Home | History | Annotate | Download | only in message_loop
      1 // Copyright 2013 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_
      6 #define BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_
      7 
      8 #include <queue>
      9 #include <string>
     10 
     11 #include "base/base_export.h"
     12 #include "base/basictypes.h"
     13 #include "base/callback_forward.h"
     14 #include "base/debug/task_annotator.h"
     15 #include "base/location.h"
     16 #include "base/memory/ref_counted.h"
     17 #include "base/memory/scoped_ptr.h"
     18 #include "base/message_loop/incoming_task_queue.h"
     19 #include "base/message_loop/message_loop_proxy.h"
     20 #include "base/message_loop/message_loop_proxy_impl.h"
     21 #include "base/message_loop/message_pump.h"
     22 #include "base/message_loop/timer_slack.h"
     23 #include "base/observer_list.h"
     24 #include "base/pending_task.h"
     25 #include "base/sequenced_task_runner_helpers.h"
     26 #include "base/synchronization/lock.h"
     27 #include "base/time/time.h"
     28 #include "base/tracking_info.h"
     29 
     30 // TODO(sky): these includes should not be necessary. Nuke them.
     31 #if defined(OS_WIN)
     32 #include "base/message_loop/message_pump_win.h"
     33 #elif defined(OS_IOS)
     34 #include "base/message_loop/message_pump_io_ios.h"
     35 #elif defined(OS_POSIX)
     36 #include "base/message_loop/message_pump_libevent.h"
     37 #endif
     38 
     39 namespace base {
     40 
     41 class HistogramBase;
     42 class RunLoop;
     43 class ThreadTaskRunnerHandle;
     44 class WaitableEvent;
     45 
     46 // A MessageLoop is used to process events for a particular thread.  There is
     47 // at most one MessageLoop instance per thread.
     48 //
     49 // Events include at a minimum Task instances submitted to PostTask and its
     50 // variants.  Depending on the type of message pump used by the MessageLoop
     51 // other events such as UI messages may be processed.  On Windows APC calls (as
     52 // time permits) and signals sent to a registered set of HANDLEs may also be
     53 // processed.
     54 //
     55 // NOTE: Unless otherwise specified, a MessageLoop's methods may only be called
     56 // on the thread where the MessageLoop's Run method executes.
     57 //
     58 // NOTE: MessageLoop has task reentrancy protection.  This means that if a
     59 // task is being processed, a second task cannot start until the first task is
     60 // finished.  Reentrancy can happen when processing a task, and an inner
     61 // message pump is created.  That inner pump then processes native messages
     62 // which could implicitly start an inner task.  Inner message pumps are created
     63 // with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions
     64 // (DoDragDrop), printer functions (StartDoc) and *many* others.
     65 //
     66 // Sample workaround when inner task processing is needed:
     67 //   HRESULT hr;
     68 //   {
     69 //     MessageLoop::ScopedNestableTaskAllower allow(MessageLoop::current());
     70 //     hr = DoDragDrop(...); // Implicitly runs a modal message loop.
     71 //   }
     72 //   // Process |hr| (the result returned by DoDragDrop()).
     73 //
     74 // Please be SURE your task is reentrant (nestable) and all global variables
     75 // are stable and accessible before calling SetNestableTasksAllowed(true).
     76 //
     77 class BASE_EXPORT MessageLoop : public MessagePump::Delegate {
     78  public:
     79   // A MessageLoop has a particular type, which indicates the set of
     80   // asynchronous events it may process in addition to tasks and timers.
     81   //
     82   // TYPE_DEFAULT
     83   //   This type of ML only supports tasks and timers.
     84   //
     85   // TYPE_UI
     86   //   This type of ML also supports native UI events (e.g., Windows messages).
     87   //   See also MessageLoopForUI.
     88   //
     89   // TYPE_IO
     90   //   This type of ML also supports asynchronous IO.  See also
     91   //   MessageLoopForIO.
     92   //
     93   // TYPE_JAVA
     94   //   This type of ML is backed by a Java message handler which is responsible
     95   //   for running the tasks added to the ML. This is only for use on Android.
     96   //   TYPE_JAVA behaves in essence like TYPE_UI, except during construction
     97   //   where it does not use the main thread specific pump factory.
     98   //
     99   // TYPE_CUSTOM
    100   //   MessagePump was supplied to constructor.
    101   //
    102   enum Type {
    103     TYPE_DEFAULT,
    104     TYPE_UI,
    105     TYPE_CUSTOM,
    106     TYPE_IO,
    107 #if defined(OS_ANDROID)
    108     TYPE_JAVA,
    109 #endif // defined(OS_ANDROID)
    110   };
    111 
    112   // Normally, it is not necessary to instantiate a MessageLoop.  Instead, it
    113   // is typical to make use of the current thread's MessageLoop instance.
    114   explicit MessageLoop(Type type = TYPE_DEFAULT);
    115   // Creates a TYPE_CUSTOM MessageLoop with the supplied MessagePump, which must
    116   // be non-NULL.
    117   explicit MessageLoop(scoped_ptr<base::MessagePump> pump);
    118   virtual ~MessageLoop();
    119 
    120   // Returns the MessageLoop object for the current thread, or null if none.
    121   static MessageLoop* current();
    122 
    123   static void EnableHistogrammer(bool enable_histogrammer);
    124 
    125   typedef scoped_ptr<MessagePump> (MessagePumpFactory)();
    126   // Uses the given base::MessagePumpForUIFactory to override the default
    127   // MessagePump implementation for 'TYPE_UI'. Returns true if the factory
    128   // was successfully registered.
    129   static bool InitMessagePumpForUIFactory(MessagePumpFactory* factory);
    130 
    131   // Creates the default MessagePump based on |type|. Caller owns return
    132   // value.
    133   static scoped_ptr<MessagePump> CreateMessagePumpForType(Type type);
    134   // A DestructionObserver is notified when the current MessageLoop is being
    135   // destroyed.  These observers are notified prior to MessageLoop::current()
    136   // being changed to return NULL.  This gives interested parties the chance to
    137   // do final cleanup that depends on the MessageLoop.
    138   //
    139   // NOTE: Any tasks posted to the MessageLoop during this notification will
    140   // not be run.  Instead, they will be deleted.
    141   //
    142   class BASE_EXPORT DestructionObserver {
    143    public:
    144     virtual void WillDestroyCurrentMessageLoop() = 0;
    145 
    146    protected:
    147     virtual ~DestructionObserver();
    148   };
    149 
    150   // Add a DestructionObserver, which will start receiving notifications
    151   // immediately.
    152   void AddDestructionObserver(DestructionObserver* destruction_observer);
    153 
    154   // Remove a DestructionObserver.  It is safe to call this method while a
    155   // DestructionObserver is receiving a notification callback.
    156   void RemoveDestructionObserver(DestructionObserver* destruction_observer);
    157 
    158   // The "PostTask" family of methods call the task's Run method asynchronously
    159   // from within a message loop at some point in the future.
    160   //
    161   // With the PostTask variant, tasks are invoked in FIFO order, inter-mixed
    162   // with normal UI or IO event processing.  With the PostDelayedTask variant,
    163   // tasks are called after at least approximately 'delay_ms' have elapsed.
    164   //
    165   // The NonNestable variants work similarly except that they promise never to
    166   // dispatch the task from a nested invocation of MessageLoop::Run.  Instead,
    167   // such tasks get deferred until the top-most MessageLoop::Run is executing.
    168   //
    169   // The MessageLoop takes ownership of the Task, and deletes it after it has
    170   // been Run().
    171   //
    172   // PostTask(from_here, task) is equivalent to
    173   // PostDelayedTask(from_here, task, 0).
    174   //
    175   // NOTE: These methods may be called on any thread.  The Task will be invoked
    176   // on the thread that executes MessageLoop::Run().
    177   void PostTask(const tracked_objects::Location& from_here,
    178                 const Closure& task);
    179 
    180   void PostDelayedTask(const tracked_objects::Location& from_here,
    181                        const Closure& task,
    182                        TimeDelta delay);
    183 
    184   void PostNonNestableTask(const tracked_objects::Location& from_here,
    185                            const Closure& task);
    186 
    187   void PostNonNestableDelayedTask(const tracked_objects::Location& from_here,
    188                                   const Closure& task,
    189                                   TimeDelta delay);
    190 
    191   // A variant on PostTask that deletes the given object.  This is useful
    192   // if the object needs to live until the next run of the MessageLoop (for
    193   // example, deleting a RenderProcessHost from within an IPC callback is not
    194   // good).
    195   //
    196   // NOTE: This method may be called on any thread.  The object will be deleted
    197   // on the thread that executes MessageLoop::Run().  If this is not the same
    198   // as the thread that calls PostDelayedTask(FROM_HERE, ), then T MUST inherit
    199   // from RefCountedThreadSafe<T>!
    200   template <class T>
    201   void DeleteSoon(const tracked_objects::Location& from_here, const T* object) {
    202     base::subtle::DeleteHelperInternal<T, void>::DeleteViaSequencedTaskRunner(
    203         this, from_here, object);
    204   }
    205 
    206   // A variant on PostTask that releases the given reference counted object
    207   // (by calling its Release method).  This is useful if the object needs to
    208   // live until the next run of the MessageLoop, or if the object needs to be
    209   // released on a particular thread.
    210   //
    211   // A common pattern is to manually increment the object's reference count
    212   // (AddRef), clear the pointer, then issue a ReleaseSoon.  The reference count
    213   // is incremented manually to ensure clearing the pointer does not trigger a
    214   // delete and to account for the upcoming decrement (ReleaseSoon).  For
    215   // example:
    216   //
    217   // scoped_refptr<Foo> foo = ...
    218   // foo->AddRef();
    219   // Foo* raw_foo = foo.get();
    220   // foo = NULL;
    221   // message_loop->ReleaseSoon(raw_foo);
    222   //
    223   // NOTE: This method may be called on any thread.  The object will be
    224   // released (and thus possibly deleted) on the thread that executes
    225   // MessageLoop::Run().  If this is not the same as the thread that calls
    226   // PostDelayedTask(FROM_HERE, ), then T MUST inherit from
    227   // RefCountedThreadSafe<T>!
    228   template <class T>
    229   void ReleaseSoon(const tracked_objects::Location& from_here,
    230                    const T* object) {
    231     base::subtle::ReleaseHelperInternal<T, void>::ReleaseViaSequencedTaskRunner(
    232         this, from_here, object);
    233   }
    234 
    235   // Deprecated: use RunLoop instead.
    236   // Run the message loop.
    237   void Run();
    238 
    239   // Deprecated: use RunLoop instead.
    240   // Process all pending tasks, windows messages, etc., but don't wait/sleep.
    241   // Return as soon as all items that can be run are taken care of.
    242   void RunUntilIdle();
    243 
    244   // TODO(jbates) remove this. crbug.com/131220. See QuitWhenIdle().
    245   void Quit() { QuitWhenIdle(); }
    246 
    247   // Deprecated: use RunLoop instead.
    248   //
    249   // Signals the Run method to return when it becomes idle. It will continue to
    250   // process pending messages and future messages as long as they are enqueued.
    251   // Warning: if the MessageLoop remains busy, it may never quit. Only use this
    252   // Quit method when looping procedures (such as web pages) have been shut
    253   // down.
    254   //
    255   // This method may only be called on the same thread that called Run, and Run
    256   // must still be on the call stack.
    257   //
    258   // Use QuitClosure variants if you need to Quit another thread's MessageLoop,
    259   // but note that doing so is fairly dangerous if the target thread makes
    260   // nested calls to MessageLoop::Run.  The problem being that you won't know
    261   // which nested run loop you are quitting, so be careful!
    262   void QuitWhenIdle();
    263 
    264   // Deprecated: use RunLoop instead.
    265   //
    266   // This method is a variant of Quit, that does not wait for pending messages
    267   // to be processed before returning from Run.
    268   void QuitNow();
    269 
    270   // TODO(jbates) remove this. crbug.com/131220. See QuitWhenIdleClosure().
    271   static Closure QuitClosure() { return QuitWhenIdleClosure(); }
    272 
    273   // Deprecated: use RunLoop instead.
    274   // Construct a Closure that will call QuitWhenIdle(). Useful to schedule an
    275   // arbitrary MessageLoop to QuitWhenIdle.
    276   static Closure QuitWhenIdleClosure();
    277 
    278   // Set the timer slack for this message loop.
    279   void SetTimerSlack(TimerSlack timer_slack) {
    280     pump_->SetTimerSlack(timer_slack);
    281   }
    282 
    283   // Returns true if this loop is |type|. This allows subclasses (especially
    284   // those in tests) to specialize how they are identified.
    285   virtual bool IsType(Type type) const;
    286 
    287   // Returns the type passed to the constructor.
    288   Type type() const { return type_; }
    289 
    290   // Optional call to connect the thread name with this loop.
    291   void set_thread_name(const std::string& thread_name) {
    292     DCHECK(thread_name_.empty()) << "Should not rename this thread!";
    293     thread_name_ = thread_name;
    294   }
    295   const std::string& thread_name() const { return thread_name_; }
    296 
    297   // Gets the message loop proxy associated with this message loop.
    298   //
    299   // NOTE: Deprecated; prefer task_runner() and the TaskRunner interfaces
    300   scoped_refptr<MessageLoopProxy> message_loop_proxy() {
    301     return message_loop_proxy_;
    302   }
    303 
    304   // Gets the TaskRunner associated with this message loop.
    305   scoped_refptr<SingleThreadTaskRunner> task_runner() {
    306     return message_loop_proxy_;
    307   }
    308 
    309   // Enables or disables the recursive task processing. This happens in the case
    310   // of recursive message loops. Some unwanted message loop may occurs when
    311   // using common controls or printer functions. By default, recursive task
    312   // processing is disabled.
    313   //
    314   // Please utilize |ScopedNestableTaskAllower| instead of calling these methods
    315   // directly.  In general nestable message loops are to be avoided.  They are
    316   // dangerous and difficult to get right, so please use with extreme caution.
    317   //
    318   // The specific case where tasks get queued is:
    319   // - The thread is running a message loop.
    320   // - It receives a task #1 and execute it.
    321   // - The task #1 implicitly start a message loop, like a MessageBox in the
    322   //   unit test. This can also be StartDoc or GetSaveFileName.
    323   // - The thread receives a task #2 before or while in this second message
    324   //   loop.
    325   // - With NestableTasksAllowed set to true, the task #2 will run right away.
    326   //   Otherwise, it will get executed right after task #1 completes at "thread
    327   //   message loop level".
    328   void SetNestableTasksAllowed(bool allowed);
    329   bool NestableTasksAllowed() const;
    330 
    331   // Enables nestable tasks on |loop| while in scope.
    332   class ScopedNestableTaskAllower {
    333    public:
    334     explicit ScopedNestableTaskAllower(MessageLoop* loop)
    335         : loop_(loop),
    336           old_state_(loop_->NestableTasksAllowed()) {
    337       loop_->SetNestableTasksAllowed(true);
    338     }
    339     ~ScopedNestableTaskAllower() {
    340       loop_->SetNestableTasksAllowed(old_state_);
    341     }
    342 
    343    private:
    344     MessageLoop* loop_;
    345     bool old_state_;
    346   };
    347 
    348   // Returns true if we are currently running a nested message loop.
    349   bool IsNested();
    350 
    351   // A TaskObserver is an object that receives task notifications from the
    352   // MessageLoop.
    353   //
    354   // NOTE: A TaskObserver implementation should be extremely fast!
    355   class BASE_EXPORT TaskObserver {
    356    public:
    357     TaskObserver();
    358 
    359     // This method is called before processing a task.
    360     virtual void WillProcessTask(const PendingTask& pending_task) = 0;
    361 
    362     // This method is called after processing a task.
    363     virtual void DidProcessTask(const PendingTask& pending_task) = 0;
    364 
    365    protected:
    366     virtual ~TaskObserver();
    367   };
    368 
    369   // These functions can only be called on the same thread that |this| is
    370   // running on.
    371   void AddTaskObserver(TaskObserver* task_observer);
    372   void RemoveTaskObserver(TaskObserver* task_observer);
    373 
    374 #if defined(OS_WIN)
    375   void set_os_modal_loop(bool os_modal_loop) {
    376     os_modal_loop_ = os_modal_loop;
    377   }
    378 
    379   bool os_modal_loop() const {
    380     return os_modal_loop_;
    381   }
    382 #endif  // OS_WIN
    383 
    384   // Can only be called from the thread that owns the MessageLoop.
    385   bool is_running() const;
    386 
    387   // Returns true if the message loop has high resolution timers enabled.
    388   // Provided for testing.
    389   bool HasHighResolutionTasks();
    390 
    391   // Returns true if the message loop is "idle". Provided for testing.
    392   bool IsIdleForTesting();
    393 
    394   //----------------------------------------------------------------------------
    395  protected:
    396   scoped_ptr<MessagePump> pump_;
    397 
    398  private:
    399   friend class internal::IncomingTaskQueue;
    400   friend class RunLoop;
    401 
    402   // Configures various members for the two constructors.
    403   void Init();
    404 
    405   // Invokes the actual run loop using the message pump.
    406   void RunHandler();
    407 
    408   // Called to process any delayed non-nestable tasks.
    409   bool ProcessNextDelayedNonNestableTask();
    410 
    411   // Runs the specified PendingTask.
    412   void RunTask(const PendingTask& pending_task);
    413 
    414   // Calls RunTask or queues the pending_task on the deferred task list if it
    415   // cannot be run right now.  Returns true if the task was run.
    416   bool DeferOrRunPendingTask(const PendingTask& pending_task);
    417 
    418   // Adds the pending task to delayed_work_queue_.
    419   void AddToDelayedWorkQueue(const PendingTask& pending_task);
    420 
    421   // Delete tasks that haven't run yet without running them.  Used in the
    422   // destructor to make sure all the task's destructors get called.  Returns
    423   // true if some work was done.
    424   bool DeletePendingTasks();
    425 
    426   // Returns the TaskAnnotator which is used to add debug information to posted
    427   // tasks.
    428   debug::TaskAnnotator* task_annotator() { return &task_annotator_; }
    429 
    430   // Loads tasks from the incoming queue to |work_queue_| if the latter is
    431   // empty.
    432   void ReloadWorkQueue();
    433 
    434   // Wakes up the message pump. Can be called on any thread. The caller is
    435   // responsible for synchronizing ScheduleWork() calls.
    436   void ScheduleWork(bool was_empty);
    437 
    438   // Start recording histogram info about events and action IF it was enabled
    439   // and IF the statistics recorder can accept a registration of our histogram.
    440   void StartHistogrammer();
    441 
    442   // Add occurrence of event to our histogram, so that we can see what is being
    443   // done in a specific MessageLoop instance (i.e., specific thread).
    444   // If message_histogram_ is NULL, this is a no-op.
    445   void HistogramEvent(int event);
    446 
    447   // MessagePump::Delegate methods:
    448   virtual bool DoWork() OVERRIDE;
    449   virtual bool DoDelayedWork(TimeTicks* next_delayed_work_time) OVERRIDE;
    450   virtual bool DoIdleWork() OVERRIDE;
    451 
    452   const Type type_;
    453 
    454   // A list of tasks that need to be processed by this instance.  Note that
    455   // this queue is only accessed (push/pop) by our current thread.
    456   TaskQueue work_queue_;
    457 
    458   // How many high resolution tasks are in the pending task queue. This value
    459   // increases by N every time we call ReloadWorkQueue() and decreases by 1
    460   // every time we call RunTask() if the task needs a high resolution timer.
    461   int pending_high_res_tasks_;
    462   // Tracks if we have requested high resolution timers. Its only use is to
    463   // turn off the high resolution timer upon loop destruction.
    464   bool in_high_res_mode_;
    465 
    466   // Contains delayed tasks, sorted by their 'delayed_run_time' property.
    467   DelayedTaskQueue delayed_work_queue_;
    468 
    469   // A recent snapshot of Time::Now(), used to check delayed_work_queue_.
    470   TimeTicks recent_time_;
    471 
    472   // A queue of non-nestable tasks that we had to defer because when it came
    473   // time to execute them we were in a nested message loop.  They will execute
    474   // once we're out of nested message loops.
    475   TaskQueue deferred_non_nestable_work_queue_;
    476 
    477   ObserverList<DestructionObserver> destruction_observers_;
    478 
    479   // A recursion block that prevents accidentally running additional tasks when
    480   // insider a (accidentally induced?) nested message pump.
    481   bool nestable_tasks_allowed_;
    482 
    483 #if defined(OS_WIN)
    484   // Should be set to true before calling Windows APIs like TrackPopupMenu, etc
    485   // which enter a modal message loop.
    486   bool os_modal_loop_;
    487 #endif
    488 
    489   std::string thread_name_;
    490   // A profiling histogram showing the counts of various messages and events.
    491   HistogramBase* message_histogram_;
    492 
    493   RunLoop* run_loop_;
    494 
    495   ObserverList<TaskObserver> task_observers_;
    496 
    497   debug::TaskAnnotator task_annotator_;
    498 
    499   scoped_refptr<internal::IncomingTaskQueue> incoming_task_queue_;
    500 
    501   // The message loop proxy associated with this message loop.
    502   scoped_refptr<internal::MessageLoopProxyImpl> message_loop_proxy_;
    503   scoped_ptr<ThreadTaskRunnerHandle> thread_task_runner_handle_;
    504 
    505   template <class T, class R> friend class base::subtle::DeleteHelperInternal;
    506   template <class T, class R> friend class base::subtle::ReleaseHelperInternal;
    507 
    508   void DeleteSoonInternal(const tracked_objects::Location& from_here,
    509                           void(*deleter)(const void*),
    510                           const void* object);
    511   void ReleaseSoonInternal(const tracked_objects::Location& from_here,
    512                            void(*releaser)(const void*),
    513                            const void* object);
    514 
    515   DISALLOW_COPY_AND_ASSIGN(MessageLoop);
    516 };
    517 
    518 #if !defined(OS_NACL)
    519 
    520 //-----------------------------------------------------------------------------
    521 // MessageLoopForUI extends MessageLoop with methods that are particular to a
    522 // MessageLoop instantiated with TYPE_UI.
    523 //
    524 // This class is typically used like so:
    525 //   MessageLoopForUI::current()->...call some method...
    526 //
    527 class BASE_EXPORT MessageLoopForUI : public MessageLoop {
    528  public:
    529   MessageLoopForUI() : MessageLoop(TYPE_UI) {
    530   }
    531 
    532   // Returns the MessageLoopForUI of the current thread.
    533   static MessageLoopForUI* current() {
    534     MessageLoop* loop = MessageLoop::current();
    535     DCHECK(loop);
    536     DCHECK_EQ(MessageLoop::TYPE_UI, loop->type());
    537     return static_cast<MessageLoopForUI*>(loop);
    538   }
    539 
    540   static bool IsCurrent() {
    541     MessageLoop* loop = MessageLoop::current();
    542     return loop && loop->type() == MessageLoop::TYPE_UI;
    543   }
    544 
    545 #if defined(OS_IOS)
    546   // On iOS, the main message loop cannot be Run().  Instead call Attach(),
    547   // which connects this MessageLoop to the UI thread's CFRunLoop and allows
    548   // PostTask() to work.
    549   void Attach();
    550 #endif
    551 
    552 #if defined(OS_ANDROID)
    553   // On Android, the UI message loop is handled by Java side. So Run() should
    554   // never be called. Instead use Start(), which will forward all the native UI
    555   // events to the Java message loop.
    556   void Start();
    557 #endif
    558 
    559 #if defined(USE_OZONE) || (defined(USE_X11) && !defined(USE_GLIB))
    560   // Please see MessagePumpLibevent for definition.
    561   bool WatchFileDescriptor(
    562       int fd,
    563       bool persistent,
    564       MessagePumpLibevent::Mode mode,
    565       MessagePumpLibevent::FileDescriptorWatcher* controller,
    566       MessagePumpLibevent::Watcher* delegate);
    567 #endif
    568 };
    569 
    570 // Do not add any member variables to MessageLoopForUI!  This is important b/c
    571 // MessageLoopForUI is often allocated via MessageLoop(TYPE_UI).  Any extra
    572 // data that you need should be stored on the MessageLoop's pump_ instance.
    573 COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForUI),
    574                MessageLoopForUI_should_not_have_extra_member_variables);
    575 
    576 #endif  // !defined(OS_NACL)
    577 
    578 //-----------------------------------------------------------------------------
    579 // MessageLoopForIO extends MessageLoop with methods that are particular to a
    580 // MessageLoop instantiated with TYPE_IO.
    581 //
    582 // This class is typically used like so:
    583 //   MessageLoopForIO::current()->...call some method...
    584 //
    585 class BASE_EXPORT MessageLoopForIO : public MessageLoop {
    586  public:
    587   MessageLoopForIO() : MessageLoop(TYPE_IO) {
    588   }
    589 
    590   // Returns the MessageLoopForIO of the current thread.
    591   static MessageLoopForIO* current() {
    592     MessageLoop* loop = MessageLoop::current();
    593     DCHECK_EQ(MessageLoop::TYPE_IO, loop->type());
    594     return static_cast<MessageLoopForIO*>(loop);
    595   }
    596 
    597   static bool IsCurrent() {
    598     MessageLoop* loop = MessageLoop::current();
    599     return loop && loop->type() == MessageLoop::TYPE_IO;
    600   }
    601 
    602 #if !defined(OS_NACL)
    603 
    604 #if defined(OS_WIN)
    605   typedef MessagePumpForIO::IOHandler IOHandler;
    606   typedef MessagePumpForIO::IOContext IOContext;
    607   typedef MessagePumpForIO::IOObserver IOObserver;
    608 #elif defined(OS_IOS)
    609   typedef MessagePumpIOSForIO::Watcher Watcher;
    610   typedef MessagePumpIOSForIO::FileDescriptorWatcher
    611       FileDescriptorWatcher;
    612   typedef MessagePumpIOSForIO::IOObserver IOObserver;
    613 
    614   enum Mode {
    615     WATCH_READ = MessagePumpIOSForIO::WATCH_READ,
    616     WATCH_WRITE = MessagePumpIOSForIO::WATCH_WRITE,
    617     WATCH_READ_WRITE = MessagePumpIOSForIO::WATCH_READ_WRITE
    618   };
    619 #elif defined(OS_POSIX)
    620   typedef MessagePumpLibevent::Watcher Watcher;
    621   typedef MessagePumpLibevent::FileDescriptorWatcher
    622       FileDescriptorWatcher;
    623   typedef MessagePumpLibevent::IOObserver IOObserver;
    624 
    625   enum Mode {
    626     WATCH_READ = MessagePumpLibevent::WATCH_READ,
    627     WATCH_WRITE = MessagePumpLibevent::WATCH_WRITE,
    628     WATCH_READ_WRITE = MessagePumpLibevent::WATCH_READ_WRITE
    629   };
    630 #endif
    631 
    632   void AddIOObserver(IOObserver* io_observer);
    633   void RemoveIOObserver(IOObserver* io_observer);
    634 
    635 #if defined(OS_WIN)
    636   // Please see MessagePumpWin for definitions of these methods.
    637   void RegisterIOHandler(HANDLE file, IOHandler* handler);
    638   bool RegisterJobObject(HANDLE job, IOHandler* handler);
    639   bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
    640 #elif defined(OS_POSIX)
    641   // Please see MessagePumpIOSForIO/MessagePumpLibevent for definition.
    642   bool WatchFileDescriptor(int fd,
    643                            bool persistent,
    644                            Mode mode,
    645                            FileDescriptorWatcher *controller,
    646                            Watcher *delegate);
    647 #endif  // defined(OS_IOS) || defined(OS_POSIX)
    648 #endif  // !defined(OS_NACL)
    649 };
    650 
    651 // Do not add any member variables to MessageLoopForIO!  This is important b/c
    652 // MessageLoopForIO is often allocated via MessageLoop(TYPE_IO).  Any extra
    653 // data that you need should be stored on the MessageLoop's pump_ instance.
    654 COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForIO),
    655                MessageLoopForIO_should_not_have_extra_member_variables);
    656 
    657 }  // namespace base
    658 
    659 #endif  // BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_
    660