Home | History | Annotate | Download | only in pydoc_data

Lines Matching refs:f_builtins

67  the bytecode; ``co_filename`` is\n      the filename from which the code was compiled;\n      ``co_firstlineno`` is the first line number of the function;\n      ``co_lnotab`` is a string encoding the mapping from bytecode\n      offsets to line numbers (for details see the source code of the\n      interpreter); ``co_stacksize`` is the required stack size\n      (including local variables); ``co_flags`` is an integer encoding\n      a number of flags for the interpreter.\n\n      The following flag bits are defined for ``co_flags``: bit\n      ``0x04`` is set if the function uses the ``*arguments`` syntax\n      to accept an arbitrary number of positional arguments; bit\n      ``0x08`` is set if the function uses the ``**keywords`` syntax\n      to accept arbitrary keyword arguments; bit ``0x20`` is set if\n      the function is a generator.\n\n      Future feature declarations (``from __future__ import\n      division``) also use bits in ``co_flags`` to indicate whether a\n      code object was compiled with a particular feature enabled: bit\n      ``0x2000`` is set if the function was compiled with future\n      division enabled; bits ``0x10`` and ``0x1000`` were used in\n      earlier versions of Python.\n\n      Other bits in ``co_flags`` are reserved for internal use.\n\n      If a code object represents a function, the first item in\n      ``co_consts`` is the documentation string of the function, or\n      ``None`` if undefined.\n\n   Frame objects\n      Frame objects represent execution frames.  They may occur in\n      traceback objects (see below).\n\n      Special read-only attributes: ``f_back`` is to the previous\n      stack frame (towards the caller), or ``None`` if this is the\n      bottom stack frame; ``f_code`` is the code object being executed\n      in this frame; ``f_locals`` is the dictionary used to look up\n      local variables; ``f_globals`` is used for global variables;\n      ``f_builtins`` is used for built-in (intrinsic) names;\n      ``f_restricted`` is a flag indicating whether the function is\n      executing in restricted execution mode; ``f_lasti`` gives the\n      precise instruction (this is an index into the bytecode string\n      of the code object).\n\n      Special writable attributes: ``f_trace``, if not ``None``, is a\n      function called at the start of each source code line (this is\n      used by the debugger); ``f_exc_type``, ``f_exc_value``,\n      ``f_exc_traceback`` represent the last exception raised in the\n      parent frame provided another exception was ever raised in the\n      current frame (in all other cases they are None); ``f_lineno``\n      is the current line number of the frame --- writing to this from\n      within a trace function jumps to the given line (only for the\n      bottom-most frame).  A debugger can implement a Jump command\n      (aka Set Next Statement) by writing to f_lineno.\n\n   Traceback objects\n      Traceback objects represent a stack trace of an exception.  A\n      traceback object is created when an exception occurs.  When the\n      search for an exception handler unwinds the execution stack, at\n      each unwound level a traceback object is inserted in front of\n      the current traceback.  When an exception handler is entered,\n      the stack trace is made available to the program. (See section\n      *The try statement*.) It is accessible as ``sys.exc_traceback``,\n      and also as the third item of the tuple returned by\n      ``sys.exc_info()``.  The latter is the preferred interface,\n      since it works correctly when the program is using multiple\n      threads. When the program contains no suitable handler, the\n      stack trace is written (nicely formatted) to the standard error\n      stream; if the interpreter is interactive, it is also made\n      available to the user as ``sys.last_traceback``.\n\n      Special read-only attributes: ``tb_next`` is the next level in\n      the stack trace (towards the frame where the exception\n      occurred), or ``None`` if there is no next level; ``tb_frame``\n      points to the execution frame of the current level;\n      ``tb_lineno`` gives the line number where the exception\n      occurred; ``tb_lasti`` indicates the precise instruction.  The\n      line number and last instruction in the traceback may differ\n      from the line number of its frame object if the exception\n      occurred in a ``try`` statement with no matching except clause\n      or with a finally clause.\n\n   Slice objects\n      Slice objects are used to represent slices when *extended slice\n      syntax* is used. This is a slice using two colons, or multiple\n      slices or ellipses separated by commas, e.g., ``a[i:j:step]``,\n      ``a[i:j, k:l]``, or ``a[..., i:j]``.  They are also created by\n      the built-in ``slice()`` function.\n\n      Special read-only attributes: ``start`` is the lower bound;\n      ``stop`` is the upper bound; ``step`` is the step value; each is\n      ``None`` if omitted. These attributes can have any type.\n\n      Slice objects support one method:\n\n      slice.indices(self, length)\n\n         This method takes a single integer argument *length* and\n         computes information about the extended slice that the slice\n         object would describe if applied to a sequence of *length*\n         items.  It returns a tuple of three integers; respectively\n         these are the *start* and *stop* indices and the *step* or\n         stride length of the slice. Missing or out-of-bounds indices\n         are handled in a manner consistent with regular slices.\n\n         New in version 2.3.\n\n   Static method objects\n      Static method objects provide a way of defeating the\n      transformation of function objects to method objects described\n      above. A static method object is a wrapper around any other\n      object, usually a user-defined method object. When a static\n      method object is retrieved from a class or a class instance, the\n      object actually returned is the wrapped object, which is not\n      subject to any further transformation. Static method objects are\n      not themselves callable, although the objects they wrap usually\n      are. Static method objects are created by the built-in\n      ``staticmethod()`` constructor.\n\n   Class method objects\n      A class method object, like a static method object, is a wrapper\n      around another object that alters the way in which that object\n      is retrieved from classes and class instances. The behaviour of\n      class method objects upon such retrieval is described above,\n      under "User-defined methods". Class method objects are created\n      by the built-in ``classmethod()`` constructor.\n',