HomeSort by relevance Sort by last modified time
    Searched refs:strictly (Results 1 - 18 of 18) sorted by null

  /cts/hostsidetests/appsecurity/test-apps/AppAccessData/
Android.mk 28 # although not strictly necessary, sign this app with different cert than CtsAppWithData
  /external/nanohttpd/
README.md 9 * 2 "flavors" - one at "current" standards and one strictly Java 1.1 compatible.
  /external/linux-tools-perf/perf-3.12.0/tools/perf/
Android.mk 231 # TODO: there's probably more stuff here than is strictly necessary on the target.
  /external/chromium_org/chrome/browser/resources/chromeos/chromevox/common/
math_util.js 255 * Computes the union of two arrays (not in a strictly set theoretical sense
  /external/chromium_org/v8/test/mjsunit/harmony/
private.js 126 // Every symbol should equal itself, and non-strictly equal its wrapper.
  /external/chromium_org/v8/test/mjsunit/es6/
symbols.js 161 // Every symbol should equal itself, and non-strictly equal its wrapper.
  /external/libvorbis/doc/
07-floor1.tex 249 Deviation from implementing a strictly equivalent algorithm can result
01-introduction.tex 376 strictly necessary for function, this minor redundancy allows a packet
  /external/zlib/src/contrib/delphi/
ZLib.pas 61 TCompressionStream is write-only and strictly sequential. Reading from the
  /external/antlr/antlr-3.4/runtime/Ruby/lib/antlr3/
streams.rb 161 it is not strictly necessary that custom stream objects include ANTLR3::Stream,
    [all...]
  /external/libunwind/doc/
libunwind-dynamic.tex 33 but this is not strictly required. For example, a runtime
39 code, it is not strictly necessary to register dynamic unwind-info.
  /external/chromium_org/v8/test/mjsunit/
unicode-test.js     [all...]
  /external/iproute2/doc/
ip-cref.tex 424 on broadcast-only links because of high expense, but it is not strictly
    [all...]
  /external/antlr/antlr-3.4/runtime/Delphi/Sources/Antlr3.Runtime/
Antlr.Runtime.pas 150 /// and in that its argument is strictly an input cursor (index).
    [all...]
  /prebuilts/python/darwin-x86/2.7.5/lib/python2.7/pydoc_data/
topics.py 9 'binary': '\nBinary arithmetic operations\n****************************\n\nThe binary arithmetic operations have the conventional priority\nlevels. Note that some of these operations also apply to certain non-\nnumeric types. Apart from the power operator, there are only two\nlevels, one for multiplicative operators and one for additive\noperators:\n\n m_expr ::= u_expr | m_expr "*" u_expr | m_expr "//" u_expr | m_expr "/" u_expr\n | m_expr "%" u_expr\n a_expr ::= m_expr | a_expr "+" m_expr | a_expr "-" m_expr\n\nThe ``*`` (multiplication) operator yields the product of its\narguments. The arguments must either both be numbers, or one argument\nmust be an integer (plain or long) and the other must be a sequence.\nIn the former case, the numbers are converted to a common type and\nthen multiplied together. In the latter case, sequence repetition is\nperformed; a negative repetition factor yields an empty sequence.\n\nThe ``/`` (division) and ``//`` (floor division) operators yield the\nquotient of their arguments. The numeric arguments are first\nconverted to a common type. Plain or long integer division yields an\ninteger of the same type; the result is that of mathematical division\nwith the \'floor\' function applied to the result. Division by zero\nraises the ``ZeroDivisionError`` exception.\n\nThe ``%`` (modulo) operator yields the remainder from the division of\nthe first argument by the second. The numeric arguments are first\nconverted to a common type. A zero right argument raises the\n``ZeroDivisionError`` exception. The arguments may be floating point\nnumbers, e.g., ``3.14%0.7`` equals ``0.34`` (since ``3.14`` equals\n``4*0.7 + 0.34``.) The modulo operator always yields a result with\nthe same sign as its second operand (or zero); the absolute value of\nthe result is strictly smaller than the absolute value of the second\noperand [2].\n\nThe integer division and modulo operators are connected by the\nfollowing identity: ``x == (x/y)*y + (x%y)``. Integer division and\nmodulo are also connected with the built-in function ``divmod()``:\n``divmod(x, y) == (x/y, x%y)``. These identities don\'t hold for\nfloating point numbers; there similar identities hold approximately\nwhere ``x/y`` is replaced by ``floor(x/y)`` or ``floor(x/y) - 1`` [3].\n\nIn addition to performing the modulo operation on numbers, the ``%``\noperator is also overloaded by string and unicode objects to perform\nstring formatting (also known as interpolation). The syntax for string\nformatting is described in the Python Library Reference, section\n*String Formatting Operations*.\n\nDeprecated since version 2.3: The floor division operator, the modulo\noperator, and the ``divmod()`` function are no longer defined for\ncomplex numbers. Instead, convert to a floating point number using\nthe ``abs()`` function if appropriate.\n\nThe ``+`` (addition) operator yields the sum of its arguments. The\narguments must either both be numbers or both sequences of the same\ntype. In the former case, the numbers are converted to a common type\nand then added together. In the latter case, the sequences are\nconcatenated.\n\nThe ``-`` (subtraction) operator yields the difference of its\narguments. The numeric arguments are first converted to a common\ntype.\n',
    [all...]
  /prebuilts/python/linux-x86/2.7.5/lib/python2.7/pydoc_data/
topics.py 9 'binary': '\nBinary arithmetic operations\n****************************\n\nThe binary arithmetic operations have the conventional priority\nlevels. Note that some of these operations also apply to certain non-\nnumeric types. Apart from the power operator, there are only two\nlevels, one for multiplicative operators and one for additive\noperators:\n\n m_expr ::= u_expr | m_expr "*" u_expr | m_expr "//" u_expr | m_expr "/" u_expr\n | m_expr "%" u_expr\n a_expr ::= m_expr | a_expr "+" m_expr | a_expr "-" m_expr\n\nThe ``*`` (multiplication) operator yields the product of its\narguments. The arguments must either both be numbers, or one argument\nmust be an integer (plain or long) and the other must be a sequence.\nIn the former case, the numbers are converted to a common type and\nthen multiplied together. In the latter case, sequence repetition is\nperformed; a negative repetition factor yields an empty sequence.\n\nThe ``/`` (division) and ``//`` (floor division) operators yield the\nquotient of their arguments. The numeric arguments are first\nconverted to a common type. Plain or long integer division yields an\ninteger of the same type; the result is that of mathematical division\nwith the \'floor\' function applied to the result. Division by zero\nraises the ``ZeroDivisionError`` exception.\n\nThe ``%`` (modulo) operator yields the remainder from the division of\nthe first argument by the second. The numeric arguments are first\nconverted to a common type. A zero right argument raises the\n``ZeroDivisionError`` exception. The arguments may be floating point\nnumbers, e.g., ``3.14%0.7`` equals ``0.34`` (since ``3.14`` equals\n``4*0.7 + 0.34``.) The modulo operator always yields a result with\nthe same sign as its second operand (or zero); the absolute value of\nthe result is strictly smaller than the absolute value of the second\noperand [2].\n\nThe integer division and modulo operators are connected by the\nfollowing identity: ``x == (x/y)*y + (x%y)``. Integer division and\nmodulo are also connected with the built-in function ``divmod()``:\n``divmod(x, y) == (x/y, x%y)``. These identities don\'t hold for\nfloating point numbers; there similar identities hold approximately\nwhere ``x/y`` is replaced by ``floor(x/y)`` or ``floor(x/y) - 1`` [3].\n\nIn addition to performing the modulo operation on numbers, the ``%``\noperator is also overloaded by string and unicode objects to perform\nstring formatting (also known as interpolation). The syntax for string\nformatting is described in the Python Library Reference, section\n*String Formatting Operations*.\n\nDeprecated since version 2.3: The floor division operator, the modulo\noperator, and the ``divmod()`` function are no longer defined for\ncomplex numbers. Instead, convert to a floating point number using\nthe ``abs()`` function if appropriate.\n\nThe ``+`` (addition) operator yields the sum of its arguments. The\narguments must either both be numbers or both sequences of the same\ntype. In the former case, the numbers are converted to a common type\nand then added together. In the latter case, the sequences are\nconcatenated.\n\nThe ``-`` (subtraction) operator yields the difference of its\narguments. The numeric arguments are first converted to a common\ntype.\n',
    [all...]
  /external/chromium_org/tools/win/split_link/viz.js/
viz.js     [all...]
  /external/chromium_org/v8/tools/profviz/
gnuplot-4.6.3-emscripten.js     [all...]

Completed in 622 milliseconds