Lines Matching refs:m_matT
95 : m_matT(size,size),
113 : m_matT(matrix.rows(),matrix.cols()),
164 return m_matT;
246 ComplexMatrixType m_matT, m_matU;
260 /** If m_matT(i+1,i) is neglegible in floating point arithmetic
261 * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and
266 RealScalar d = numext::norm1(m_matT.coeff(i,i)) + numext::norm1(m_matT.coeff(i+1,i+1));
267 RealScalar sd = numext::norm1(m_matT.coeff(i+1,i));
270 m_matT.coeffRef(i+1,i) = ComplexScalar(0);
285 return abs(numext::real(m_matT.coeff(iu,iu-1))) + abs(numext::real(m_matT.coeff(iu-1,iu-2)));
290 Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1);
323 m_matT = matrix.template cast<ComplexScalar>();
332 computeFromHessenberg(m_matT, m_matU, computeU);
340 m_matT = matrixH;
356 _this.m_matT = _this.m_hess.matrixH();
368 // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar
370 _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>();
382 // Reduce the Hessenberg matrix m_matT to triangular form by QR iteration.
388 maxIters = m_maxIterationsPerRow * m_matT.rows();
390 // The matrix m_matT is divided in three parts.
391 // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
394 Index iu = m_matT.cols() - 1;
430 rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il));
431 m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint());
432 m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot);
437 rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1));
438 m_matT
439 m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint());
440 m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot);