Home | History | Annotate | Download | only in fdlibm
      1 // The following is adapted from fdlibm (http://www.netlib.org/fdlibm),
      2 //
      3 // ====================================================
      4 // Copyright (C) 1993-2004 by Sun Microsystems, Inc. All rights reserved.
      5 //
      6 // Developed at SunSoft, a Sun Microsystems, Inc. business.
      7 // Permission to use, copy, modify, and distribute this
      8 // software is freely granted, provided that this notice
      9 // is preserved.
     10 // ====================================================
     11 //
     12 // The original source code covered by the above license above has been
     13 // modified significantly by Google Inc.
     14 // Copyright 2014 the V8 project authors. All rights reserved.
     15 //
     16 // The following is a straightforward translation of fdlibm routines
     17 // by Raymond Toy (rtoy (a] google.com).
     18 
     19 // Double constants that do not have empty lower 32 bits are found in fdlibm.cc
     20 // and exposed through kMath as typed array. We assume the compiler to convert
     21 // from decimal to binary accurately enough to produce the intended values.
     22 // kMath is initialized to a Float64Array during genesis and not writable.
     23 var kMath;
     24 
     25 const INVPIO2 = kMath[0];
     26 const PIO2_1  = kMath[1];
     27 const PIO2_1T = kMath[2];
     28 const PIO2_2  = kMath[3];
     29 const PIO2_2T = kMath[4];
     30 const PIO2_3  = kMath[5];
     31 const PIO2_3T = kMath[6];
     32 const PIO4    = kMath[32];
     33 const PIO4LO  = kMath[33];
     34 
     35 // Compute k and r such that x - k*pi/2 = r where |r| < pi/4. For
     36 // precision, r is returned as two values y0 and y1 such that r = y0 + y1
     37 // to more than double precision.
     38 macro REMPIO2(X)
     39   var n, y0, y1;
     40   var hx = %_DoubleHi(X);
     41   var ix = hx & 0x7fffffff;
     42 
     43   if (ix < 0x4002d97c) {
     44     // |X| ~< 3*pi/4, special case with n = +/- 1
     45     if (hx > 0) {
     46       var z = X - PIO2_1;
     47       if (ix != 0x3ff921fb) {
     48         // 33+53 bit pi is good enough
     49         y0 = z - PIO2_1T;
     50         y1 = (z - y0) - PIO2_1T;
     51       } else {
     52         // near pi/2, use 33+33+53 bit pi
     53         z -= PIO2_2;
     54         y0 = z - PIO2_2T;
     55         y1 = (z - y0) - PIO2_2T;
     56       }
     57       n = 1;
     58     } else {
     59       // Negative X
     60       var z = X + PIO2_1;
     61       if (ix != 0x3ff921fb) {
     62         // 33+53 bit pi is good enough
     63         y0 = z + PIO2_1T;
     64         y1 = (z - y0) + PIO2_1T;
     65       } else {
     66         // near pi/2, use 33+33+53 bit pi
     67         z += PIO2_2;
     68         y0 = z + PIO2_2T;
     69         y1 = (z - y0) + PIO2_2T;
     70       }
     71       n = -1;
     72     }
     73   } else if (ix <= 0x413921fb) {
     74     // |X| ~<= 2^19*(pi/2), medium size
     75     var t = MathAbs(X);
     76     n = (t * INVPIO2 + 0.5) | 0;
     77     var r = t - n * PIO2_1;
     78     var w = n * PIO2_1T;
     79     // First round good to 85 bit
     80     y0 = r - w;
     81     if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x1000000) {
     82       // 2nd iteration needed, good to 118
     83       t = r;
     84       w = n * PIO2_2;
     85       r = t - w;
     86       w = n * PIO2_2T - ((t - r) - w);
     87       y0 = r - w;
     88       if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x3100000) {
     89         // 3rd iteration needed. 151 bits accuracy
     90         t = r;
     91         w = n * PIO2_3;
     92         r = t - w;
     93         w = n * PIO2_3T - ((t - r) - w);
     94         y0 = r - w;
     95       }
     96     }
     97     y1 = (r - y0) - w;
     98     if (hx < 0) {
     99       n = -n;
    100       y0 = -y0;
    101       y1 = -y1;
    102     }
    103   } else {
    104     // Need to do full Payne-Hanek reduction here.
    105     var r = %RemPiO2(X);
    106     n = r[0];
    107     y0 = r[1];
    108     y1 = r[2];
    109   }
    110 endmacro
    111 
    112 
    113 // __kernel_sin(X, Y, IY)
    114 // kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
    115 // Input X is assumed to be bounded by ~pi/4 in magnitude.
    116 // Input Y is the tail of X so that x = X + Y.
    117 //
    118 // Algorithm
    119 //  1. Since ieee_sin(-x) = -ieee_sin(x), we need only to consider positive x.
    120 //  2. ieee_sin(x) is approximated by a polynomial of degree 13 on
    121 //     [0,pi/4]
    122 //                           3            13
    123 //          sin(x) ~ x + S1*x + ... + S6*x
    124 //     where
    125 //
    126 //    |ieee_sin(x)    2     4     6     8     10     12  |     -58
    127 //    |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2
    128 //    |  x                                               |
    129 //
    130 //  3. ieee_sin(X+Y) = ieee_sin(X) + sin'(X')*Y
    131 //              ~ ieee_sin(X) + (1-X*X/2)*Y
    132 //     For better accuracy, let
    133 //               3      2      2      2      2
    134 //          r = X *(S2+X *(S3+X *(S4+X *(S5+X *S6))))
    135 //     then                   3    2
    136 //          sin(x) = X + (S1*X + (X *(r-Y/2)+Y))
    137 //
    138 macro KSIN(x)
    139 kMath[7+x]
    140 endmacro
    141 
    142 macro RETURN_KERNELSIN(X, Y, SIGN)
    143   var z = X * X;
    144   var v = z * X;
    145   var r = KSIN(1) + z * (KSIN(2) + z * (KSIN(3) +
    146                     z * (KSIN(4) + z * KSIN(5))));
    147   return (X - ((z * (0.5 * Y - v * r) - Y) - v * KSIN(0))) SIGN;
    148 endmacro
    149 
    150 // __kernel_cos(X, Y)
    151 // kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
    152 // Input X is assumed to be bounded by ~pi/4 in magnitude.
    153 // Input Y is the tail of X so that x = X + Y.
    154 //
    155 // Algorithm
    156 //  1. Since ieee_cos(-x) = ieee_cos(x), we need only to consider positive x.
    157 //  2. ieee_cos(x) is approximated by a polynomial of degree 14 on
    158 //     [0,pi/4]
    159 //                                   4            14
    160 //          cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
    161 //     where the remez error is
    162 //
    163 //  |                   2     4     6     8     10    12     14 |     -58
    164 //  |ieee_cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
    165 //  |                                                           |
    166 //
    167 //                 4     6     8     10    12     14
    168 //  3. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
    169 //         ieee_cos(x) = 1 - x*x/2 + r
    170 //     since ieee_cos(X+Y) ~ ieee_cos(X) - ieee_sin(X)*Y
    171 //                    ~ ieee_cos(X) - X*Y,
    172 //     a correction term is necessary in ieee_cos(x) and hence
    173 //         cos(X+Y) = 1 - (X*X/2 - (r - X*Y))
    174 //     For better accuracy when x > 0.3, let qx = |x|/4 with
    175 //     the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
    176 //     Then
    177 //         cos(X+Y) = (1-qx) - ((X*X/2-qx) - (r-X*Y)).
    178 //     Note that 1-qx and (X*X/2-qx) is EXACT here, and the
    179 //     magnitude of the latter is at least a quarter of X*X/2,
    180 //     thus, reducing the rounding error in the subtraction.
    181 //
    182 macro KCOS(x)
    183 kMath[13+x]
    184 endmacro
    185 
    186 macro RETURN_KERNELCOS(X, Y, SIGN)
    187   var ix = %_DoubleHi(X) & 0x7fffffff;
    188   var z = X * X;
    189   var r = z * (KCOS(0) + z * (KCOS(1) + z * (KCOS(2)+
    190           z * (KCOS(3) + z * (KCOS(4) + z * KCOS(5))))));
    191   if (ix < 0x3fd33333) {  // |x| ~< 0.3
    192     return (1 - (0.5 * z - (z * r - X * Y))) SIGN;
    193   } else {
    194     var qx;
    195     if (ix > 0x3fe90000) {  // |x| > 0.78125
    196       qx = 0.28125;
    197     } else {
    198       qx = %_ConstructDouble(%_DoubleHi(0.25 * X), 0);
    199     }
    200     var hz = 0.5 * z - qx;
    201     return (1 - qx - (hz - (z * r - X * Y))) SIGN;
    202   }
    203 endmacro
    204 
    205 
    206 // kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
    207 // Input x is assumed to be bounded by ~pi/4 in magnitude.
    208 // Input y is the tail of x.
    209 // Input k indicates whether ieee_tan (if k = 1) or -1/tan (if k = -1)
    210 // is returned.
    211 //
    212 // Algorithm
    213 //  1. Since ieee_tan(-x) = -ieee_tan(x), we need only to consider positive x.
    214 //  2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
    215 //  3. ieee_tan(x) is approximated by a odd polynomial of degree 27 on
    216 //     [0,0.67434]
    217 //                           3             27
    218 //          tan(x) ~ x + T1*x + ... + T13*x
    219 //     where
    220 //
    221 //     |ieee_tan(x)    2     4            26   |     -59.2
    222 //     |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
    223 //     |  x                                    |
    224 //
    225 //     Note: ieee_tan(x+y) = ieee_tan(x) + tan'(x)*y
    226 //                    ~ ieee_tan(x) + (1+x*x)*y
    227 //     Therefore, for better accuracy in computing ieee_tan(x+y), let
    228 //               3      2      2       2       2
    229 //          r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
    230 //     then
    231 //                              3    2
    232 //          tan(x+y) = x + (T1*x + (x *(r+y)+y))
    233 //
    234 //  4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
    235 //          tan(x) = ieee_tan(pi/4-y) = (1-ieee_tan(y))/(1+ieee_tan(y))
    236 //                 = 1 - 2*(ieee_tan(y) - (ieee_tan(y)^2)/(1+ieee_tan(y)))
    237 //
    238 // Set returnTan to 1 for tan; -1 for cot.  Anything else is illegal
    239 // and will cause incorrect results.
    240 //
    241 macro KTAN(x)
    242 kMath[19+x]
    243 endmacro
    244 
    245 function KernelTan(x, y, returnTan) {
    246   var z;
    247   var w;
    248   var hx = %_DoubleHi(x);
    249   var ix = hx & 0x7fffffff;
    250 
    251   if (ix < 0x3e300000) {  // |x| < 2^-28
    252     if (((ix | %_DoubleLo(x)) | (returnTan + 1)) == 0) {
    253       // x == 0 && returnTan = -1
    254       return 1 / MathAbs(x);
    255     } else {
    256       if (returnTan == 1) {
    257         return x;
    258       } else {
    259         // Compute -1/(x + y) carefully
    260         var w = x + y;
    261         var z = %_ConstructDouble(%_DoubleHi(w), 0);
    262         var v = y - (z - x);
    263         var a = -1 / w;
    264         var t = %_ConstructDouble(%_DoubleHi(a), 0);
    265         var s = 1 + t * z;
    266         return t + a * (s + t * v);
    267       }
    268     }
    269   }
    270   if (ix >= 0x3fe59428) {  // |x| > .6744
    271     if (x < 0) {
    272       x = -x;
    273       y = -y;
    274     }
    275     z = PIO4 - x;
    276     w = PIO4LO - y;
    277     x = z + w;
    278     y = 0;
    279   }
    280   z = x * x;
    281   w = z * z;
    282 
    283   // Break x^5 * (T1 + x^2*T2 + ...) into
    284   // x^5 * (T1 + x^4*T3 + ... + x^20*T11) +
    285   // x^5 * (x^2 * (T2 + x^4*T4 + ... + x^22*T12))
    286   var r = KTAN(1) + w * (KTAN(3) + w * (KTAN(5) +
    287                     w * (KTAN(7) + w * (KTAN(9) + w * KTAN(11)))));
    288   var v = z * (KTAN(2) + w * (KTAN(4) + w * (KTAN(6) +
    289                          w * (KTAN(8) + w * (KTAN(10) + w * KTAN(12))))));
    290   var s = z * x;
    291   r = y + z * (s * (r + v) + y);
    292   r = r + KTAN(0) * s;
    293   w = x + r;
    294   if (ix >= 0x3fe59428) {
    295     return (1 - ((hx >> 30) & 2)) *
    296       (returnTan - 2.0 * (x - (w * w / (w + returnTan) - r)));
    297   }
    298   if (returnTan == 1) {
    299     return w;
    300   } else {
    301     z = %_ConstructDouble(%_DoubleHi(w), 0);
    302     v = r - (z - x);
    303     var a = -1 / w;
    304     var t = %_ConstructDouble(%_DoubleHi(a), 0);
    305     s = 1 + t * z;
    306     return t + a * (s + t * v);
    307   }
    308 }
    309 
    310 function MathSinSlow(x) {
    311   REMPIO2(x);
    312   var sign = 1 - (n & 2);
    313   if (n & 1) {
    314     RETURN_KERNELCOS(y0, y1, * sign);
    315   } else {
    316     RETURN_KERNELSIN(y0, y1, * sign);
    317   }
    318 }
    319 
    320 function MathCosSlow(x) {
    321   REMPIO2(x);
    322   if (n & 1) {
    323     var sign = (n & 2) - 1;
    324     RETURN_KERNELSIN(y0, y1, * sign);
    325   } else {
    326     var sign = 1 - (n & 2);
    327     RETURN_KERNELCOS(y0, y1, * sign);
    328   }
    329 }
    330 
    331 // ECMA 262 - 15.8.2.16
    332 function MathSin(x) {
    333   x = x * 1;  // Convert to number.
    334   if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
    335     // |x| < pi/4, approximately.  No reduction needed.
    336     RETURN_KERNELSIN(x, 0, /* empty */);
    337   }
    338   return MathSinSlow(x);
    339 }
    340 
    341 // ECMA 262 - 15.8.2.7
    342 function MathCos(x) {
    343   x = x * 1;  // Convert to number.
    344   if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
    345     // |x| < pi/4, approximately.  No reduction needed.
    346     RETURN_KERNELCOS(x, 0, /* empty */);
    347   }
    348   return MathCosSlow(x);
    349 }
    350 
    351 // ECMA 262 - 15.8.2.18
    352 function MathTan(x) {
    353   x = x * 1;  // Convert to number.
    354   if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
    355     // |x| < pi/4, approximately.  No reduction needed.
    356     return KernelTan(x, 0, 1);
    357   }
    358   REMPIO2(x);
    359   return KernelTan(y0, y1, (n & 1) ? -1 : 1);
    360 }
    361 
    362 // ES6 draft 09-27-13, section 20.2.2.20.
    363 // Math.log1p
    364 //
    365 // Method :
    366 //   1. Argument Reduction: find k and f such that
    367 //                      1+x = 2^k * (1+f),
    368 //         where  sqrt(2)/2 < 1+f < sqrt(2) .
    369 //
    370 //      Note. If k=0, then f=x is exact. However, if k!=0, then f
    371 //      may not be representable exactly. In that case, a correction
    372 //      term is need. Let u=1+x rounded. Let c = (1+x)-u, then
    373 //      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
    374 //      and add back the correction term c/u.
    375 //      (Note: when x > 2**53, one can simply return log(x))
    376 //
    377 //   2. Approximation of log1p(f).
    378 //      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
    379 //            = 2s + 2/3 s**3 + 2/5 s**5 + .....,
    380 //            = 2s + s*R
    381 //      We use a special Reme algorithm on [0,0.1716] to generate
    382 //      a polynomial of degree 14 to approximate R The maximum error
    383 //      of this polynomial approximation is bounded by 2**-58.45. In
    384 //      other words,
    385 //                      2      4      6      8      10      12      14
    386 //          R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
    387 //      (the values of Lp1 to Lp7 are listed in the program)
    388 //      and
    389 //          |      2          14          |     -58.45
    390 //          | Lp1*s +...+Lp7*s    -  R(z) | <= 2
    391 //          |                             |
    392 //      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
    393 //      In order to guarantee error in log below 1ulp, we compute log
    394 //      by
    395 //              log1p(f) = f - (hfsq - s*(hfsq+R)).
    396 //
    397 //      3. Finally, log1p(x) = k*ln2 + log1p(f).
    398 //                           = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
    399 //         Here ln2 is split into two floating point number:
    400 //                      ln2_hi + ln2_lo,
    401 //         where n*ln2_hi is always exact for |n| < 2000.
    402 //
    403 // Special cases:
    404 //      log1p(x) is NaN with signal if x < -1 (including -INF) ;
    405 //      log1p(+INF) is +INF; log1p(-1) is -INF with signal;
    406 //      log1p(NaN) is that NaN with no signal.
    407 //
    408 // Accuracy:
    409 //      according to an error analysis, the error is always less than
    410 //      1 ulp (unit in the last place).
    411 //
    412 // Constants:
    413 //      Constants are found in fdlibm.cc. We assume the C++ compiler to convert
    414 //      from decimal to binary accurately enough to produce the intended values.
    415 //
    416 // Note: Assuming log() return accurate answer, the following
    417 //       algorithm can be used to compute log1p(x) to within a few ULP:
    418 //
    419 //              u = 1+x;
    420 //              if (u==1.0) return x ; else
    421 //                          return log(u)*(x/(u-1.0));
    422 //
    423 //       See HP-15C Advanced Functions Handbook, p.193.
    424 //
    425 const LN2_HI    = kMath[34];
    426 const LN2_LO    = kMath[35];
    427 const TWO54     = kMath[36];
    428 const TWO_THIRD = kMath[37];
    429 macro KLOG1P(x)
    430 (kMath[38+x])
    431 endmacro
    432 
    433 function MathLog1p(x) {
    434   x = x * 1;  // Convert to number.
    435   var hx = %_DoubleHi(x);
    436   var ax = hx & 0x7fffffff;
    437   var k = 1;
    438   var f = x;
    439   var hu = 1;
    440   var c = 0;
    441   var u = x;
    442 
    443   if (hx < 0x3fda827a) {
    444     // x < 0.41422
    445     if (ax >= 0x3ff00000) {  // |x| >= 1
    446       if (x === -1) {
    447         return -INFINITY;  // log1p(-1) = -inf
    448       } else {
    449         return NAN;  // log1p(x<-1) = NaN
    450       }
    451     } else if (ax < 0x3c900000)  {
    452       // For |x| < 2^-54 we can return x.
    453       return x;
    454     } else if (ax < 0x3e200000) {
    455       // For |x| < 2^-29 we can use a simple two-term Taylor series.
    456       return x - x * x * 0.5;
    457     }
    458 
    459     if ((hx > 0) || (hx <= -0x402D413D)) {  // (int) 0xbfd2bec3 = -0x402d413d
    460       // -.2929 < x < 0.41422
    461       k = 0;
    462     }
    463   }
    464 
    465   // Handle Infinity and NAN
    466   if (hx >= 0x7ff00000) return x;
    467 
    468   if (k !== 0) {
    469     if (hx < 0x43400000) {
    470       // x < 2^53
    471       u = 1 + x;
    472       hu = %_DoubleHi(u);
    473       k = (hu >> 20) - 1023;
    474       c = (k > 0) ? 1 - (u - x) : x - (u - 1);
    475       c = c / u;
    476     } else {
    477       hu = %_DoubleHi(u);
    478       k = (hu >> 20) - 1023;
    479     }
    480     hu = hu & 0xfffff;
    481     if (hu < 0x6a09e) {
    482       u = %_ConstructDouble(hu | 0x3ff00000, %_DoubleLo(u));  // Normalize u.
    483     } else {
    484       ++k;
    485       u = %_ConstructDouble(hu | 0x3fe00000, %_DoubleLo(u));  // Normalize u/2.
    486       hu = (0x00100000 - hu) >> 2;
    487     }
    488     f = u - 1;
    489   }
    490 
    491   var hfsq = 0.5 * f * f;
    492   if (hu === 0) {
    493     // |f| < 2^-20;
    494     if (f === 0) {
    495       if (k === 0) {
    496         return 0.0;
    497       } else {
    498         return k * LN2_HI + (c + k * LN2_LO);
    499       }
    500     }
    501     var R = hfsq * (1 - TWO_THIRD * f);
    502     if (k === 0) {
    503       return f - R;
    504     } else {
    505       return k * LN2_HI - ((R - (k * LN2_LO + c)) - f);
    506     }
    507   }
    508 
    509   var s = f / (2 + f);
    510   var z = s * s;
    511   var R = z * (KLOG1P(0) + z * (KLOG1P(1) + z *
    512               (KLOG1P(2) + z * (KLOG1P(3) + z *
    513               (KLOG1P(4) + z * (KLOG1P(5) + z * KLOG1P(6)))))));
    514   if (k === 0) {
    515     return f - (hfsq - s * (hfsq + R));
    516   } else {
    517     return k * LN2_HI - ((hfsq - (s * (hfsq + R) + (k * LN2_LO + c))) - f);
    518   }
    519 }
    520 
    521 // ES6 draft 09-27-13, section 20.2.2.14.
    522 // Math.expm1
    523 // Returns exp(x)-1, the exponential of x minus 1.
    524 //
    525 // Method
    526 //   1. Argument reduction:
    527 //      Given x, find r and integer k such that
    528 //
    529 //               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
    530 //
    531 //      Here a correction term c will be computed to compensate
    532 //      the error in r when rounded to a floating-point number.
    533 //
    534 //   2. Approximating expm1(r) by a special rational function on
    535 //      the interval [0,0.34658]:
    536 //      Since
    537 //          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
    538 //      we define R1(r*r) by
    539 //          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
    540 //      That is,
    541 //          R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
    542 //                   = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
    543 //                   = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
    544 //      We use a special Remes algorithm on [0,0.347] to generate
    545 //      a polynomial of degree 5 in r*r to approximate R1. The
    546 //      maximum error of this polynomial approximation is bounded
    547 //      by 2**-61. In other words,
    548 //          R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
    549 //      where   Q1  =  -1.6666666666666567384E-2,
    550 //              Q2  =   3.9682539681370365873E-4,
    551 //              Q3  =  -9.9206344733435987357E-6,
    552 //              Q4  =   2.5051361420808517002E-7,
    553 //              Q5  =  -6.2843505682382617102E-9;
    554 //      (where z=r*r, and the values of Q1 to Q5 are listed below)
    555 //      with error bounded by
    556 //          |                  5           |     -61
    557 //          | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
    558 //          |                              |
    559 //
    560 //      expm1(r) = exp(r)-1 is then computed by the following
    561 //      specific way which minimize the accumulation rounding error:
    562 //                             2     3
    563 //                            r     r    [ 3 - (R1 + R1*r/2)  ]
    564 //            expm1(r) = r + --- + --- * [--------------------]
    565 //                            2     2    [ 6 - r*(3 - R1*r/2) ]
    566 //
    567 //      To compensate the error in the argument reduction, we use
    568 //              expm1(r+c) = expm1(r) + c + expm1(r)*c
    569 //                         ~ expm1(r) + c + r*c
    570 //      Thus c+r*c will be added in as the correction terms for
    571 //      expm1(r+c). Now rearrange the term to avoid optimization
    572 //      screw up:
    573 //                      (      2                                    2 )
    574 //                      ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
    575 //       expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
    576 //                      ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
    577 //                      (                                             )
    578 //
    579 //                 = r - E
    580 //   3. Scale back to obtain expm1(x):
    581 //      From step 1, we have
    582 //         expm1(x) = either 2^k*[expm1(r)+1] - 1
    583 //                  = or     2^k*[expm1(r) + (1-2^-k)]
    584 //   4. Implementation notes:
    585 //      (A). To save one multiplication, we scale the coefficient Qi
    586 //           to Qi*2^i, and replace z by (x^2)/2.
    587 //      (B). To achieve maximum accuracy, we compute expm1(x) by
    588 //        (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
    589 //        (ii)  if k=0, return r-E
    590 //        (iii) if k=-1, return 0.5*(r-E)-0.5
    591 //        (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E)
    592 //                     else          return  1.0+2.0*(r-E);
    593 //        (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
    594 //        (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
    595 //        (vii) return 2^k(1-((E+2^-k)-r))
    596 //
    597 // Special cases:
    598 //      expm1(INF) is INF, expm1(NaN) is NaN;
    599 //      expm1(-INF) is -1, and
    600 //      for finite argument, only expm1(0)=0 is exact.
    601 //
    602 // Accuracy:
    603 //      according to an error analysis, the error is always less than
    604 //      1 ulp (unit in the last place).
    605 //
    606 // Misc. info.
    607 //      For IEEE double
    608 //          if x > 7.09782712893383973096e+02 then expm1(x) overflow
    609 //
    610 const KEXPM1_OVERFLOW = kMath[45];
    611 const INVLN2          = kMath[46];
    612 macro KEXPM1(x)
    613 (kMath[47+x])
    614 endmacro
    615 
    616 function MathExpm1(x) {
    617   x = x * 1;  // Convert to number.
    618   var y;
    619   var hi;
    620   var lo;
    621   var k;
    622   var t;
    623   var c;
    624 
    625   var hx = %_DoubleHi(x);
    626   var xsb = hx & 0x80000000;     // Sign bit of x
    627   var y = (xsb === 0) ? x : -x;  // y = |x|
    628   hx &= 0x7fffffff;              // High word of |x|
    629 
    630   // Filter out huge and non-finite argument
    631   if (hx >= 0x4043687a) {     // if |x| ~=> 56 * ln2
    632     if (hx >= 0x40862e42) {   // if |x| >= 709.78
    633       if (hx >= 0x7ff00000) {
    634         // expm1(inf) = inf; expm1(-inf) = -1; expm1(nan) = nan;
    635         return (x === -INFINITY) ? -1 : x;
    636       }
    637       if (x > KEXPM1_OVERFLOW) return INFINITY;  // Overflow
    638     }
    639     if (xsb != 0) return -1;  // x < -56 * ln2, return -1.
    640   }
    641 
    642   // Argument reduction
    643   if (hx > 0x3fd62e42) {    // if |x| > 0.5 * ln2
    644     if (hx < 0x3ff0a2b2) {  // and |x| < 1.5 * ln2
    645       if (xsb === 0) {
    646         hi = x - LN2_HI;
    647         lo = LN2_LO;
    648         k = 1;
    649       } else {
    650         hi = x + LN2_HI;
    651         lo = -LN2_LO;
    652         k = -1;
    653       }
    654     } else {
    655       k = (INVLN2 * x + ((xsb === 0) ? 0.5 : -0.5)) | 0;
    656       t = k;
    657       // t * ln2_hi is exact here.
    658       hi = x - t * LN2_HI;
    659       lo = t * LN2_LO;
    660     }
    661     x = hi - lo;
    662     c = (hi - x) - lo;
    663   } else if (hx < 0x3c900000)	{
    664     // When |x| < 2^-54, we can return x.
    665     return x;
    666   } else {
    667     // Fall through.
    668     k = 0;
    669   }
    670 
    671   // x is now in primary range
    672   var hfx = 0.5 * x;
    673   var hxs = x * hfx;
    674   var r1 = 1 + hxs * (KEXPM1(0) + hxs * (KEXPM1(1) + hxs *
    675                      (KEXPM1(2) + hxs * (KEXPM1(3) + hxs * KEXPM1(4)))));
    676   t = 3 - r1 * hfx;
    677   var e = hxs * ((r1 - t) / (6 - x * t));
    678   if (k === 0) {  // c is 0
    679     return x - (x*e - hxs);
    680   } else {
    681     e = (x * (e - c) - c);
    682     e -= hxs;
    683     if (k === -1) return 0.5 * (x - e) - 0.5;
    684     if (k === 1) {
    685       if (x < -0.25) return -2 * (e - (x + 0.5));
    686       return 1 + 2 * (x - e);
    687     }
    688 
    689     if (k <= -2 || k > 56) {
    690       // suffice to return exp(x) + 1
    691       y = 1 - (e - x);
    692       // Add k to y's exponent
    693       y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
    694       return y - 1;
    695     }
    696     if (k < 20) {
    697       // t = 1 - 2^k
    698       t = %_ConstructDouble(0x3ff00000 - (0x200000 >> k), 0);
    699       y = t - (e - x);
    700       // Add k to y's exponent
    701       y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
    702     } else {
    703       // t = 2^-k
    704       t = %_ConstructDouble((0x3ff - k) << 20, 0);
    705       y = x - (e + t);
    706       y += 1;
    707       // Add k to y's exponent
    708       y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
    709     }
    710   }
    711   return y;
    712 }
    713 
    714 
    715 // ES6 draft 09-27-13, section 20.2.2.30.
    716 // Math.sinh
    717 // Method :
    718 // mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
    719 //      1. Replace x by |x| (sinh(-x) = -sinh(x)).
    720 //      2.
    721 //                                                  E + E/(E+1)
    722 //          0        <= x <= 22     :  sinh(x) := --------------, E=expm1(x)
    723 //                                                      2
    724 //
    725 //          22       <= x <= lnovft :  sinh(x) := exp(x)/2
    726 //          lnovft   <= x <= ln2ovft:  sinh(x) := exp(x/2)/2 * exp(x/2)
    727 //          ln2ovft  <  x           :  sinh(x) := x*shuge (overflow)
    728 //
    729 // Special cases:
    730 //      sinh(x) is |x| if x is +Infinity, -Infinity, or NaN.
    731 //      only sinh(0)=0 is exact for finite x.
    732 //
    733 const KSINH_OVERFLOW = kMath[52];
    734 const TWO_M28 = 3.725290298461914e-9;  // 2^-28, empty lower half
    735 const LOG_MAXD = 709.7822265625;  // 0x40862e42 00000000, empty lower half
    736 
    737 function MathSinh(x) {
    738   x = x * 1;  // Convert to number.
    739   var h = (x < 0) ? -0.5 : 0.5;
    740   // |x| in [0, 22]. return sign(x)*0.5*(E+E/(E+1))
    741   var ax = MathAbs(x);
    742   if (ax < 22) {
    743     // For |x| < 2^-28, sinh(x) = x
    744     if (ax < TWO_M28) return x;
    745     var t = MathExpm1(ax);
    746     if (ax < 1) return h * (2 * t - t * t / (t + 1));
    747     return h * (t + t / (t + 1));
    748   }
    749   // |x| in [22, log(maxdouble)], return 0.5 * exp(|x|)
    750   if (ax < LOG_MAXD) return h * MathExp(ax);
    751   // |x| in [log(maxdouble), overflowthreshold]
    752   // overflowthreshold = 710.4758600739426
    753   if (ax <= KSINH_OVERFLOW) {
    754     var w = MathExp(0.5 * ax);
    755     var t = h * w;
    756     return t * w;
    757   }
    758   // |x| > overflowthreshold or is NaN.
    759   // Return Infinity of the appropriate sign or NaN.
    760   return x * INFINITY;
    761 }
    762 
    763 
    764 // ES6 draft 09-27-13, section 20.2.2.12.
    765 // Math.cosh
    766 // Method :
    767 // mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2
    768 //      1. Replace x by |x| (cosh(x) = cosh(-x)).
    769 //      2.
    770 //                                                      [ exp(x) - 1 ]^2
    771 //          0        <= x <= ln2/2  :  cosh(x) := 1 + -------------------
    772 //                                                         2*exp(x)
    773 //
    774 //                                                 exp(x) + 1/exp(x)
    775 //          ln2/2    <= x <= 22     :  cosh(x) := -------------------
    776 //                                                        2
    777 //          22       <= x <= lnovft :  cosh(x) := exp(x)/2
    778 //          lnovft   <= x <= ln2ovft:  cosh(x) := exp(x/2)/2 * exp(x/2)
    779 //          ln2ovft  <  x           :  cosh(x) := huge*huge (overflow)
    780 //
    781 // Special cases:
    782 //      cosh(x) is |x| if x is +INF, -INF, or NaN.
    783 //      only cosh(0)=1 is exact for finite x.
    784 //
    785 const KCOSH_OVERFLOW = kMath[52];
    786 
    787 function MathCosh(x) {
    788   x = x * 1;  // Convert to number.
    789   var ix = %_DoubleHi(x) & 0x7fffffff;
    790   // |x| in [0,0.5*log2], return 1+expm1(|x|)^2/(2*exp(|x|))
    791   if (ix < 0x3fd62e43) {
    792     var t = MathExpm1(MathAbs(x));
    793     var w = 1 + t;
    794     // For |x| < 2^-55, cosh(x) = 1
    795     if (ix < 0x3c800000) return w;
    796     return 1 + (t * t) / (w + w);
    797   }
    798   // |x| in [0.5*log2, 22], return (exp(|x|)+1/exp(|x|)/2
    799   if (ix < 0x40360000) {
    800     var t = MathExp(MathAbs(x));
    801     return 0.5 * t + 0.5 / t;
    802   }
    803   // |x| in [22, log(maxdouble)], return half*exp(|x|)
    804   if (ix < 0x40862e42) return 0.5 * MathExp(MathAbs(x));
    805   // |x| in [log(maxdouble), overflowthreshold]
    806   if (MathAbs(x) <= KCOSH_OVERFLOW) {
    807     var w = MathExp(0.5 * MathAbs(x));
    808     var t = 0.5 * w;
    809     return t * w;
    810   }
    811   if (NUMBER_IS_NAN(x)) return x;
    812   // |x| > overflowthreshold.
    813   return INFINITY;
    814 }
    815