduce(td))
   1723 		fio_gettime(&icd->time, NULL);
   1724 
   1725 	icd->nr = nr;
   1726 
   1727 	icd->error = 0;
   1728 	for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
   1729 		icd->bytes_done[ddir] = 0;
   1730 }
   1731 
   1732 static void ios_completed(struct thread_data *td,
   1733 			  struct io_completion_data *icd)
   1734 {
   1735 	struct io_u *io_u;
   1736 	int i;
   1737 
   1738 	for (i = 0; i < icd->nr; i++) {
   1739 		io_u = td->io_ops->event(td, i);
   1740 
   1741 		io_completed(td, io_u, icd);
   1742 
   1743 		if (!(io_u->flags & IO_U_F_FREE_DEF))
   1744 			put_io_u(td, io_u);
   1745 	}
   1746 }
   1747 
   1748 /*
   1749  * Complete a single io_u for the sync engines.
   1750  */
   1751 int io_u_sync_complete(struct thread_data *td, struct io_u *io_u,
   1752 		       uint64_t *bytes)
   1753 {
   1754 	struct io_completion_data icd;
   1755 
   1756 	init_icd(td, &icd, 1);
   1757 	io_completed(td, io_u, &icd);
   1758 
   1759 	if (!(io_u->flags & IO_U_F_FREE_DEF))
   1760 		put_io_u(td, io_u);
   1761 
   1762 	if (icd.error) {
   1763 		td_verror(td, icd.error, "io_u_sync_complete");
   1764 		return -1;
   1765 	}
   1766 
   1767 	if (bytes) {
   1768 		int ddir;
   1769 
   1770 		for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
   1771 			bytes[ddir] += icd.bytes_done[ddir];
   1772 	}
   1773 
   1774 	return 0;
   1775 }
   1776 
   1777 /*
   1778  * Called to complete min_events number of io for the async engines.
   1779  */
   1780 int io_u_queued_complete(struct thread_data *td, int min_evts,
   1781 			 uint64_t *bytes)
   1782 {
   1783 	struct io_completion_data icd;
   1784 	struct timespec *tvp = NULL;
   1785 	int ret;
   1786 	struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
   1787 
   1788 	dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts);
   1789 
   1790 	if (!min_evts)
   1791 		tvp = &ts;
   1792 
   1793 	ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp);
   1794 	if (ret < 0) {
   1795 		td_verror(td, -ret, "td_io_getevents");
   1796 		return ret;
   1797 	} else if (!ret)
   1798 		return ret;
   1799 
   1800 	init_icd(td, &icd, ret);
   1801 	ios_completed(td, &icd);
   1802 	if (icd.error) {
   1803 		td_verror(td, icd.error, "io_u_queued_complete");
   1804 		return -1;
   1805 	}
   1806 
   1807 	if (bytes) {
   1808 		int ddir;
   1809 
   1810 		for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++)
   1811 			bytes[ddir] += icd.bytes_done[ddir];
   1812 	}
   1813 
   1814 	return 0;
   1815 }
   1816 
   1817 /*
   1818  * Call when io_u is really queued, to update the submission latency.
   1819  */
   1820 void io_u_queued(struct thread_data *td, struct io_u *io_u)
   1821 {
   1822 	if (!td->o.disable_slat) {
   1823 		unsigned long slat_time;
   1824 
   1825 		slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
   1826 		add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen);
   1827 	}
   1828 }
   1829 
   1830 void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
   1831 		    unsigned int max_bs)
   1832 {
   1833 	if (td->o.buffer_pattern_bytes)
   1834 		fill_buffer_pattern(td, buf, max_bs);
   1835 	else if (!td->o.zero_buffers) {
   1836 		unsigned int perc = td->o.compress_percentage;
   1837 
   1838 		if (perc) {
   1839 			unsigned int seg = min_write;
   1840 
   1841 			seg = min(min_write, td->o.compress_chunk);
   1842 			if (!seg)
   1843 				seg = min_write;
   1844 
   1845 			fill_random_buf_percentage(&td->buf_state, buf,
   1846 						perc, seg, max_bs);
   1847 		} else
   1848 			fill_random_buf(&td->buf_state, buf, max_bs);
   1849 	} else
   1850 		memset(buf, 0, max_bs);
   1851 }
   1852 
   1853 /*
   1854  * "randomly" fill the buffer contents
   1855  */
   1856 void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
   1857 		      unsigned int min_write, unsigned int max_bs)
   1858 {
   1859 	io_u->buf_filled_len = 0;
   1860 	fill_io_buffer(td, io_u->buf, min_write, max_bs);
   1861 }
   1862