Home | History | Annotate | Download | only in MatrixFunctions

Lines Matching full:scalar

57     typedef typename MatrixType::Scalar Scalar;
142 Matrix<Scalar,2,2> block = T.template block<2,2>(i,i);
143 EigenSolver<Matrix<Scalar,2,2> > es(block);
156 Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value();
166 Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j);
169 Matrix<Scalar,2,2> A = sqrtT.coeff(i,i) * Matrix<Scalar,2,2>::Identity();
180 Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j);
183 Matrix<Scalar,2,2> A = sqrtT.coeff(j,j) * Matrix<Scalar,2,2>::Identity();
194 Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i);
195 Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j);
196 Matrix<Scalar,2,2> C = T.template block<2,2>(i,j);
199 Matrix<Scalar,2,2> X;
211 EIGEN_STATIC_ASSERT((internal::is_same<SmallMatrixType, Matrix<Scalar,2,2> >::value),
214 Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero();
228 Matrix<Scalar,4,1> rhs;
234 Matrix<Scalar,4,1> result;
295 typedef typename MatrixType::Scalar Scalar;
297 Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value();
312 template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>