/external/eigen/unsupported/Eigen/src/LevenbergMarquardt/ |
LMonestep.h | 27 RealScalar pnorm, xnorm, fnorm1, actred, dirder, prered; local 30 temp = 0.0; xnorm = 0.0; 61 xnorm = m_diag.cwiseProduct(x).stableNorm(); 62 m_delta = m_factor * xnorm; 150 xnorm = m_wa2.stableNorm(); 156 if (abs(actred) <= m_ftol && prered <= m_ftol && Scalar(.5) * ratio <= 1. && m_delta <= m_xtol * xnorm) 166 if (m_delta <= m_xtol * xnorm) 183 if (m_delta <= NumTraits<Scalar>::epsilon() * xnorm)
|
/external/eigen/lapack/ |
clarfg.f | 130 REAL ALPHI, ALPHR, BETA, RSAFMN, SAFMIN, XNORM 150 XNORM = SCNRM2( N-1, X, INCX ) 154 IF( XNORM.EQ.ZERO .AND. ALPHI.EQ.ZERO ) THEN 163 BETA = -SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR ) 170 * XNORM, BETA may be inaccurate; scale X and recompute them 183 XNORM = SCNRM2( N-1, X, INCX ) 185 BETA = -SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
|
dlarfg.f | 130 DOUBLE PRECISION BETA, RSAFMN, SAFMIN, XNORM 149 XNORM = DNRM2( N-1, X, INCX ) 151 IF( XNORM.EQ.ZERO ) THEN 160 BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA ) 165 * XNORM, BETA may be inaccurate; scale X and recompute them 178 XNORM = DNRM2( N-1, X, INCX ) 179 BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
|
slarfg.f | 130 REAL BETA, RSAFMN, SAFMIN, XNORM 149 XNORM = SNRM2( N-1, X, INCX ) 151 IF( XNORM.EQ.ZERO ) THEN 160 BETA = -SIGN( SLAPY2( ALPHA, XNORM ), ALPHA ) 165 * XNORM, BETA may be inaccurate; scale X and recompute them 178 XNORM = SNRM2( N-1, X, INCX ) 179 BETA = -SIGN( SLAPY2( ALPHA, XNORM ), ALPHA )
|
zlarfg.f | 130 DOUBLE PRECISION ALPHI, ALPHR, BETA, RSAFMN, SAFMIN, XNORM 150 XNORM = DZNRM2( N-1, X, INCX ) 154 IF( XNORM.EQ.ZERO .AND. ALPHI.EQ.ZERO ) THEN 163 BETA = -SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR ) 170 * XNORM, BETA may be inaccurate; scale X and recompute them 183 XNORM = DZNRM2( N-1, X, INCX ) 185 BETA = -SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
|
/external/eigen/unsupported/Eigen/src/NonLinearOptimization/ |
LevenbergMarquardt.h | 121 Scalar pnorm, xnorm, fnorm1, actred, dirder, prered; member in class:Eigen::LevenbergMarquardt 238 xnorm = diag.cwiseProduct(x).stableNorm(); 239 delta = parameters.factor * xnorm; 326 xnorm = wa2.stableNorm(); 332 if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1. && delta <= parameters.xtol * xnorm) 336 if (delta <= parameters.xtol * xnorm) 344 if (delta <= NumTraits<Scalar>::epsilon() * xnorm) 494 xnorm = diag.cwiseProduct(x).stableNorm(); 495 delta = parameters.factor * xnorm; 576 xnorm = wa2.stableNorm() [all...] |
HybridNonLinearSolver.h | 109 Scalar pnorm, xnorm, fnorm1; member in class:Eigen::HybridNonLinearSolver 213 xnorm = diag.cwiseProduct(x).stableNorm(); 214 delta = parameters.factor * xnorm; 292 xnorm = wa2.stableNorm(); 307 if (delta <= parameters.xtol * xnorm || fnorm == 0.) 313 if (Scalar(.1) * (std::max)(Scalar(.1) * delta, pnorm) <= NumTraits<Scalar>::epsilon() * xnorm) 456 xnorm = diag.cwiseProduct(x).stableNorm(); 457 delta = parameters.factor * xnorm; 535 xnorm = wa2.stableNorm(); 550 if (delta <= parameters.xtol * xnorm || fnorm == 0. [all...] |
/cts/tests/tests/hardware/src/android/hardware/camera2/cts/ |
AllocationTest.java | 184 * @param xNorm The X coordinate defining the left side of the rectangle (in [0, 1]). 192 public Patch(Size size, float xNorm, float yNorm, float wNorm, float hNorm) { 195 assertInRange(xNorm, 0.0f, 1.0f); 203 xTile = (int)Math.ceil(xNorm * wFull); [all...] |
/cts/apps/CameraITS/pymodules/its/ |
image.py | 434 def get_image_patch(img, xnorm, ynorm, wnorm, hnorm): 439 xnorm,ynorm,wnorm,hnorm: Normalized (in [0,1]) coords for the tile. 446 xtile = math.ceil(xnorm * wfull)
|