Home | History | Annotate | Download | only in heap
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/v8.h"
      6 
      7 #include "src/base/atomicops.h"
      8 #include "src/base/bits.h"
      9 #include "src/code-stubs.h"
     10 #include "src/compilation-cache.h"
     11 #include "src/cpu-profiler.h"
     12 #include "src/deoptimizer.h"
     13 #include "src/execution.h"
     14 #include "src/gdb-jit.h"
     15 #include "src/global-handles.h"
     16 #include "src/heap/incremental-marking.h"
     17 #include "src/heap/mark-compact.h"
     18 #include "src/heap/objects-visiting.h"
     19 #include "src/heap/objects-visiting-inl.h"
     20 #include "src/heap/spaces-inl.h"
     21 #include "src/heap/sweeper-thread.h"
     22 #include "src/heap-profiler.h"
     23 #include "src/ic/ic.h"
     24 #include "src/ic/stub-cache.h"
     25 
     26 namespace v8 {
     27 namespace internal {
     28 
     29 
     30 const char* Marking::kWhiteBitPattern = "00";
     31 const char* Marking::kBlackBitPattern = "10";
     32 const char* Marking::kGreyBitPattern = "11";
     33 const char* Marking::kImpossibleBitPattern = "01";
     34 
     35 
     36 // -------------------------------------------------------------------------
     37 // MarkCompactCollector
     38 
     39 MarkCompactCollector::MarkCompactCollector(Heap* heap)
     40     :  // NOLINT
     41 #ifdef DEBUG
     42       state_(IDLE),
     43 #endif
     44       reduce_memory_footprint_(false),
     45       abort_incremental_marking_(false),
     46       marking_parity_(ODD_MARKING_PARITY),
     47       compacting_(false),
     48       was_marked_incrementally_(false),
     49       sweeping_in_progress_(false),
     50       pending_sweeper_jobs_semaphore_(0),
     51       sequential_sweeping_(false),
     52       migration_slots_buffer_(NULL),
     53       heap_(heap),
     54       code_flusher_(NULL),
     55       have_code_to_deoptimize_(false) {
     56 }
     57 
     58 #ifdef VERIFY_HEAP
     59 class VerifyMarkingVisitor : public ObjectVisitor {
     60  public:
     61   explicit VerifyMarkingVisitor(Heap* heap) : heap_(heap) {}
     62 
     63   void VisitPointers(Object** start, Object** end) {
     64     for (Object** current = start; current < end; current++) {
     65       if ((*current)->IsHeapObject()) {
     66         HeapObject* object = HeapObject::cast(*current);
     67         CHECK(heap_->mark_compact_collector()->IsMarked(object));
     68       }
     69     }
     70   }
     71 
     72   void VisitEmbeddedPointer(RelocInfo* rinfo) {
     73     DCHECK(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT);
     74     if (!rinfo->host()->IsWeakObject(rinfo->target_object())) {
     75       Object* p = rinfo->target_object();
     76       VisitPointer(&p);
     77     }
     78   }
     79 
     80   void VisitCell(RelocInfo* rinfo) {
     81     Code* code = rinfo->host();
     82     DCHECK(rinfo->rmode() == RelocInfo::CELL);
     83     if (!code->IsWeakObject(rinfo->target_cell())) {
     84       ObjectVisitor::VisitCell(rinfo);
     85     }
     86   }
     87 
     88  private:
     89   Heap* heap_;
     90 };
     91 
     92 
     93 static void VerifyMarking(Heap* heap, Address bottom, Address top) {
     94   VerifyMarkingVisitor visitor(heap);
     95   HeapObject* object;
     96   Address next_object_must_be_here_or_later = bottom;
     97 
     98   for (Address current = bottom; current < top; current += kPointerSize) {
     99     object = HeapObject::FromAddress(current);
    100     if (MarkCompactCollector::IsMarked(object)) {
    101       CHECK(current >= next_object_must_be_here_or_later);
    102       object->Iterate(&visitor);
    103       next_object_must_be_here_or_later = current + object->Size();
    104     }
    105   }
    106 }
    107 
    108 
    109 static void VerifyMarking(NewSpace* space) {
    110   Address end = space->top();
    111   NewSpacePageIterator it(space->bottom(), end);
    112   // The bottom position is at the start of its page. Allows us to use
    113   // page->area_start() as start of range on all pages.
    114   CHECK_EQ(space->bottom(),
    115            NewSpacePage::FromAddress(space->bottom())->area_start());
    116   while (it.has_next()) {
    117     NewSpacePage* page = it.next();
    118     Address limit = it.has_next() ? page->area_end() : end;
    119     CHECK(limit == end || !page->Contains(end));
    120     VerifyMarking(space->heap(), page->area_start(), limit);
    121   }
    122 }
    123 
    124 
    125 static void VerifyMarking(PagedSpace* space) {
    126   PageIterator it(space);
    127 
    128   while (it.has_next()) {
    129     Page* p = it.next();
    130     VerifyMarking(space->heap(), p->area_start(), p->area_end());
    131   }
    132 }
    133 
    134 
    135 static void VerifyMarking(Heap* heap) {
    136   VerifyMarking(heap->old_pointer_space());
    137   VerifyMarking(heap->old_data_space());
    138   VerifyMarking(heap->code_space());
    139   VerifyMarking(heap->cell_space());
    140   VerifyMarking(heap->property_cell_space());
    141   VerifyMarking(heap->map_space());
    142   VerifyMarking(heap->new_space());
    143 
    144   VerifyMarkingVisitor visitor(heap);
    145 
    146   LargeObjectIterator it(heap->lo_space());
    147   for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
    148     if (MarkCompactCollector::IsMarked(obj)) {
    149       obj->Iterate(&visitor);
    150     }
    151   }
    152 
    153   heap->IterateStrongRoots(&visitor, VISIT_ONLY_STRONG);
    154 }
    155 
    156 
    157 class VerifyEvacuationVisitor : public ObjectVisitor {
    158  public:
    159   void VisitPointers(Object** start, Object** end) {
    160     for (Object** current = start; current < end; current++) {
    161       if ((*current)->IsHeapObject()) {
    162         HeapObject* object = HeapObject::cast(*current);
    163         CHECK(!MarkCompactCollector::IsOnEvacuationCandidate(object));
    164       }
    165     }
    166   }
    167 };
    168 
    169 
    170 static void VerifyEvacuation(Page* page) {
    171   VerifyEvacuationVisitor visitor;
    172   HeapObjectIterator iterator(page, NULL);
    173   for (HeapObject* heap_object = iterator.Next(); heap_object != NULL;
    174        heap_object = iterator.Next()) {
    175     // We skip free space objects.
    176     if (!heap_object->IsFiller()) {
    177       heap_object->Iterate(&visitor);
    178     }
    179   }
    180 }
    181 
    182 
    183 static void VerifyEvacuation(NewSpace* space) {
    184   NewSpacePageIterator it(space->bottom(), space->top());
    185   VerifyEvacuationVisitor visitor;
    186 
    187   while (it.has_next()) {
    188     NewSpacePage* page = it.next();
    189     Address current = page->area_start();
    190     Address limit = it.has_next() ? page->area_end() : space->top();
    191     CHECK(limit == space->top() || !page->Contains(space->top()));
    192     while (current < limit) {
    193       HeapObject* object = HeapObject::FromAddress(current);
    194       object->Iterate(&visitor);
    195       current += object->Size();
    196     }
    197   }
    198 }
    199 
    200 
    201 static void VerifyEvacuation(Heap* heap, PagedSpace* space) {
    202   if (FLAG_use_allocation_folding &&
    203       (space == heap->old_pointer_space() || space == heap->old_data_space())) {
    204     return;
    205   }
    206   PageIterator it(space);
    207 
    208   while (it.has_next()) {
    209     Page* p = it.next();
    210     if (p->IsEvacuationCandidate()) continue;
    211     VerifyEvacuation(p);
    212   }
    213 }
    214 
    215 
    216 static void VerifyEvacuation(Heap* heap) {
    217   VerifyEvacuation(heap, heap->old_pointer_space());
    218   VerifyEvacuation(heap, heap->old_data_space());
    219   VerifyEvacuation(heap, heap->code_space());
    220   VerifyEvacuation(heap, heap->cell_space());
    221   VerifyEvacuation(heap, heap->property_cell_space());
    222   VerifyEvacuation(heap, heap->map_space());
    223   VerifyEvacuation(heap->new_space());
    224 
    225   VerifyEvacuationVisitor visitor;
    226   heap->IterateStrongRoots(&visitor, VISIT_ALL);
    227 }
    228 #endif  // VERIFY_HEAP
    229 
    230 
    231 #ifdef DEBUG
    232 class VerifyNativeContextSeparationVisitor : public ObjectVisitor {
    233  public:
    234   VerifyNativeContextSeparationVisitor() : current_native_context_(NULL) {}
    235 
    236   void VisitPointers(Object** start, Object** end) {
    237     for (Object** current = start; current < end; current++) {
    238       if ((*current)->IsHeapObject()) {
    239         HeapObject* object = HeapObject::cast(*current);
    240         if (object->IsString()) continue;
    241         switch (object->map()->instance_type()) {
    242           case JS_FUNCTION_TYPE:
    243             CheckContext(JSFunction::cast(object)->context());
    244             break;
    245           case JS_GLOBAL_PROXY_TYPE:
    246             CheckContext(JSGlobalProxy::cast(object)->native_context());
    247             break;
    248           case JS_GLOBAL_OBJECT_TYPE:
    249           case JS_BUILTINS_OBJECT_TYPE:
    250             CheckContext(GlobalObject::cast(object)->native_context());
    251             break;
    252           case JS_ARRAY_TYPE:
    253           case JS_DATE_TYPE:
    254           case JS_OBJECT_TYPE:
    255           case JS_REGEXP_TYPE:
    256             VisitPointer(HeapObject::RawField(object, JSObject::kMapOffset));
    257             break;
    258           case MAP_TYPE:
    259             VisitPointer(HeapObject::RawField(object, Map::kPrototypeOffset));
    260             VisitPointer(HeapObject::RawField(object, Map::kConstructorOffset));
    261             break;
    262           case FIXED_ARRAY_TYPE:
    263             if (object->IsContext()) {
    264               CheckContext(object);
    265             } else {
    266               FixedArray* array = FixedArray::cast(object);
    267               int length = array->length();
    268               // Set array length to zero to prevent cycles while iterating
    269               // over array bodies, this is easier than intrusive marking.
    270               array->set_length(0);
    271               array->IterateBody(FIXED_ARRAY_TYPE, FixedArray::SizeFor(length),
    272                                  this);
    273               array->set_length(length);
    274             }
    275             break;
    276           case CELL_TYPE:
    277           case JS_PROXY_TYPE:
    278           case JS_VALUE_TYPE:
    279           case TYPE_FEEDBACK_INFO_TYPE:
    280             object->Iterate(this);
    281             break;
    282           case DECLARED_ACCESSOR_INFO_TYPE:
    283           case EXECUTABLE_ACCESSOR_INFO_TYPE:
    284           case BYTE_ARRAY_TYPE:
    285           case CALL_HANDLER_INFO_TYPE:
    286           case CODE_TYPE:
    287           case FIXED_DOUBLE_ARRAY_TYPE:
    288           case HEAP_NUMBER_TYPE:
    289           case MUTABLE_HEAP_NUMBER_TYPE:
    290           case INTERCEPTOR_INFO_TYPE:
    291           case ODDBALL_TYPE:
    292           case SCRIPT_TYPE:
    293           case SHARED_FUNCTION_INFO_TYPE:
    294             break;
    295           default:
    296             UNREACHABLE();
    297         }
    298       }
    299     }
    300   }
    301 
    302  private:
    303   void CheckContext(Object* context) {
    304     if (!context->IsContext()) return;
    305     Context* native_context = Context::cast(context)->native_context();
    306     if (current_native_context_ == NULL) {
    307       current_native_context_ = native_context;
    308     } else {
    309       CHECK_EQ(current_native_context_, native_context);
    310     }
    311   }
    312 
    313   Context* current_native_context_;
    314 };
    315 
    316 
    317 static void VerifyNativeContextSeparation(Heap* heap) {
    318   HeapObjectIterator it(heap->code_space());
    319 
    320   for (Object* object = it.Next(); object != NULL; object = it.Next()) {
    321     VerifyNativeContextSeparationVisitor visitor;
    322     Code::cast(object)->CodeIterateBody(&visitor);
    323   }
    324 }
    325 #endif
    326 
    327 
    328 void MarkCompactCollector::SetUp() {
    329   free_list_old_data_space_.Reset(new FreeList(heap_->old_data_space()));
    330   free_list_old_pointer_space_.Reset(new FreeList(heap_->old_pointer_space()));
    331 }
    332 
    333 
    334 void MarkCompactCollector::TearDown() { AbortCompaction(); }
    335 
    336 
    337 void MarkCompactCollector::AddEvacuationCandidate(Page* p) {
    338   p->MarkEvacuationCandidate();
    339   evacuation_candidates_.Add(p);
    340 }
    341 
    342 
    343 static void TraceFragmentation(PagedSpace* space) {
    344   int number_of_pages = space->CountTotalPages();
    345   intptr_t reserved = (number_of_pages * space->AreaSize());
    346   intptr_t free = reserved - space->SizeOfObjects();
    347   PrintF("[%s]: %d pages, %d (%.1f%%) free\n",
    348          AllocationSpaceName(space->identity()), number_of_pages,
    349          static_cast<int>(free), static_cast<double>(free) * 100 / reserved);
    350 }
    351 
    352 
    353 bool MarkCompactCollector::StartCompaction(CompactionMode mode) {
    354   if (!compacting_) {
    355     DCHECK(evacuation_candidates_.length() == 0);
    356 
    357 #ifdef ENABLE_GDB_JIT_INTERFACE
    358     // If GDBJIT interface is active disable compaction.
    359     if (FLAG_gdbjit) return false;
    360 #endif
    361 
    362     CollectEvacuationCandidates(heap()->old_pointer_space());
    363     CollectEvacuationCandidates(heap()->old_data_space());
    364 
    365     if (FLAG_compact_code_space && (mode == NON_INCREMENTAL_COMPACTION ||
    366                                     FLAG_incremental_code_compaction)) {
    367       CollectEvacuationCandidates(heap()->code_space());
    368     } else if (FLAG_trace_fragmentation) {
    369       TraceFragmentation(heap()->code_space());
    370     }
    371 
    372     if (FLAG_trace_fragmentation) {
    373       TraceFragmentation(heap()->map_space());
    374       TraceFragmentation(heap()->cell_space());
    375       TraceFragmentation(heap()->property_cell_space());
    376     }
    377 
    378     heap()->old_pointer_space()->EvictEvacuationCandidatesFromFreeLists();
    379     heap()->old_data_space()->EvictEvacuationCandidatesFromFreeLists();
    380     heap()->code_space()->EvictEvacuationCandidatesFromFreeLists();
    381 
    382     compacting_ = evacuation_candidates_.length() > 0;
    383   }
    384 
    385   return compacting_;
    386 }
    387 
    388 
    389 void MarkCompactCollector::CollectGarbage() {
    390   // Make sure that Prepare() has been called. The individual steps below will
    391   // update the state as they proceed.
    392   DCHECK(state_ == PREPARE_GC);
    393 
    394   MarkLiveObjects();
    395   DCHECK(heap_->incremental_marking()->IsStopped());
    396 
    397   if (FLAG_collect_maps) ClearNonLiveReferences();
    398 
    399   ClearWeakCollections();
    400 
    401 #ifdef VERIFY_HEAP
    402   if (FLAG_verify_heap) {
    403     VerifyMarking(heap_);
    404   }
    405 #endif
    406 
    407   SweepSpaces();
    408 
    409 #ifdef DEBUG
    410   if (FLAG_verify_native_context_separation) {
    411     VerifyNativeContextSeparation(heap_);
    412   }
    413 #endif
    414 
    415 #ifdef VERIFY_HEAP
    416   if (heap()->weak_embedded_objects_verification_enabled()) {
    417     VerifyWeakEmbeddedObjectsInCode();
    418   }
    419   if (FLAG_collect_maps && FLAG_omit_map_checks_for_leaf_maps) {
    420     VerifyOmittedMapChecks();
    421   }
    422 #endif
    423 
    424   Finish();
    425 
    426   if (marking_parity_ == EVEN_MARKING_PARITY) {
    427     marking_parity_ = ODD_MARKING_PARITY;
    428   } else {
    429     DCHECK(marking_parity_ == ODD_MARKING_PARITY);
    430     marking_parity_ = EVEN_MARKING_PARITY;
    431   }
    432 }
    433 
    434 
    435 #ifdef VERIFY_HEAP
    436 void MarkCompactCollector::VerifyMarkbitsAreClean(PagedSpace* space) {
    437   PageIterator it(space);
    438 
    439   while (it.has_next()) {
    440     Page* p = it.next();
    441     CHECK(p->markbits()->IsClean());
    442     CHECK_EQ(0, p->LiveBytes());
    443   }
    444 }
    445 
    446 
    447 void MarkCompactCollector::VerifyMarkbitsAreClean(NewSpace* space) {
    448   NewSpacePageIterator it(space->bottom(), space->top());
    449 
    450   while (it.has_next()) {
    451     NewSpacePage* p = it.next();
    452     CHECK(p->markbits()->IsClean());
    453     CHECK_EQ(0, p->LiveBytes());
    454   }
    455 }
    456 
    457 
    458 void MarkCompactCollector::VerifyMarkbitsAreClean() {
    459   VerifyMarkbitsAreClean(heap_->old_pointer_space());
    460   VerifyMarkbitsAreClean(heap_->old_data_space());
    461   VerifyMarkbitsAreClean(heap_->code_space());
    462   VerifyMarkbitsAreClean(heap_->cell_space());
    463   VerifyMarkbitsAreClean(heap_->property_cell_space());
    464   VerifyMarkbitsAreClean(heap_->map_space());
    465   VerifyMarkbitsAreClean(heap_->new_space());
    466 
    467   LargeObjectIterator it(heap_->lo_space());
    468   for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
    469     MarkBit mark_bit = Marking::MarkBitFrom(obj);
    470     CHECK(Marking::IsWhite(mark_bit));
    471     CHECK_EQ(0, Page::FromAddress(obj->address())->LiveBytes());
    472   }
    473 }
    474 
    475 
    476 void MarkCompactCollector::VerifyWeakEmbeddedObjectsInCode() {
    477   HeapObjectIterator code_iterator(heap()->code_space());
    478   for (HeapObject* obj = code_iterator.Next(); obj != NULL;
    479        obj = code_iterator.Next()) {
    480     Code* code = Code::cast(obj);
    481     if (!code->is_optimized_code() && !code->is_weak_stub()) continue;
    482     if (WillBeDeoptimized(code)) continue;
    483     code->VerifyEmbeddedObjectsDependency();
    484   }
    485 }
    486 
    487 
    488 void MarkCompactCollector::VerifyOmittedMapChecks() {
    489   HeapObjectIterator iterator(heap()->map_space());
    490   for (HeapObject* obj = iterator.Next(); obj != NULL; obj = iterator.Next()) {
    491     Map* map = Map::cast(obj);
    492     map->VerifyOmittedMapChecks();
    493   }
    494 }
    495 #endif  // VERIFY_HEAP
    496 
    497 
    498 static void ClearMarkbitsInPagedSpace(PagedSpace* space) {
    499   PageIterator it(space);
    500 
    501   while (it.has_next()) {
    502     Bitmap::Clear(it.next());
    503   }
    504 }
    505 
    506 
    507 static void ClearMarkbitsInNewSpace(NewSpace* space) {
    508   NewSpacePageIterator it(space->ToSpaceStart(), space->ToSpaceEnd());
    509 
    510   while (it.has_next()) {
    511     Bitmap::Clear(it.next());
    512   }
    513 }
    514 
    515 
    516 void MarkCompactCollector::ClearMarkbits() {
    517   ClearMarkbitsInPagedSpace(heap_->code_space());
    518   ClearMarkbitsInPagedSpace(heap_->map_space());
    519   ClearMarkbitsInPagedSpace(heap_->old_pointer_space());
    520   ClearMarkbitsInPagedSpace(heap_->old_data_space());
    521   ClearMarkbitsInPagedSpace(heap_->cell_space());
    522   ClearMarkbitsInPagedSpace(heap_->property_cell_space());
    523   ClearMarkbitsInNewSpace(heap_->new_space());
    524 
    525   LargeObjectIterator it(heap_->lo_space());
    526   for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
    527     MarkBit mark_bit = Marking::MarkBitFrom(obj);
    528     mark_bit.Clear();
    529     mark_bit.Next().Clear();
    530     Page::FromAddress(obj->address())->ResetProgressBar();
    531     Page::FromAddress(obj->address())->ResetLiveBytes();
    532   }
    533 }
    534 
    535 
    536 class MarkCompactCollector::SweeperTask : public v8::Task {
    537  public:
    538   SweeperTask(Heap* heap, PagedSpace* space) : heap_(heap), space_(space) {}
    539 
    540   virtual ~SweeperTask() {}
    541 
    542  private:
    543   // v8::Task overrides.
    544   virtual void Run() OVERRIDE {
    545     heap_->mark_compact_collector()->SweepInParallel(space_, 0);
    546     heap_->mark_compact_collector()->pending_sweeper_jobs_semaphore_.Signal();
    547   }
    548 
    549   Heap* heap_;
    550   PagedSpace* space_;
    551 
    552   DISALLOW_COPY_AND_ASSIGN(SweeperTask);
    553 };
    554 
    555 
    556 void MarkCompactCollector::StartSweeperThreads() {
    557   DCHECK(free_list_old_pointer_space_.get()->IsEmpty());
    558   DCHECK(free_list_old_data_space_.get()->IsEmpty());
    559   sweeping_in_progress_ = true;
    560   for (int i = 0; i < isolate()->num_sweeper_threads(); i++) {
    561     isolate()->sweeper_threads()[i]->StartSweeping();
    562   }
    563   if (FLAG_job_based_sweeping) {
    564     V8::GetCurrentPlatform()->CallOnBackgroundThread(
    565         new SweeperTask(heap(), heap()->old_data_space()),
    566         v8::Platform::kShortRunningTask);
    567     V8::GetCurrentPlatform()->CallOnBackgroundThread(
    568         new SweeperTask(heap(), heap()->old_pointer_space()),
    569         v8::Platform::kShortRunningTask);
    570   }
    571 }
    572 
    573 
    574 void MarkCompactCollector::EnsureSweepingCompleted() {
    575   DCHECK(sweeping_in_progress_ == true);
    576 
    577   // If sweeping is not completed, we try to complete it here. If we do not
    578   // have sweeper threads we have to complete since we do not have a good
    579   // indicator for a swept space in that case.
    580   if (!AreSweeperThreadsActivated() || !IsSweepingCompleted()) {
    581     SweepInParallel(heap()->paged_space(OLD_DATA_SPACE), 0);
    582     SweepInParallel(heap()->paged_space(OLD_POINTER_SPACE), 0);
    583   }
    584 
    585   for (int i = 0; i < isolate()->num_sweeper_threads(); i++) {
    586     isolate()->sweeper_threads()[i]->WaitForSweeperThread();
    587   }
    588   if (FLAG_job_based_sweeping) {
    589     // Wait twice for both jobs.
    590     pending_sweeper_jobs_semaphore_.Wait();
    591     pending_sweeper_jobs_semaphore_.Wait();
    592   }
    593   ParallelSweepSpacesComplete();
    594   sweeping_in_progress_ = false;
    595   RefillFreeList(heap()->paged_space(OLD_DATA_SPACE));
    596   RefillFreeList(heap()->paged_space(OLD_POINTER_SPACE));
    597   heap()->paged_space(OLD_DATA_SPACE)->ResetUnsweptFreeBytes();
    598   heap()->paged_space(OLD_POINTER_SPACE)->ResetUnsweptFreeBytes();
    599 
    600 #ifdef VERIFY_HEAP
    601   if (FLAG_verify_heap) {
    602     VerifyEvacuation(heap_);
    603   }
    604 #endif
    605 }
    606 
    607 
    608 bool MarkCompactCollector::IsSweepingCompleted() {
    609   for (int i = 0; i < isolate()->num_sweeper_threads(); i++) {
    610     if (!isolate()->sweeper_threads()[i]->SweepingCompleted()) {
    611       return false;
    612     }
    613   }
    614 
    615   if (FLAG_job_based_sweeping) {
    616     if (!pending_sweeper_jobs_semaphore_.WaitFor(
    617             base::TimeDelta::FromSeconds(0))) {
    618       return false;
    619     }
    620     pending_sweeper_jobs_semaphore_.Signal();
    621   }
    622 
    623   return true;
    624 }
    625 
    626 
    627 void MarkCompactCollector::RefillFreeList(PagedSpace* space) {
    628   FreeList* free_list;
    629 
    630   if (space == heap()->old_pointer_space()) {
    631     free_list = free_list_old_pointer_space_.get();
    632   } else if (space == heap()->old_data_space()) {
    633     free_list = free_list_old_data_space_.get();
    634   } else {
    635     // Any PagedSpace might invoke RefillFreeLists, so we need to make sure
    636     // to only refill them for old data and pointer spaces.
    637     return;
    638   }
    639 
    640   intptr_t freed_bytes = space->free_list()->Concatenate(free_list);
    641   space->AddToAccountingStats(freed_bytes);
    642   space->DecrementUnsweptFreeBytes(freed_bytes);
    643 }
    644 
    645 
    646 bool MarkCompactCollector::AreSweeperThreadsActivated() {
    647   return isolate()->sweeper_threads() != NULL || FLAG_job_based_sweeping;
    648 }
    649 
    650 
    651 void Marking::TransferMark(Address old_start, Address new_start) {
    652   // This is only used when resizing an object.
    653   DCHECK(MemoryChunk::FromAddress(old_start) ==
    654          MemoryChunk::FromAddress(new_start));
    655 
    656   if (!heap_->incremental_marking()->IsMarking()) return;
    657 
    658   // If the mark doesn't move, we don't check the color of the object.
    659   // It doesn't matter whether the object is black, since it hasn't changed
    660   // size, so the adjustment to the live data count will be zero anyway.
    661   if (old_start == new_start) return;
    662 
    663   MarkBit new_mark_bit = MarkBitFrom(new_start);
    664   MarkBit old_mark_bit = MarkBitFrom(old_start);
    665 
    666 #ifdef DEBUG
    667   ObjectColor old_color = Color(old_mark_bit);
    668 #endif
    669 
    670   if (Marking::IsBlack(old_mark_bit)) {
    671     old_mark_bit.Clear();
    672     DCHECK(IsWhite(old_mark_bit));
    673     Marking::MarkBlack(new_mark_bit);
    674     return;
    675   } else if (Marking::IsGrey(old_mark_bit)) {
    676     old_mark_bit.Clear();
    677     old_mark_bit.Next().Clear();
    678     DCHECK(IsWhite(old_mark_bit));
    679     heap_->incremental_marking()->WhiteToGreyAndPush(
    680         HeapObject::FromAddress(new_start), new_mark_bit);
    681     heap_->incremental_marking()->RestartIfNotMarking();
    682   }
    683 
    684 #ifdef DEBUG
    685   ObjectColor new_color = Color(new_mark_bit);
    686   DCHECK(new_color == old_color);
    687 #endif
    688 }
    689 
    690 
    691 const char* AllocationSpaceName(AllocationSpace space) {
    692   switch (space) {
    693     case NEW_SPACE:
    694       return "NEW_SPACE";
    695     case OLD_POINTER_SPACE:
    696       return "OLD_POINTER_SPACE";
    697     case OLD_DATA_SPACE:
    698       return "OLD_DATA_SPACE";
    699     case CODE_SPACE:
    700       return "CODE_SPACE";
    701     case MAP_SPACE:
    702       return "MAP_SPACE";
    703     case CELL_SPACE:
    704       return "CELL_SPACE";
    705     case PROPERTY_CELL_SPACE:
    706       return "PROPERTY_CELL_SPACE";
    707     case LO_SPACE:
    708       return "LO_SPACE";
    709     default:
    710       UNREACHABLE();
    711   }
    712 
    713   return NULL;
    714 }
    715 
    716 
    717 // Returns zero for pages that have so little fragmentation that it is not
    718 // worth defragmenting them.  Otherwise a positive integer that gives an
    719 // estimate of fragmentation on an arbitrary scale.
    720 static int FreeListFragmentation(PagedSpace* space, Page* p) {
    721   // If page was not swept then there are no free list items on it.
    722   if (!p->WasSwept()) {
    723     if (FLAG_trace_fragmentation) {
    724       PrintF("%p [%s]: %d bytes live (unswept)\n", reinterpret_cast<void*>(p),
    725              AllocationSpaceName(space->identity()), p->LiveBytes());
    726     }
    727     return 0;
    728   }
    729 
    730   PagedSpace::SizeStats sizes;
    731   space->ObtainFreeListStatistics(p, &sizes);
    732 
    733   intptr_t ratio;
    734   intptr_t ratio_threshold;
    735   intptr_t area_size = space->AreaSize();
    736   if (space->identity() == CODE_SPACE) {
    737     ratio = (sizes.medium_size_ * 10 + sizes.large_size_ * 2) * 100 / area_size;
    738     ratio_threshold = 10;
    739   } else {
    740     ratio = (sizes.small_size_ * 5 + sizes.medium_size_) * 100 / area_size;
    741     ratio_threshold = 15;
    742   }
    743 
    744   if (FLAG_trace_fragmentation) {
    745     PrintF("%p [%s]: %d (%.2f%%) %d (%.2f%%) %d (%.2f%%) %d (%.2f%%) %s\n",
    746            reinterpret_cast<void*>(p), AllocationSpaceName(space->identity()),
    747            static_cast<int>(sizes.small_size_),
    748            static_cast<double>(sizes.small_size_ * 100) / area_size,
    749            static_cast<int>(sizes.medium_size_),
    750            static_cast<double>(sizes.medium_size_ * 100) / area_size,
    751            static_cast<int>(sizes.large_size_),
    752            static_cast<double>(sizes.large_size_ * 100) / area_size,
    753            static_cast<int>(sizes.huge_size_),
    754            static_cast<double>(sizes.huge_size_ * 100) / area_size,
    755            (ratio > ratio_threshold) ? "[fragmented]" : "");
    756   }
    757 
    758   if (FLAG_always_compact && sizes.Total() != area_size) {
    759     return 1;
    760   }
    761 
    762   if (ratio <= ratio_threshold) return 0;  // Not fragmented.
    763 
    764   return static_cast<int>(ratio - ratio_threshold);
    765 }
    766 
    767 
    768 void MarkCompactCollector::CollectEvacuationCandidates(PagedSpace* space) {
    769   DCHECK(space->identity() == OLD_POINTER_SPACE ||
    770          space->identity() == OLD_DATA_SPACE ||
    771          space->identity() == CODE_SPACE);
    772 
    773   static const int kMaxMaxEvacuationCandidates = 1000;
    774   int number_of_pages = space->CountTotalPages();
    775   int max_evacuation_candidates =
    776       static_cast<int>(std::sqrt(number_of_pages / 2.0) + 1);
    777 
    778   if (FLAG_stress_compaction || FLAG_always_compact) {
    779     max_evacuation_candidates = kMaxMaxEvacuationCandidates;
    780   }
    781 
    782   class Candidate {
    783    public:
    784     Candidate() : fragmentation_(0), page_(NULL) {}
    785     Candidate(int f, Page* p) : fragmentation_(f), page_(p) {}
    786 
    787     int fragmentation() { return fragmentation_; }
    788     Page* page() { return page_; }
    789 
    790    private:
    791     int fragmentation_;
    792     Page* page_;
    793   };
    794 
    795   enum CompactionMode { COMPACT_FREE_LISTS, REDUCE_MEMORY_FOOTPRINT };
    796 
    797   CompactionMode mode = COMPACT_FREE_LISTS;
    798 
    799   intptr_t reserved = number_of_pages * space->AreaSize();
    800   intptr_t over_reserved = reserved - space->SizeOfObjects();
    801   static const intptr_t kFreenessThreshold = 50;
    802 
    803   if (reduce_memory_footprint_ && over_reserved >= space->AreaSize()) {
    804     // If reduction of memory footprint was requested, we are aggressive
    805     // about choosing pages to free.  We expect that half-empty pages
    806     // are easier to compact so slightly bump the limit.
    807     mode = REDUCE_MEMORY_FOOTPRINT;
    808     max_evacuation_candidates += 2;
    809   }
    810 
    811 
    812   if (over_reserved > reserved / 3 && over_reserved >= 2 * space->AreaSize()) {
    813     // If over-usage is very high (more than a third of the space), we
    814     // try to free all mostly empty pages.  We expect that almost empty
    815     // pages are even easier to compact so bump the limit even more.
    816     mode = REDUCE_MEMORY_FOOTPRINT;
    817     max_evacuation_candidates *= 2;
    818   }
    819 
    820   if (FLAG_trace_fragmentation && mode == REDUCE_MEMORY_FOOTPRINT) {
    821     PrintF(
    822         "Estimated over reserved memory: %.1f / %.1f MB (threshold %d), "
    823         "evacuation candidate limit: %d\n",
    824         static_cast<double>(over_reserved) / MB,
    825         static_cast<double>(reserved) / MB,
    826         static_cast<int>(kFreenessThreshold), max_evacuation_candidates);
    827   }
    828 
    829   intptr_t estimated_release = 0;
    830 
    831   Candidate candidates[kMaxMaxEvacuationCandidates];
    832 
    833   max_evacuation_candidates =
    834       Min(kMaxMaxEvacuationCandidates, max_evacuation_candidates);
    835 
    836   int count = 0;
    837   int fragmentation = 0;
    838   Candidate* least = NULL;
    839 
    840   PageIterator it(space);
    841   if (it.has_next()) it.next();  // Never compact the first page.
    842 
    843   while (it.has_next()) {
    844     Page* p = it.next();
    845     p->ClearEvacuationCandidate();
    846 
    847     if (FLAG_stress_compaction) {
    848       unsigned int counter = space->heap()->ms_count();
    849       uintptr_t page_number = reinterpret_cast<uintptr_t>(p) >> kPageSizeBits;
    850       if ((counter & 1) == (page_number & 1)) fragmentation = 1;
    851     } else if (mode == REDUCE_MEMORY_FOOTPRINT) {
    852       // Don't try to release too many pages.
    853       if (estimated_release >= over_reserved) {
    854         continue;
    855       }
    856 
    857       intptr_t free_bytes = 0;
    858 
    859       if (!p->WasSwept()) {
    860         free_bytes = (p->area_size() - p->LiveBytes());
    861       } else {
    862         PagedSpace::SizeStats sizes;
    863         space->ObtainFreeListStatistics(p, &sizes);
    864         free_bytes = sizes.Total();
    865       }
    866 
    867       int free_pct = static_cast<int>(free_bytes * 100) / p->area_size();
    868 
    869       if (free_pct >= kFreenessThreshold) {
    870         estimated_release += free_bytes;
    871         fragmentation = free_pct;
    872       } else {
    873         fragmentation = 0;
    874       }
    875 
    876       if (FLAG_trace_fragmentation) {
    877         PrintF("%p [%s]: %d (%.2f%%) free %s\n", reinterpret_cast<void*>(p),
    878                AllocationSpaceName(space->identity()),
    879                static_cast<int>(free_bytes),
    880                static_cast<double>(free_bytes * 100) / p->area_size(),
    881                (fragmentation > 0) ? "[fragmented]" : "");
    882       }
    883     } else {
    884       fragmentation = FreeListFragmentation(space, p);
    885     }
    886 
    887     if (fragmentation != 0) {
    888       if (count < max_evacuation_candidates) {
    889         candidates[count++] = Candidate(fragmentation, p);
    890       } else {
    891         if (least == NULL) {
    892           for (int i = 0; i < max_evacuation_candidates; i++) {
    893             if (least == NULL ||
    894                 candidates[i].fragmentation() < least->fragmentation()) {
    895               least = candidates + i;
    896             }
    897           }
    898         }
    899         if (least->fragmentation() < fragmentation) {
    900           *least = Candidate(fragmentation, p);
    901           least = NULL;
    902         }
    903       }
    904     }
    905   }
    906 
    907   for (int i = 0; i < count; i++) {
    908     AddEvacuationCandidate(candidates[i].page());
    909   }
    910 
    911   if (count > 0 && FLAG_trace_fragmentation) {
    912     PrintF("Collected %d evacuation candidates for space %s\n", count,
    913            AllocationSpaceName(space->identity()));
    914   }
    915 }
    916 
    917 
    918 void MarkCompactCollector::AbortCompaction() {
    919   if (compacting_) {
    920     int npages = evacuation_candidates_.length();
    921     for (int i = 0; i < npages; i++) {
    922       Page* p = evacuation_candidates_[i];
    923       slots_buffer_allocator_.DeallocateChain(p->slots_buffer_address());
    924       p->ClearEvacuationCandidate();
    925       p->ClearFlag(MemoryChunk::RESCAN_ON_EVACUATION);
    926     }
    927     compacting_ = false;
    928     evacuation_candidates_.Rewind(0);
    929     invalidated_code_.Rewind(0);
    930   }
    931   DCHECK_EQ(0, evacuation_candidates_.length());
    932 }
    933 
    934 
    935 void MarkCompactCollector::Prepare() {
    936   was_marked_incrementally_ = heap()->incremental_marking()->IsMarking();
    937 
    938 #ifdef DEBUG
    939   DCHECK(state_ == IDLE);
    940   state_ = PREPARE_GC;
    941 #endif
    942 
    943   DCHECK(!FLAG_never_compact || !FLAG_always_compact);
    944 
    945   if (sweeping_in_progress()) {
    946     // Instead of waiting we could also abort the sweeper threads here.
    947     EnsureSweepingCompleted();
    948   }
    949 
    950   // Clear marking bits if incremental marking is aborted.
    951   if (was_marked_incrementally_ && abort_incremental_marking_) {
    952     heap()->incremental_marking()->Abort();
    953     ClearMarkbits();
    954     AbortWeakCollections();
    955     AbortCompaction();
    956     was_marked_incrementally_ = false;
    957   }
    958 
    959   // Don't start compaction if we are in the middle of incremental
    960   // marking cycle. We did not collect any slots.
    961   if (!FLAG_never_compact && !was_marked_incrementally_) {
    962     StartCompaction(NON_INCREMENTAL_COMPACTION);
    963   }
    964 
    965   PagedSpaces spaces(heap());
    966   for (PagedSpace* space = spaces.next(); space != NULL;
    967        space = spaces.next()) {
    968     space->PrepareForMarkCompact();
    969   }
    970 
    971 #ifdef VERIFY_HEAP
    972   if (!was_marked_incrementally_ && FLAG_verify_heap) {
    973     VerifyMarkbitsAreClean();
    974   }
    975 #endif
    976 }
    977 
    978 
    979 void MarkCompactCollector::Finish() {
    980 #ifdef DEBUG
    981   DCHECK(state_ == SWEEP_SPACES || state_ == RELOCATE_OBJECTS);
    982   state_ = IDLE;
    983 #endif
    984   // The stub cache is not traversed during GC; clear the cache to
    985   // force lazy re-initialization of it. This must be done after the
    986   // GC, because it relies on the new address of certain old space
    987   // objects (empty string, illegal builtin).
    988   isolate()->stub_cache()->Clear();
    989 
    990   if (have_code_to_deoptimize_) {
    991     // Some code objects were marked for deoptimization during the GC.
    992     Deoptimizer::DeoptimizeMarkedCode(isolate());
    993     have_code_to_deoptimize_ = false;
    994   }
    995 }
    996 
    997 
    998 // -------------------------------------------------------------------------
    999 // Phase 1: tracing and marking live objects.
   1000 //   before: all objects are in normal state.
   1001 //   after: a live object's map pointer is marked as '00'.
   1002 
   1003 // Marking all live objects in the heap as part of mark-sweep or mark-compact
   1004 // collection.  Before marking, all objects are in their normal state.  After
   1005 // marking, live objects' map pointers are marked indicating that the object
   1006 // has been found reachable.
   1007 //
   1008 // The marking algorithm is a (mostly) depth-first (because of possible stack
   1009 // overflow) traversal of the graph of objects reachable from the roots.  It
   1010 // uses an explicit stack of pointers rather than recursion.  The young
   1011 // generation's inactive ('from') space is used as a marking stack.  The
   1012 // objects in the marking stack are the ones that have been reached and marked
   1013 // but their children have not yet been visited.
   1014 //
   1015 // The marking stack can overflow during traversal.  In that case, we set an
   1016 // overflow flag.  When the overflow flag is set, we continue marking objects
   1017 // reachable from the objects on the marking stack, but no longer push them on
   1018 // the marking stack.  Instead, we mark them as both marked and overflowed.
   1019 // When the stack is in the overflowed state, objects marked as overflowed
   1020 // have been reached and marked but their children have not been visited yet.
   1021 // After emptying the marking stack, we clear the overflow flag and traverse
   1022 // the heap looking for objects marked as overflowed, push them on the stack,
   1023 // and continue with marking.  This process repeats until all reachable
   1024 // objects have been marked.
   1025 
   1026 void CodeFlusher::ProcessJSFunctionCandidates() {
   1027   Code* lazy_compile = isolate_->builtins()->builtin(Builtins::kCompileLazy);
   1028   Object* undefined = isolate_->heap()->undefined_value();
   1029 
   1030   JSFunction* candidate = jsfunction_candidates_head_;
   1031   JSFunction* next_candidate;
   1032   while (candidate != NULL) {
   1033     next_candidate = GetNextCandidate(candidate);
   1034     ClearNextCandidate(candidate, undefined);
   1035 
   1036     SharedFunctionInfo* shared = candidate->shared();
   1037 
   1038     Code* code = shared->code();
   1039     MarkBit code_mark = Marking::MarkBitFrom(code);
   1040     if (!code_mark.Get()) {
   1041       if (FLAG_trace_code_flushing && shared->is_compiled()) {
   1042         PrintF("[code-flushing clears: ");
   1043         shared->ShortPrint();
   1044         PrintF(" - age: %d]\n", code->GetAge());
   1045       }
   1046       shared->set_code(lazy_compile);
   1047       candidate->set_code(lazy_compile);
   1048     } else {
   1049       candidate->set_code(code);
   1050     }
   1051 
   1052     // We are in the middle of a GC cycle so the write barrier in the code
   1053     // setter did not record the slot update and we have to do that manually.
   1054     Address slot = candidate->address() + JSFunction::kCodeEntryOffset;
   1055     Code* target = Code::cast(Code::GetObjectFromEntryAddress(slot));
   1056     isolate_->heap()->mark_compact_collector()->RecordCodeEntrySlot(slot,
   1057                                                                     target);
   1058 
   1059     Object** shared_code_slot =
   1060         HeapObject::RawField(shared, SharedFunctionInfo::kCodeOffset);
   1061     isolate_->heap()->mark_compact_collector()->RecordSlot(
   1062         shared_code_slot, shared_code_slot, *shared_code_slot);
   1063 
   1064     candidate = next_candidate;
   1065   }
   1066 
   1067   jsfunction_candidates_head_ = NULL;
   1068 }
   1069 
   1070 
   1071 void CodeFlusher::ProcessSharedFunctionInfoCandidates() {
   1072   Code* lazy_compile = isolate_->builtins()->builtin(Builtins::kCompileLazy);
   1073 
   1074   SharedFunctionInfo* candidate = shared_function_info_candidates_head_;
   1075   SharedFunctionInfo* next_candidate;
   1076   while (candidate != NULL) {
   1077     next_candidate = GetNextCandidate(candidate);
   1078     ClearNextCandidate(candidate);
   1079 
   1080     Code* code = candidate->code();
   1081     MarkBit code_mark = Marking::MarkBitFrom(code);
   1082     if (!code_mark.Get()) {
   1083       if (FLAG_trace_code_flushing && candidate->is_compiled()) {
   1084         PrintF("[code-flushing clears: ");
   1085         candidate->ShortPrint();
   1086         PrintF(" - age: %d]\n", code->GetAge());
   1087       }
   1088       candidate->set_code(lazy_compile);
   1089     }
   1090 
   1091     Object** code_slot =
   1092         HeapObject::RawField(candidate, SharedFunctionInfo::kCodeOffset);
   1093     isolate_->heap()->mark_compact_collector()->RecordSlot(code_slot, code_slot,
   1094                                                            *code_slot);
   1095 
   1096     candidate = next_candidate;
   1097   }
   1098 
   1099   shared_function_info_candidates_head_ = NULL;
   1100 }
   1101 
   1102 
   1103 void CodeFlusher::ProcessOptimizedCodeMaps() {
   1104   STATIC_ASSERT(SharedFunctionInfo::kEntryLength == 4);
   1105 
   1106   SharedFunctionInfo* holder = optimized_code_map_holder_head_;
   1107   SharedFunctionInfo* next_holder;
   1108 
   1109   while (holder != NULL) {
   1110     next_holder = GetNextCodeMap(holder);
   1111     ClearNextCodeMap(holder);
   1112 
   1113     FixedArray* code_map = FixedArray::cast(holder->optimized_code_map());
   1114     int new_length = SharedFunctionInfo::kEntriesStart;
   1115     int old_length = code_map->length();
   1116     for (int i = SharedFunctionInfo::kEntriesStart; i < old_length;
   1117          i += SharedFunctionInfo::kEntryLength) {
   1118       Code* code =
   1119           Code::cast(code_map->get(i + SharedFunctionInfo::kCachedCodeOffset));
   1120       if (!Marking::MarkBitFrom(code).Get()) continue;
   1121 
   1122       // Move every slot in the entry.
   1123       for (int j = 0; j < SharedFunctionInfo::kEntryLength; j++) {
   1124         int dst_index = new_length++;
   1125         Object** slot = code_map->RawFieldOfElementAt(dst_index);
   1126         Object* object = code_map->get(i + j);
   1127         code_map->set(dst_index, object);
   1128         if (j == SharedFunctionInfo::kOsrAstIdOffset) {
   1129           DCHECK(object->IsSmi());
   1130         } else {
   1131           DCHECK(
   1132               Marking::IsBlack(Marking::MarkBitFrom(HeapObject::cast(*slot))));
   1133           isolate_->heap()->mark_compact_collector()->RecordSlot(slot, slot,
   1134                                                                  *slot);
   1135         }
   1136       }
   1137     }
   1138 
   1139     // Trim the optimized code map if entries have been removed.
   1140     if (new_length < old_length) {
   1141       holder->TrimOptimizedCodeMap(old_length - new_length);
   1142     }
   1143 
   1144     holder = next_holder;
   1145   }
   1146 
   1147   optimized_code_map_holder_head_ = NULL;
   1148 }
   1149 
   1150 
   1151 void CodeFlusher::EvictCandidate(SharedFunctionInfo* shared_info) {
   1152   // Make sure previous flushing decisions are revisited.
   1153   isolate_->heap()->incremental_marking()->RecordWrites(shared_info);
   1154 
   1155   if (FLAG_trace_code_flushing) {
   1156     PrintF("[code-flushing abandons function-info: ");
   1157     shared_info->ShortPrint();
   1158     PrintF("]\n");
   1159   }
   1160 
   1161   SharedFunctionInfo* candidate = shared_function_info_candidates_head_;
   1162   SharedFunctionInfo* next_candidate;
   1163   if (candidate == shared_info) {
   1164     next_candidate = GetNextCandidate(shared_info);
   1165     shared_function_info_candidates_head_ = next_candidate;
   1166     ClearNextCandidate(shared_info);
   1167   } else {
   1168     while (candidate != NULL) {
   1169       next_candidate = GetNextCandidate(candidate);
   1170 
   1171       if (next_candidate == shared_info) {
   1172         next_candidate = GetNextCandidate(shared_info);
   1173         SetNextCandidate(candidate, next_candidate);
   1174         ClearNextCandidate(shared_info);
   1175         break;
   1176       }
   1177 
   1178       candidate = next_candidate;
   1179     }
   1180   }
   1181 }
   1182 
   1183 
   1184 void CodeFlusher::EvictCandidate(JSFunction* function) {
   1185   DCHECK(!function->next_function_link()->IsUndefined());
   1186   Object* undefined = isolate_->heap()->undefined_value();
   1187 
   1188   // Make sure previous flushing decisions are revisited.
   1189   isolate_->heap()->incremental_marking()->RecordWrites(function);
   1190   isolate_->heap()->incremental_marking()->RecordWrites(function->shared());
   1191 
   1192   if (FLAG_trace_code_flushing) {
   1193     PrintF("[code-flushing abandons closure: ");
   1194     function->shared()->ShortPrint();
   1195     PrintF("]\n");
   1196   }
   1197 
   1198   JSFunction* candidate = jsfunction_candidates_head_;
   1199   JSFunction* next_candidate;
   1200   if (candidate == function) {
   1201     next_candidate = GetNextCandidate(function);
   1202     jsfunction_candidates_head_ = next_candidate;
   1203     ClearNextCandidate(function, undefined);
   1204   } else {
   1205     while (candidate != NULL) {
   1206       next_candidate = GetNextCandidate(candidate);
   1207 
   1208       if (next_candidate == function) {
   1209         next_candidate = GetNextCandidate(function);
   1210         SetNextCandidate(candidate, next_candidate);
   1211         ClearNextCandidate(function, undefined);
   1212         break;
   1213       }
   1214 
   1215       candidate = next_candidate;
   1216     }
   1217   }
   1218 }
   1219 
   1220 
   1221 void CodeFlusher::EvictOptimizedCodeMap(SharedFunctionInfo* code_map_holder) {
   1222   DCHECK(!FixedArray::cast(code_map_holder->optimized_code_map())
   1223               ->get(SharedFunctionInfo::kNextMapIndex)
   1224               ->IsUndefined());
   1225 
   1226   // Make sure previous flushing decisions are revisited.
   1227   isolate_->heap()->incremental_marking()->RecordWrites(code_map_holder);
   1228 
   1229   if (FLAG_trace_code_flushing) {
   1230     PrintF("[code-flushing abandons code-map: ");
   1231     code_map_holder->ShortPrint();
   1232     PrintF("]\n");
   1233   }
   1234 
   1235   SharedFunctionInfo* holder = optimized_code_map_holder_head_;
   1236   SharedFunctionInfo* next_holder;
   1237   if (holder == code_map_holder) {
   1238     next_holder = GetNextCodeMap(code_map_holder);
   1239     optimized_code_map_holder_head_ = next_holder;
   1240     ClearNextCodeMap(code_map_holder);
   1241   } else {
   1242     while (holder != NULL) {
   1243       next_holder = GetNextCodeMap(holder);
   1244 
   1245       if (next_holder == code_map_holder) {
   1246         next_holder = GetNextCodeMap(code_map_holder);
   1247         SetNextCodeMap(holder, next_holder);
   1248         ClearNextCodeMap(code_map_holder);
   1249         break;
   1250       }
   1251 
   1252       holder = next_holder;
   1253     }
   1254   }
   1255 }
   1256 
   1257 
   1258 void CodeFlusher::EvictJSFunctionCandidates() {
   1259   JSFunction* candidate = jsfunction_candidates_head_;
   1260   JSFunction* next_candidate;
   1261   while (candidate != NULL) {
   1262     next_candidate = GetNextCandidate(candidate);
   1263     EvictCandidate(candidate);
   1264     candidate = next_candidate;
   1265   }
   1266   DCHECK(jsfunction_candidates_head_ == NULL);
   1267 }
   1268 
   1269 
   1270 void CodeFlusher::EvictSharedFunctionInfoCandidates() {
   1271   SharedFunctionInfo* candidate = shared_function_info_candidates_head_;
   1272   SharedFunctionInfo* next_candidate;
   1273   while (candidate != NULL) {
   1274     next_candidate = GetNextCandidate(candidate);
   1275     EvictCandidate(candidate);
   1276     candidate = next_candidate;
   1277   }
   1278   DCHECK(shared_function_info_candidates_head_ == NULL);
   1279 }
   1280 
   1281 
   1282 void CodeFlusher::EvictOptimizedCodeMaps() {
   1283   SharedFunctionInfo* holder = optimized_code_map_holder_head_;
   1284   SharedFunctionInfo* next_holder;
   1285   while (holder != NULL) {
   1286     next_holder = GetNextCodeMap(holder);
   1287     EvictOptimizedCodeMap(holder);
   1288     holder = next_holder;
   1289   }
   1290   DCHECK(optimized_code_map_holder_head_ == NULL);
   1291 }
   1292 
   1293 
   1294 void CodeFlusher::IteratePointersToFromSpace(ObjectVisitor* v) {
   1295   Heap* heap = isolate_->heap();
   1296 
   1297   JSFunction** slot = &jsfunction_candidates_head_;
   1298   JSFunction* candidate = jsfunction_candidates_head_;
   1299   while (candidate != NULL) {
   1300     if (heap->InFromSpace(candidate)) {
   1301       v->VisitPointer(reinterpret_cast<Object**>(slot));
   1302     }
   1303     candidate = GetNextCandidate(*slot);
   1304     slot = GetNextCandidateSlot(*slot);
   1305   }
   1306 }
   1307 
   1308 
   1309 MarkCompactCollector::~MarkCompactCollector() {
   1310   if (code_flusher_ != NULL) {
   1311     delete code_flusher_;
   1312     code_flusher_ = NULL;
   1313   }
   1314 }
   1315 
   1316 
   1317 static inline HeapObject* ShortCircuitConsString(Object** p) {
   1318   // Optimization: If the heap object pointed to by p is a non-internalized
   1319   // cons string whose right substring is HEAP->empty_string, update
   1320   // it in place to its left substring.  Return the updated value.
   1321   //
   1322   // Here we assume that if we change *p, we replace it with a heap object
   1323   // (i.e., the left substring of a cons string is always a heap object).
   1324   //
   1325   // The check performed is:
   1326   //   object->IsConsString() && !object->IsInternalizedString() &&
   1327   //   (ConsString::cast(object)->second() == HEAP->empty_string())
   1328   // except the maps for the object and its possible substrings might be
   1329   // marked.
   1330   HeapObject* object = HeapObject::cast(*p);
   1331   if (!FLAG_clever_optimizations) return object;
   1332   Map* map = object->map();
   1333   InstanceType type = map->instance_type();
   1334   if (!IsShortcutCandidate(type)) return object;
   1335 
   1336   Object* second = reinterpret_cast<ConsString*>(object)->second();
   1337   Heap* heap = map->GetHeap();
   1338   if (second != heap->empty_string()) {
   1339     return object;
   1340   }
   1341 
   1342   // Since we don't have the object's start, it is impossible to update the
   1343   // page dirty marks. Therefore, we only replace the string with its left
   1344   // substring when page dirty marks do not change.
   1345   Object* first = reinterpret_cast<ConsString*>(object)->first();
   1346   if (!heap->InNewSpace(object) && heap->InNewSpace(first)) return object;
   1347 
   1348   *p = first;
   1349   return HeapObject::cast(first);
   1350 }
   1351 
   1352 
   1353 class MarkCompactMarkingVisitor
   1354     : public StaticMarkingVisitor<MarkCompactMarkingVisitor> {
   1355  public:
   1356   static void ObjectStatsVisitBase(StaticVisitorBase::VisitorId id, Map* map,
   1357                                    HeapObject* obj);
   1358 
   1359   static void ObjectStatsCountFixedArray(
   1360       FixedArrayBase* fixed_array, FixedArraySubInstanceType fast_type,
   1361       FixedArraySubInstanceType dictionary_type);
   1362 
   1363   template <MarkCompactMarkingVisitor::VisitorId id>
   1364   class ObjectStatsTracker {
   1365    public:
   1366     static inline void Visit(Map* map, HeapObject* obj);
   1367   };
   1368 
   1369   static void Initialize();
   1370 
   1371   INLINE(static void VisitPointer(Heap* heap, Object** p)) {
   1372     MarkObjectByPointer(heap->mark_compact_collector(), p, p);
   1373   }
   1374 
   1375   INLINE(static void VisitPointers(Heap* heap, Object** start, Object** end)) {
   1376     // Mark all objects pointed to in [start, end).
   1377     const int kMinRangeForMarkingRecursion = 64;
   1378     if (end - start >= kMinRangeForMarkingRecursion) {
   1379       if (VisitUnmarkedObjects(heap, start, end)) return;
   1380       // We are close to a stack overflow, so just mark the objects.
   1381     }
   1382     MarkCompactCollector* collector = heap->mark_compact_collector();
   1383     for (Object** p = start; p < end; p++) {
   1384       MarkObjectByPointer(collector, start, p);
   1385     }
   1386   }
   1387 
   1388   // Marks the object black and pushes it on the marking stack.
   1389   INLINE(static void MarkObject(Heap* heap, HeapObject* object)) {
   1390     MarkBit mark = Marking::MarkBitFrom(object);
   1391     heap->mark_compact_collector()->MarkObject(object, mark);
   1392   }
   1393 
   1394   // Marks the object black without pushing it on the marking stack.
   1395   // Returns true if object needed marking and false otherwise.
   1396   INLINE(static bool MarkObjectWithoutPush(Heap* heap, HeapObject* object)) {
   1397     MarkBit mark_bit = Marking::MarkBitFrom(object);
   1398     if (!mark_bit.Get()) {
   1399       heap->mark_compact_collector()->SetMark(object, mark_bit);
   1400       return true;
   1401     }
   1402     return false;
   1403   }
   1404 
   1405   // Mark object pointed to by p.
   1406   INLINE(static void MarkObjectByPointer(MarkCompactCollector* collector,
   1407                                          Object** anchor_slot, Object** p)) {
   1408     if (!(*p)->IsHeapObject()) return;
   1409     HeapObject* object = ShortCircuitConsString(p);
   1410     collector->RecordSlot(anchor_slot, p, object);
   1411     MarkBit mark = Marking::MarkBitFrom(object);
   1412     collector->MarkObject(object, mark);
   1413   }
   1414 
   1415 
   1416   // Visit an unmarked object.
   1417   INLINE(static void VisitUnmarkedObject(MarkCompactCollector* collector,
   1418                                          HeapObject* obj)) {
   1419 #ifdef DEBUG
   1420     DCHECK(collector->heap()->Contains(obj));
   1421     DCHECK(!collector->heap()->mark_compact_collector()->IsMarked(obj));
   1422 #endif
   1423     Map* map = obj->map();
   1424     Heap* heap = obj->GetHeap();
   1425     MarkBit mark = Marking::MarkBitFrom(obj);
   1426     heap->mark_compact_collector()->SetMark(obj, mark);
   1427     // Mark the map pointer and the body.
   1428     MarkBit map_mark = Marking::MarkBitFrom(map);
   1429     heap->mark_compact_collector()->MarkObject(map, map_mark);
   1430     IterateBody(map, obj);
   1431   }
   1432 
   1433   // Visit all unmarked objects pointed to by [start, end).
   1434   // Returns false if the operation fails (lack of stack space).
   1435   INLINE(static bool VisitUnmarkedObjects(Heap* heap, Object** start,
   1436                                           Object** end)) {
   1437     // Return false is we are close to the stack limit.
   1438     StackLimitCheck check(heap->isolate());
   1439     if (check.HasOverflowed()) return false;
   1440 
   1441     MarkCompactCollector* collector = heap->mark_compact_collector();
   1442     // Visit the unmarked objects.
   1443     for (Object** p = start; p < end; p++) {
   1444       Object* o = *p;
   1445       if (!o->IsHeapObject()) continue;
   1446       collector->RecordSlot(start, p, o);
   1447       HeapObject* obj = HeapObject::cast(o);
   1448       MarkBit mark = Marking::MarkBitFrom(obj);
   1449       if (mark.Get()) continue;
   1450       VisitUnmarkedObject(collector, obj);
   1451     }
   1452     return true;
   1453   }
   1454 
   1455  private:
   1456   template <int id>
   1457   static inline void TrackObjectStatsAndVisit(Map* map, HeapObject* obj);
   1458 
   1459   // Code flushing support.
   1460 
   1461   static const int kRegExpCodeThreshold = 5;
   1462 
   1463   static void UpdateRegExpCodeAgeAndFlush(Heap* heap, JSRegExp* re,
   1464                                           bool is_one_byte) {
   1465     // Make sure that the fixed array is in fact initialized on the RegExp.
   1466     // We could potentially trigger a GC when initializing the RegExp.
   1467     if (HeapObject::cast(re->data())->map()->instance_type() !=
   1468         FIXED_ARRAY_TYPE)
   1469       return;
   1470 
   1471     // Make sure this is a RegExp that actually contains code.
   1472     if (re->TypeTag() != JSRegExp::IRREGEXP) return;
   1473 
   1474     Object* code = re->DataAt(JSRegExp::code_index(is_one_byte));
   1475     if (!code->IsSmi() &&
   1476         HeapObject::cast(code)->map()->instance_type() == CODE_TYPE) {
   1477       // Save a copy that can be reinstated if we need the code again.
   1478       re->SetDataAt(JSRegExp::saved_code_index(is_one_byte), code);
   1479 
   1480       // Saving a copy might create a pointer into compaction candidate
   1481       // that was not observed by marker.  This might happen if JSRegExp data
   1482       // was marked through the compilation cache before marker reached JSRegExp
   1483       // object.
   1484       FixedArray* data = FixedArray::cast(re->data());
   1485       Object** slot =
   1486           data->data_start() + JSRegExp::saved_code_index(is_one_byte);
   1487       heap->mark_compact_collector()->RecordSlot(slot, slot, code);
   1488 
   1489       // Set a number in the 0-255 range to guarantee no smi overflow.
   1490       re->SetDataAt(JSRegExp::code_index(is_one_byte),
   1491                     Smi::FromInt(heap->sweep_generation() & 0xff));
   1492     } else if (code->IsSmi()) {
   1493       int value = Smi::cast(code)->value();
   1494       // The regexp has not been compiled yet or there was a compilation error.
   1495       if (value == JSRegExp::kUninitializedValue ||
   1496           value == JSRegExp::kCompilationErrorValue) {
   1497         return;
   1498       }
   1499 
   1500       // Check if we should flush now.
   1501       if (value == ((heap->sweep_generation() - kRegExpCodeThreshold) & 0xff)) {
   1502         re->SetDataAt(JSRegExp::code_index(is_one_byte),
   1503                       Smi::FromInt(JSRegExp::kUninitializedValue));
   1504         re->SetDataAt(JSRegExp::saved_code_index(is_one_byte),
   1505                       Smi::FromInt(JSRegExp::kUninitializedValue));
   1506       }
   1507     }
   1508   }
   1509 
   1510 
   1511   // Works by setting the current sweep_generation (as a smi) in the
   1512   // code object place in the data array of the RegExp and keeps a copy
   1513   // around that can be reinstated if we reuse the RegExp before flushing.
   1514   // If we did not use the code for kRegExpCodeThreshold mark sweep GCs
   1515   // we flush the code.
   1516   static void VisitRegExpAndFlushCode(Map* map, HeapObject* object) {
   1517     Heap* heap = map->GetHeap();
   1518     MarkCompactCollector* collector = heap->mark_compact_collector();
   1519     if (!collector->is_code_flushing_enabled()) {
   1520       VisitJSRegExp(map, object);
   1521       return;
   1522     }
   1523     JSRegExp* re = reinterpret_cast<JSRegExp*>(object);
   1524     // Flush code or set age on both one byte and two byte code.
   1525     UpdateRegExpCodeAgeAndFlush(heap, re, true);
   1526     UpdateRegExpCodeAgeAndFlush(heap, re, false);
   1527     // Visit the fields of the RegExp, including the updated FixedArray.
   1528     VisitJSRegExp(map, object);
   1529   }
   1530 
   1531   static VisitorDispatchTable<Callback> non_count_table_;
   1532 };
   1533 
   1534 
   1535 void MarkCompactMarkingVisitor::ObjectStatsCountFixedArray(
   1536     FixedArrayBase* fixed_array, FixedArraySubInstanceType fast_type,
   1537     FixedArraySubInstanceType dictionary_type) {
   1538   Heap* heap = fixed_array->map()->GetHeap();
   1539   if (fixed_array->map() != heap->fixed_cow_array_map() &&
   1540       fixed_array->map() != heap->fixed_double_array_map() &&
   1541       fixed_array != heap->empty_fixed_array()) {
   1542     if (fixed_array->IsDictionary()) {
   1543       heap->RecordFixedArraySubTypeStats(dictionary_type, fixed_array->Size());
   1544     } else {
   1545       heap->RecordFixedArraySubTypeStats(fast_type, fixed_array->Size());
   1546     }
   1547   }
   1548 }
   1549 
   1550 
   1551 void MarkCompactMarkingVisitor::ObjectStatsVisitBase(
   1552     MarkCompactMarkingVisitor::VisitorId id, Map* map, HeapObject* obj) {
   1553   Heap* heap = map->GetHeap();
   1554   int object_size = obj->Size();
   1555   heap->RecordObjectStats(map->instance_type(), object_size);
   1556   non_count_table_.GetVisitorById(id)(map, obj);
   1557   if (obj->IsJSObject()) {
   1558     JSObject* object = JSObject::cast(obj);
   1559     ObjectStatsCountFixedArray(object->elements(), DICTIONARY_ELEMENTS_SUB_TYPE,
   1560                                FAST_ELEMENTS_SUB_TYPE);
   1561     ObjectStatsCountFixedArray(object->properties(),
   1562                                DICTIONARY_PROPERTIES_SUB_TYPE,
   1563                                FAST_PROPERTIES_SUB_TYPE);
   1564   }
   1565 }
   1566 
   1567 
   1568 template <MarkCompactMarkingVisitor::VisitorId id>
   1569 void MarkCompactMarkingVisitor::ObjectStatsTracker<id>::Visit(Map* map,
   1570                                                               HeapObject* obj) {
   1571   ObjectStatsVisitBase(id, map, obj);
   1572 }
   1573 
   1574 
   1575 template <>
   1576 class MarkCompactMarkingVisitor::ObjectStatsTracker<
   1577     MarkCompactMarkingVisitor::kVisitMap> {
   1578  public:
   1579   static inline void Visit(Map* map, HeapObject* obj) {
   1580     Heap* heap = map->GetHeap();
   1581     Map* map_obj = Map::cast(obj);
   1582     DCHECK(map->instance_type() == MAP_TYPE);
   1583     DescriptorArray* array = map_obj->instance_descriptors();
   1584     if (map_obj->owns_descriptors() &&
   1585         array != heap->empty_descriptor_array()) {
   1586       int fixed_array_size = array->Size();
   1587       heap->RecordFixedArraySubTypeStats(DESCRIPTOR_ARRAY_SUB_TYPE,
   1588                                          fixed_array_size);
   1589     }
   1590     if (map_obj->HasTransitionArray()) {
   1591       int fixed_array_size = map_obj->transitions()->Size();
   1592       heap->RecordFixedArraySubTypeStats(TRANSITION_ARRAY_SUB_TYPE,
   1593                                          fixed_array_size);
   1594     }
   1595     if (map_obj->has_code_cache()) {
   1596       CodeCache* cache = CodeCache::cast(map_obj->code_cache());
   1597       heap->RecordFixedArraySubTypeStats(MAP_CODE_CACHE_SUB_TYPE,
   1598                                          cache->default_cache()->Size());
   1599       if (!cache->normal_type_cache()->IsUndefined()) {
   1600         heap->RecordFixedArraySubTypeStats(
   1601             MAP_CODE_CACHE_SUB_TYPE,
   1602             FixedArray::cast(cache->normal_type_cache())->Size());
   1603       }
   1604     }
   1605     ObjectStatsVisitBase(kVisitMap, map, obj);
   1606   }
   1607 };
   1608 
   1609 
   1610 template <>
   1611 class MarkCompactMarkingVisitor::ObjectStatsTracker<
   1612     MarkCompactMarkingVisitor::kVisitCode> {
   1613  public:
   1614   static inline void Visit(Map* map, HeapObject* obj) {
   1615     Heap* heap = map->GetHeap();
   1616     int object_size = obj->Size();
   1617     DCHECK(map->instance_type() == CODE_TYPE);
   1618     Code* code_obj = Code::cast(obj);
   1619     heap->RecordCodeSubTypeStats(code_obj->kind(), code_obj->GetRawAge(),
   1620                                  object_size);
   1621     ObjectStatsVisitBase(kVisitCode, map, obj);
   1622   }
   1623 };
   1624 
   1625 
   1626 template <>
   1627 class MarkCompactMarkingVisitor::ObjectStatsTracker<
   1628     MarkCompactMarkingVisitor::kVisitSharedFunctionInfo> {
   1629  public:
   1630   static inline void Visit(Map* map, HeapObject* obj) {
   1631     Heap* heap = map->GetHeap();
   1632     SharedFunctionInfo* sfi = SharedFunctionInfo::cast(obj);
   1633     if (sfi->scope_info() != heap->empty_fixed_array()) {
   1634       heap->RecordFixedArraySubTypeStats(
   1635           SCOPE_INFO_SUB_TYPE, FixedArray::cast(sfi->scope_info())->Size());
   1636     }
   1637     ObjectStatsVisitBase(kVisitSharedFunctionInfo, map, obj);
   1638   }
   1639 };
   1640 
   1641 
   1642 template <>
   1643 class MarkCompactMarkingVisitor::ObjectStatsTracker<
   1644     MarkCompactMarkingVisitor::kVisitFixedArray> {
   1645  public:
   1646   static inline void Visit(Map* map, HeapObject* obj) {
   1647     Heap* heap = map->GetHeap();
   1648     FixedArray* fixed_array = FixedArray::cast(obj);
   1649     if (fixed_array == heap->string_table()) {
   1650       heap->RecordFixedArraySubTypeStats(STRING_TABLE_SUB_TYPE,
   1651                                          fixed_array->Size());
   1652     }
   1653     ObjectStatsVisitBase(kVisitFixedArray, map, obj);
   1654   }
   1655 };
   1656 
   1657 
   1658 void MarkCompactMarkingVisitor::Initialize() {
   1659   StaticMarkingVisitor<MarkCompactMarkingVisitor>::Initialize();
   1660 
   1661   table_.Register(kVisitJSRegExp, &VisitRegExpAndFlushCode);
   1662 
   1663   if (FLAG_track_gc_object_stats) {
   1664     // Copy the visitor table to make call-through possible.
   1665     non_count_table_.CopyFrom(&table_);
   1666 #define VISITOR_ID_COUNT_FUNCTION(id) \
   1667   table_.Register(kVisit##id, ObjectStatsTracker<kVisit##id>::Visit);
   1668     VISITOR_ID_LIST(VISITOR_ID_COUNT_FUNCTION)
   1669 #undef VISITOR_ID_COUNT_FUNCTION
   1670   }
   1671 }
   1672 
   1673 
   1674 VisitorDispatchTable<MarkCompactMarkingVisitor::Callback>
   1675     MarkCompactMarkingVisitor::non_count_table_;
   1676 
   1677 
   1678 class CodeMarkingVisitor : public ThreadVisitor {
   1679  public:
   1680   explicit CodeMarkingVisitor(MarkCompactCollector* collector)
   1681       : collector_(collector) {}
   1682 
   1683   void VisitThread(Isolate* isolate, ThreadLocalTop* top) {
   1684     collector_->PrepareThreadForCodeFlushing(isolate, top);
   1685   }
   1686 
   1687  private:
   1688   MarkCompactCollector* collector_;
   1689 };
   1690 
   1691 
   1692 class SharedFunctionInfoMarkingVisitor : public ObjectVisitor {
   1693  public:
   1694   explicit SharedFunctionInfoMarkingVisitor(MarkCompactCollector* collector)
   1695       : collector_(collector) {}
   1696 
   1697   void VisitPointers(Object** start, Object** end) {
   1698     for (Object** p = start; p < end; p++) VisitPointer(p);
   1699   }
   1700 
   1701   void VisitPointer(Object** slot) {
   1702     Object* obj = *slot;
   1703     if (obj->IsSharedFunctionInfo()) {
   1704       SharedFunctionInfo* shared = reinterpret_cast<SharedFunctionInfo*>(obj);
   1705       MarkBit shared_mark = Marking::MarkBitFrom(shared);
   1706       MarkBit code_mark = Marking::MarkBitFrom(shared->code());
   1707       collector_->MarkObject(shared->code(), code_mark);
   1708       collector_->MarkObject(shared, shared_mark);
   1709     }
   1710   }
   1711 
   1712  private:
   1713   MarkCompactCollector* collector_;
   1714 };
   1715 
   1716 
   1717 void MarkCompactCollector::PrepareThreadForCodeFlushing(Isolate* isolate,
   1718                                                         ThreadLocalTop* top) {
   1719   for (StackFrameIterator it(isolate, top); !it.done(); it.Advance()) {
   1720     // Note: for the frame that has a pending lazy deoptimization
   1721     // StackFrame::unchecked_code will return a non-optimized code object for
   1722     // the outermost function and StackFrame::LookupCode will return
   1723     // actual optimized code object.
   1724     StackFrame* frame = it.frame();
   1725     Code* code = frame->unchecked_code();
   1726     MarkBit code_mark = Marking::MarkBitFrom(code);
   1727     MarkObject(code, code_mark);
   1728     if (frame->is_optimized()) {
   1729       MarkCompactMarkingVisitor::MarkInlinedFunctionsCode(heap(),
   1730                                                           frame->LookupCode());
   1731     }
   1732   }
   1733 }
   1734 
   1735 
   1736 void MarkCompactCollector::PrepareForCodeFlushing() {
   1737   // Enable code flushing for non-incremental cycles.
   1738   if (FLAG_flush_code && !FLAG_flush_code_incrementally) {
   1739     EnableCodeFlushing(!was_marked_incrementally_);
   1740   }
   1741 
   1742   // If code flushing is disabled, there is no need to prepare for it.
   1743   if (!is_code_flushing_enabled()) return;
   1744 
   1745   // Ensure that empty descriptor array is marked. Method MarkDescriptorArray
   1746   // relies on it being marked before any other descriptor array.
   1747   HeapObject* descriptor_array = heap()->empty_descriptor_array();
   1748   MarkBit descriptor_array_mark = Marking::MarkBitFrom(descriptor_array);
   1749   MarkObject(descriptor_array, descriptor_array_mark);
   1750 
   1751   // Make sure we are not referencing the code from the stack.
   1752   DCHECK(this == heap()->mark_compact_collector());
   1753   PrepareThreadForCodeFlushing(heap()->isolate(),
   1754                                heap()->isolate()->thread_local_top());
   1755 
   1756   // Iterate the archived stacks in all threads to check if
   1757   // the code is referenced.
   1758   CodeMarkingVisitor code_marking_visitor(this);
   1759   heap()->isolate()->thread_manager()->IterateArchivedThreads(
   1760       &code_marking_visitor);
   1761 
   1762   SharedFunctionInfoMarkingVisitor visitor(this);
   1763   heap()->isolate()->compilation_cache()->IterateFunctions(&visitor);
   1764   heap()->isolate()->handle_scope_implementer()->Iterate(&visitor);
   1765 
   1766   ProcessMarkingDeque();
   1767 }
   1768 
   1769 
   1770 // Visitor class for marking heap roots.
   1771 class RootMarkingVisitor : public ObjectVisitor {
   1772  public:
   1773   explicit RootMarkingVisitor(Heap* heap)
   1774       : collector_(heap->mark_compact_collector()) {}
   1775 
   1776   void VisitPointer(Object** p) { MarkObjectByPointer(p); }
   1777 
   1778   void VisitPointers(Object** start, Object** end) {
   1779     for (Object** p = start; p < end; p++) MarkObjectByPointer(p);
   1780   }
   1781 
   1782   // Skip the weak next code link in a code object, which is visited in
   1783   // ProcessTopOptimizedFrame.
   1784   void VisitNextCodeLink(Object** p) {}
   1785 
   1786  private:
   1787   void MarkObjectByPointer(Object** p) {
   1788     if (!(*p)->IsHeapObject()) return;
   1789 
   1790     // Replace flat cons strings in place.
   1791     HeapObject* object = ShortCircuitConsString(p);
   1792     MarkBit mark_bit = Marking::MarkBitFrom(object);
   1793     if (mark_bit.Get()) return;
   1794 
   1795     Map* map = object->map();
   1796     // Mark the object.
   1797     collector_->SetMark(object, mark_bit);
   1798 
   1799     // Mark the map pointer and body, and push them on the marking stack.
   1800     MarkBit map_mark = Marking::MarkBitFrom(map);
   1801     collector_->MarkObject(map, map_mark);
   1802     MarkCompactMarkingVisitor::IterateBody(map, object);
   1803 
   1804     // Mark all the objects reachable from the map and body.  May leave
   1805     // overflowed objects in the heap.
   1806     collector_->EmptyMarkingDeque();
   1807   }
   1808 
   1809   MarkCompactCollector* collector_;
   1810 };
   1811 
   1812 
   1813 // Helper class for pruning the string table.
   1814 template <bool finalize_external_strings>
   1815 class StringTableCleaner : public ObjectVisitor {
   1816  public:
   1817   explicit StringTableCleaner(Heap* heap) : heap_(heap), pointers_removed_(0) {}
   1818 
   1819   virtual void VisitPointers(Object** start, Object** end) {
   1820     // Visit all HeapObject pointers in [start, end).
   1821     for (Object** p = start; p < end; p++) {
   1822       Object* o = *p;
   1823       if (o->IsHeapObject() &&
   1824           !Marking::MarkBitFrom(HeapObject::cast(o)).Get()) {
   1825         if (finalize_external_strings) {
   1826           DCHECK(o->IsExternalString());
   1827           heap_->FinalizeExternalString(String::cast(*p));
   1828         } else {
   1829           pointers_removed_++;
   1830         }
   1831         // Set the entry to the_hole_value (as deleted).
   1832         *p = heap_->the_hole_value();
   1833       }
   1834     }
   1835   }
   1836 
   1837   int PointersRemoved() {
   1838     DCHECK(!finalize_external_strings);
   1839     return pointers_removed_;
   1840   }
   1841 
   1842  private:
   1843   Heap* heap_;
   1844   int pointers_removed_;
   1845 };
   1846 
   1847 
   1848 typedef StringTableCleaner<false> InternalizedStringTableCleaner;
   1849 typedef StringTableCleaner<true> ExternalStringTableCleaner;
   1850 
   1851 
   1852 // Implementation of WeakObjectRetainer for mark compact GCs. All marked objects
   1853 // are retained.
   1854 class MarkCompactWeakObjectRetainer : public WeakObjectRetainer {
   1855  public:
   1856   virtual Object* RetainAs(Object* object) {
   1857     if (Marking::MarkBitFrom(HeapObject::cast(object)).Get()) {
   1858       return object;
   1859     } else if (object->IsAllocationSite() &&
   1860                !(AllocationSite::cast(object)->IsZombie())) {
   1861       // "dead" AllocationSites need to live long enough for a traversal of new
   1862       // space. These sites get a one-time reprieve.
   1863       AllocationSite* site = AllocationSite::cast(object);
   1864       site->MarkZombie();
   1865       site->GetHeap()->mark_compact_collector()->MarkAllocationSite(site);
   1866       return object;
   1867     } else {
   1868       return NULL;
   1869     }
   1870   }
   1871 };
   1872 
   1873 
   1874 // Fill the marking stack with overflowed objects returned by the given
   1875 // iterator.  Stop when the marking stack is filled or the end of the space
   1876 // is reached, whichever comes first.
   1877 template <class T>
   1878 static void DiscoverGreyObjectsWithIterator(Heap* heap,
   1879                                             MarkingDeque* marking_deque,
   1880                                             T* it) {
   1881   // The caller should ensure that the marking stack is initially not full,
   1882   // so that we don't waste effort pointlessly scanning for objects.
   1883   DCHECK(!marking_deque->IsFull());
   1884 
   1885   Map* filler_map = heap->one_pointer_filler_map();
   1886   for (HeapObject* object = it->Next(); object != NULL; object = it->Next()) {
   1887     MarkBit markbit = Marking::MarkBitFrom(object);
   1888     if ((object->map() != filler_map) && Marking::IsGrey(markbit)) {
   1889       Marking::GreyToBlack(markbit);
   1890       MemoryChunk::IncrementLiveBytesFromGC(object->address(), object->Size());
   1891       marking_deque->PushBlack(object);
   1892       if (marking_deque->IsFull()) return;
   1893     }
   1894   }
   1895 }
   1896 
   1897 
   1898 static inline int MarkWordToObjectStarts(uint32_t mark_bits, int* starts);
   1899 
   1900 
   1901 static void DiscoverGreyObjectsOnPage(MarkingDeque* marking_deque,
   1902                                       MemoryChunk* p) {
   1903   DCHECK(!marking_deque->IsFull());
   1904   DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
   1905   DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
   1906   DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
   1907   DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
   1908 
   1909   for (MarkBitCellIterator it(p); !it.Done(); it.Advance()) {
   1910     Address cell_base = it.CurrentCellBase();
   1911     MarkBit::CellType* cell = it.CurrentCell();
   1912 
   1913     const MarkBit::CellType current_cell = *cell;
   1914     if (current_cell == 0) continue;
   1915 
   1916     MarkBit::CellType grey_objects;
   1917     if (it.HasNext()) {
   1918       const MarkBit::CellType next_cell = *(cell + 1);
   1919       grey_objects = current_cell & ((current_cell >> 1) |
   1920                                      (next_cell << (Bitmap::kBitsPerCell - 1)));
   1921     } else {
   1922       grey_objects = current_cell & (current_cell >> 1);
   1923     }
   1924 
   1925     int offset = 0;
   1926     while (grey_objects != 0) {
   1927       int trailing_zeros = base::bits::CountTrailingZeros32(grey_objects);
   1928       grey_objects >>= trailing_zeros;
   1929       offset += trailing_zeros;
   1930       MarkBit markbit(cell, 1 << offset, false);
   1931       DCHECK(Marking::IsGrey(markbit));
   1932       Marking::GreyToBlack(markbit);
   1933       Address addr = cell_base + offset * kPointerSize;
   1934       HeapObject* object = HeapObject::FromAddress(addr);
   1935       MemoryChunk::IncrementLiveBytesFromGC(object->address(), object->Size());
   1936       marking_deque->PushBlack(object);
   1937       if (marking_deque->IsFull()) return;
   1938       offset += 2;
   1939       grey_objects >>= 2;
   1940     }
   1941 
   1942     grey_objects >>= (Bitmap::kBitsPerCell - 1);
   1943   }
   1944 }
   1945 
   1946 
   1947 int MarkCompactCollector::DiscoverAndEvacuateBlackObjectsOnPage(
   1948     NewSpace* new_space, NewSpacePage* p) {
   1949   DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
   1950   DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
   1951   DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
   1952   DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
   1953 
   1954   MarkBit::CellType* cells = p->markbits()->cells();
   1955   int survivors_size = 0;
   1956 
   1957   for (MarkBitCellIterator it(p); !it.Done(); it.Advance()) {
   1958     Address cell_base = it.CurrentCellBase();
   1959     MarkBit::CellType* cell = it.CurrentCell();
   1960 
   1961     MarkBit::CellType current_cell = *cell;
   1962     if (current_cell == 0) continue;
   1963 
   1964     int offset = 0;
   1965     while (current_cell != 0) {
   1966       int trailing_zeros = base::bits::CountTrailingZeros32(current_cell);
   1967       current_cell >>= trailing_zeros;
   1968       offset += trailing_zeros;
   1969       Address address = cell_base + offset * kPointerSize;
   1970       HeapObject* object = HeapObject::FromAddress(address);
   1971 
   1972       int size = object->Size();
   1973       survivors_size += size;
   1974 
   1975       Heap::UpdateAllocationSiteFeedback(object, Heap::RECORD_SCRATCHPAD_SLOT);
   1976 
   1977       offset++;
   1978       current_cell >>= 1;
   1979 
   1980       // TODO(hpayer): Refactor EvacuateObject and call this function instead.
   1981       if (heap()->ShouldBePromoted(object->address(), size) &&
   1982           TryPromoteObject(object, size)) {
   1983         continue;
   1984       }
   1985 
   1986       AllocationResult allocation = new_space->AllocateRaw(size);
   1987       if (allocation.IsRetry()) {
   1988         if (!new_space->AddFreshPage()) {
   1989           // Shouldn't happen. We are sweeping linearly, and to-space
   1990           // has the same number of pages as from-space, so there is
   1991           // always room.
   1992           UNREACHABLE();
   1993         }
   1994         allocation = new_space->AllocateRaw(size);
   1995         DCHECK(!allocation.IsRetry());
   1996       }
   1997       Object* target = allocation.ToObjectChecked();
   1998 
   1999       MigrateObject(HeapObject::cast(target), object, size, NEW_SPACE);
   2000       heap()->IncrementSemiSpaceCopiedObjectSize(size);
   2001     }
   2002     *cells = 0;
   2003   }
   2004   return survivors_size;
   2005 }
   2006 
   2007 
   2008 static void DiscoverGreyObjectsInSpace(Heap* heap, MarkingDeque* marking_deque,
   2009                                        PagedSpace* space) {
   2010   PageIterator it(space);
   2011   while (it.has_next()) {
   2012     Page* p = it.next();
   2013     DiscoverGreyObjectsOnPage(marking_deque, p);
   2014     if (marking_deque->IsFull()) return;
   2015   }
   2016 }
   2017 
   2018 
   2019 static void DiscoverGreyObjectsInNewSpace(Heap* heap,
   2020                                           MarkingDeque* marking_deque) {
   2021   NewSpace* space = heap->new_space();
   2022   NewSpacePageIterator it(space->bottom(), space->top());
   2023   while (it.has_next()) {
   2024     NewSpacePage* page = it.next();
   2025     DiscoverGreyObjectsOnPage(marking_deque, page);
   2026     if (marking_deque->IsFull()) return;
   2027   }
   2028 }
   2029 
   2030 
   2031 bool MarkCompactCollector::IsUnmarkedHeapObject(Object** p) {
   2032   Object* o = *p;
   2033   if (!o->IsHeapObject()) return false;
   2034   HeapObject* heap_object = HeapObject::cast(o);
   2035   MarkBit mark = Marking::MarkBitFrom(heap_object);
   2036   return !mark.Get();
   2037 }
   2038 
   2039 
   2040 bool MarkCompactCollector::IsUnmarkedHeapObjectWithHeap(Heap* heap,
   2041                                                         Object** p) {
   2042   Object* o = *p;
   2043   DCHECK(o->IsHeapObject());
   2044   HeapObject* heap_object = HeapObject::cast(o);
   2045   MarkBit mark = Marking::MarkBitFrom(heap_object);
   2046   return !mark.Get();
   2047 }
   2048 
   2049 
   2050 void MarkCompactCollector::MarkStringTable(RootMarkingVisitor* visitor) {
   2051   StringTable* string_table = heap()->string_table();
   2052   // Mark the string table itself.
   2053   MarkBit string_table_mark = Marking::MarkBitFrom(string_table);
   2054   if (!string_table_mark.Get()) {
   2055     // String table could have already been marked by visiting the handles list.
   2056     SetMark(string_table, string_table_mark);
   2057   }
   2058   // Explicitly mark the prefix.
   2059   string_table->IteratePrefix(visitor);
   2060   ProcessMarkingDeque();
   2061 }
   2062 
   2063 
   2064 void MarkCompactCollector::MarkAllocationSite(AllocationSite* site) {
   2065   MarkBit mark_bit = Marking::MarkBitFrom(site);
   2066   SetMark(site, mark_bit);
   2067 }
   2068 
   2069 
   2070 void MarkCompactCollector::MarkRoots(RootMarkingVisitor* visitor) {
   2071   // Mark the heap roots including global variables, stack variables,
   2072   // etc., and all objects reachable from them.
   2073   heap()->IterateStrongRoots(visitor, VISIT_ONLY_STRONG);
   2074 
   2075   // Handle the string table specially.
   2076   MarkStringTable(visitor);
   2077 
   2078   MarkWeakObjectToCodeTable();
   2079 
   2080   // There may be overflowed objects in the heap.  Visit them now.
   2081   while (marking_deque_.overflowed()) {
   2082     RefillMarkingDeque();
   2083     EmptyMarkingDeque();
   2084   }
   2085 }
   2086 
   2087 
   2088 void MarkCompactCollector::MarkImplicitRefGroups() {
   2089   List<ImplicitRefGroup*>* ref_groups =
   2090       isolate()->global_handles()->implicit_ref_groups();
   2091 
   2092   int last = 0;
   2093   for (int i = 0; i < ref_groups->length(); i++) {
   2094     ImplicitRefGroup* entry = ref_groups->at(i);
   2095     DCHECK(entry != NULL);
   2096 
   2097     if (!IsMarked(*entry->parent)) {
   2098       (*ref_groups)[last++] = entry;
   2099       continue;
   2100     }
   2101 
   2102     Object*** children = entry->children;
   2103     // A parent object is marked, so mark all child heap objects.
   2104     for (size_t j = 0; j < entry->length; ++j) {
   2105       if ((*children[j])->IsHeapObject()) {
   2106         HeapObject* child = HeapObject::cast(*children[j]);
   2107         MarkBit mark = Marking::MarkBitFrom(child);
   2108         MarkObject(child, mark);
   2109       }
   2110     }
   2111 
   2112     // Once the entire group has been marked, dispose it because it's
   2113     // not needed anymore.
   2114     delete entry;
   2115   }
   2116   ref_groups->Rewind(last);
   2117 }
   2118 
   2119 
   2120 void MarkCompactCollector::MarkWeakObjectToCodeTable() {
   2121   HeapObject* weak_object_to_code_table =
   2122       HeapObject::cast(heap()->weak_object_to_code_table());
   2123   if (!IsMarked(weak_object_to_code_table)) {
   2124     MarkBit mark = Marking::MarkBitFrom(weak_object_to_code_table);
   2125     SetMark(weak_object_to_code_table, mark);
   2126   }
   2127 }
   2128 
   2129 
   2130 // Mark all objects reachable from the objects on the marking stack.
   2131 // Before: the marking stack contains zero or more heap object pointers.
   2132 // After: the marking stack is empty, and all objects reachable from the
   2133 // marking stack have been marked, or are overflowed in the heap.
   2134 void MarkCompactCollector::EmptyMarkingDeque() {
   2135   while (!marking_deque_.IsEmpty()) {
   2136     HeapObject* object = marking_deque_.Pop();
   2137     DCHECK(object->IsHeapObject());
   2138     DCHECK(heap()->Contains(object));
   2139     DCHECK(Marking::IsBlack(Marking::MarkBitFrom(object)));
   2140 
   2141     Map* map = object->map();
   2142     MarkBit map_mark = Marking::MarkBitFrom(map);
   2143     MarkObject(map, map_mark);
   2144 
   2145     MarkCompactMarkingVisitor::IterateBody(map, object);
   2146   }
   2147 }
   2148 
   2149 
   2150 // Sweep the heap for overflowed objects, clear their overflow bits, and
   2151 // push them on the marking stack.  Stop early if the marking stack fills
   2152 // before sweeping completes.  If sweeping completes, there are no remaining
   2153 // overflowed objects in the heap so the overflow flag on the markings stack
   2154 // is cleared.
   2155 void MarkCompactCollector::RefillMarkingDeque() {
   2156   DCHECK(marking_deque_.overflowed());
   2157 
   2158   DiscoverGreyObjectsInNewSpace(heap(), &marking_deque_);
   2159   if (marking_deque_.IsFull()) return;
   2160 
   2161   DiscoverGreyObjectsInSpace(heap(), &marking_deque_,
   2162                              heap()->old_pointer_space());
   2163   if (marking_deque_.IsFull()) return;
   2164 
   2165   DiscoverGreyObjectsInSpace(heap(), &marking_deque_, heap()->old_data_space());
   2166   if (marking_deque_.IsFull()) return;
   2167 
   2168   DiscoverGreyObjectsInSpace(heap(), &marking_deque_, heap()->code_space());
   2169   if (marking_deque_.IsFull()) return;
   2170 
   2171   DiscoverGreyObjectsInSpace(heap(), &marking_deque_, heap()->map_space());
   2172   if (marking_deque_.IsFull()) return;
   2173 
   2174   DiscoverGreyObjectsInSpace(heap(), &marking_deque_, heap()->cell_space());
   2175   if (marking_deque_.IsFull()) return;
   2176 
   2177   DiscoverGreyObjectsInSpace(heap(), &marking_deque_,
   2178                              heap()->property_cell_space());
   2179   if (marking_deque_.IsFull()) return;
   2180 
   2181   LargeObjectIterator lo_it(heap()->lo_space());
   2182   DiscoverGreyObjectsWithIterator(heap(), &marking_deque_, &lo_it);
   2183   if (marking_deque_.IsFull()) return;
   2184 
   2185   marking_deque_.ClearOverflowed();
   2186 }
   2187 
   2188 
   2189 // Mark all objects reachable (transitively) from objects on the marking
   2190 // stack.  Before: the marking stack contains zero or more heap object
   2191 // pointers.  After: the marking stack is empty and there are no overflowed
   2192 // objects in the heap.
   2193 void MarkCompactCollector::ProcessMarkingDeque() {
   2194   EmptyMarkingDeque();
   2195   while (marking_deque_.overflowed()) {
   2196     RefillMarkingDeque();
   2197     EmptyMarkingDeque();
   2198   }
   2199 }
   2200 
   2201 
   2202 // Mark all objects reachable (transitively) from objects on the marking
   2203 // stack including references only considered in the atomic marking pause.
   2204 void MarkCompactCollector::ProcessEphemeralMarking(ObjectVisitor* visitor) {
   2205   bool work_to_do = true;
   2206   DCHECK(marking_deque_.IsEmpty());
   2207   while (work_to_do) {
   2208     isolate()->global_handles()->IterateObjectGroups(
   2209         visitor, &IsUnmarkedHeapObjectWithHeap);
   2210     MarkImplicitRefGroups();
   2211     ProcessWeakCollections();
   2212     work_to_do = !marking_deque_.IsEmpty();
   2213     ProcessMarkingDeque();
   2214   }
   2215 }
   2216 
   2217 
   2218 void MarkCompactCollector::ProcessTopOptimizedFrame(ObjectVisitor* visitor) {
   2219   for (StackFrameIterator it(isolate(), isolate()->thread_local_top());
   2220        !it.done(); it.Advance()) {
   2221     if (it.frame()->type() == StackFrame::JAVA_SCRIPT) {
   2222       return;
   2223     }
   2224     if (it.frame()->type() == StackFrame::OPTIMIZED) {
   2225       Code* code = it.frame()->LookupCode();
   2226       if (!code->CanDeoptAt(it.frame()->pc())) {
   2227         code->CodeIterateBody(visitor);
   2228       }
   2229       ProcessMarkingDeque();
   2230       return;
   2231     }
   2232   }
   2233 }
   2234 
   2235 
   2236 void MarkCompactCollector::MarkLiveObjects() {
   2237   GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_MARK);
   2238   double start_time = 0.0;
   2239   if (FLAG_print_cumulative_gc_stat) {
   2240     start_time = base::OS::TimeCurrentMillis();
   2241   }
   2242   // The recursive GC marker detects when it is nearing stack overflow,
   2243   // and switches to a different marking system.  JS interrupts interfere
   2244   // with the C stack limit check.
   2245   PostponeInterruptsScope postpone(isolate());
   2246 
   2247   bool incremental_marking_overflowed = false;
   2248   IncrementalMarking* incremental_marking = heap_->incremental_marking();
   2249   if (was_marked_incrementally_) {
   2250     // Finalize the incremental marking and check whether we had an overflow.
   2251     // Both markers use grey color to mark overflowed objects so
   2252     // non-incremental marker can deal with them as if overflow
   2253     // occured during normal marking.
   2254     // But incremental marker uses a separate marking deque
   2255     // so we have to explicitly copy its overflow state.
   2256     incremental_marking->Finalize();
   2257     incremental_marking_overflowed =
   2258         incremental_marking->marking_deque()->overflowed();
   2259     incremental_marking->marking_deque()->ClearOverflowed();
   2260   } else {
   2261     // Abort any pending incremental activities e.g. incremental sweeping.
   2262     incremental_marking->Abort();
   2263   }
   2264 
   2265 #ifdef DEBUG
   2266   DCHECK(state_ == PREPARE_GC);
   2267   state_ = MARK_LIVE_OBJECTS;
   2268 #endif
   2269   // The to space contains live objects, a page in from space is used as a
   2270   // marking stack.
   2271   Address marking_deque_start = heap()->new_space()->FromSpacePageLow();
   2272   Address marking_deque_end = heap()->new_space()->FromSpacePageHigh();
   2273   if (FLAG_force_marking_deque_overflows) {
   2274     marking_deque_end = marking_deque_start + 64 * kPointerSize;
   2275   }
   2276   marking_deque_.Initialize(marking_deque_start, marking_deque_end);
   2277   DCHECK(!marking_deque_.overflowed());
   2278 
   2279   if (incremental_marking_overflowed) {
   2280     // There are overflowed objects left in the heap after incremental marking.
   2281     marking_deque_.SetOverflowed();
   2282   }
   2283 
   2284   PrepareForCodeFlushing();
   2285 
   2286   if (was_marked_incrementally_) {
   2287     // There is no write barrier on cells so we have to scan them now at the end
   2288     // of the incremental marking.
   2289     {
   2290       HeapObjectIterator cell_iterator(heap()->cell_space());
   2291       HeapObject* cell;
   2292       while ((cell = cell_iterator.Next()) != NULL) {
   2293         DCHECK(cell->IsCell());
   2294         if (IsMarked(cell)) {
   2295           int offset = Cell::kValueOffset;
   2296           MarkCompactMarkingVisitor::VisitPointer(
   2297               heap(), reinterpret_cast<Object**>(cell->address() + offset));
   2298         }
   2299       }
   2300     }
   2301     {
   2302       HeapObjectIterator js_global_property_cell_iterator(
   2303           heap()->property_cell_space());
   2304       HeapObject* cell;
   2305       while ((cell = js_global_property_cell_iterator.Next()) != NULL) {
   2306         DCHECK(cell->IsPropertyCell());
   2307         if (IsMarked(cell)) {
   2308           MarkCompactMarkingVisitor::VisitPropertyCell(cell->map(), cell);
   2309         }
   2310       }
   2311     }
   2312   }
   2313 
   2314   RootMarkingVisitor root_visitor(heap());
   2315   MarkRoots(&root_visitor);
   2316 
   2317   ProcessTopOptimizedFrame(&root_visitor);
   2318 
   2319   // The objects reachable from the roots are marked, yet unreachable
   2320   // objects are unmarked.  Mark objects reachable due to host
   2321   // application specific logic or through Harmony weak maps.
   2322   ProcessEphemeralMarking(&root_visitor);
   2323 
   2324   // The objects reachable from the roots, weak maps or object groups
   2325   // are marked, yet unreachable objects are unmarked.  Mark objects
   2326   // reachable only from weak global handles.
   2327   //
   2328   // First we identify nonlive weak handles and mark them as pending
   2329   // destruction.
   2330   heap()->isolate()->global_handles()->IdentifyWeakHandles(
   2331       &IsUnmarkedHeapObject);
   2332   // Then we mark the objects and process the transitive closure.
   2333   heap()->isolate()->global_handles()->IterateWeakRoots(&root_visitor);
   2334   while (marking_deque_.overflowed()) {
   2335     RefillMarkingDeque();
   2336     EmptyMarkingDeque();
   2337   }
   2338 
   2339   // Repeat host application specific and Harmony weak maps marking to
   2340   // mark unmarked objects reachable from the weak roots.
   2341   ProcessEphemeralMarking(&root_visitor);
   2342 
   2343   AfterMarking();
   2344 
   2345   if (FLAG_print_cumulative_gc_stat) {
   2346     heap_->tracer()->AddMarkingTime(base::OS::TimeCurrentMillis() - start_time);
   2347   }
   2348 }
   2349 
   2350 
   2351 void MarkCompactCollector::AfterMarking() {
   2352   // Object literal map caches reference strings (cache keys) and maps
   2353   // (cache values). At this point still useful maps have already been
   2354   // marked. Mark the keys for the alive values before we process the
   2355   // string table.
   2356   ProcessMapCaches();
   2357 
   2358   // Prune the string table removing all strings only pointed to by the
   2359   // string table.  Cannot use string_table() here because the string
   2360   // table is marked.
   2361   StringTable* string_table = heap()->string_table();
   2362   InternalizedStringTableCleaner internalized_visitor(heap());
   2363   string_table->IterateElements(&internalized_visitor);
   2364   string_table->ElementsRemoved(internalized_visitor.PointersRemoved());
   2365 
   2366   ExternalStringTableCleaner external_visitor(heap());
   2367   heap()->external_string_table_.Iterate(&external_visitor);
   2368   heap()->external_string_table_.CleanUp();
   2369 
   2370   // Process the weak references.
   2371   MarkCompactWeakObjectRetainer mark_compact_object_retainer;
   2372   heap()->ProcessWeakReferences(&mark_compact_object_retainer);
   2373 
   2374   // Remove object groups after marking phase.
   2375   heap()->isolate()->global_handles()->RemoveObjectGroups();
   2376   heap()->isolate()->global_handles()->RemoveImplicitRefGroups();
   2377 
   2378   // Flush code from collected candidates.
   2379   if (is_code_flushing_enabled()) {
   2380     code_flusher_->ProcessCandidates();
   2381     // If incremental marker does not support code flushing, we need to
   2382     // disable it before incremental marking steps for next cycle.
   2383     if (FLAG_flush_code && !FLAG_flush_code_incrementally) {
   2384       EnableCodeFlushing(false);
   2385     }
   2386   }
   2387 
   2388   if (FLAG_track_gc_object_stats) {
   2389     heap()->CheckpointObjectStats();
   2390   }
   2391 }
   2392 
   2393 
   2394 void MarkCompactCollector::ProcessMapCaches() {
   2395   Object* raw_context = heap()->native_contexts_list();
   2396   while (raw_context != heap()->undefined_value()) {
   2397     Context* context = reinterpret_cast<Context*>(raw_context);
   2398     if (IsMarked(context)) {
   2399       HeapObject* raw_map_cache =
   2400           HeapObject::cast(context->get(Context::MAP_CACHE_INDEX));
   2401       // A map cache may be reachable from the stack. In this case
   2402       // it's already transitively marked and it's too late to clean
   2403       // up its parts.
   2404       if (!IsMarked(raw_map_cache) &&
   2405           raw_map_cache != heap()->undefined_value()) {
   2406         MapCache* map_cache = reinterpret_cast<MapCache*>(raw_map_cache);
   2407         int existing_elements = map_cache->NumberOfElements();
   2408         int used_elements = 0;
   2409         for (int i = MapCache::kElementsStartIndex; i < map_cache->length();
   2410              i += MapCache::kEntrySize) {
   2411           Object* raw_key = map_cache->get(i);
   2412           if (raw_key == heap()->undefined_value() ||
   2413               raw_key == heap()->the_hole_value())
   2414             continue;
   2415           STATIC_ASSERT(MapCache::kEntrySize == 2);
   2416           Object* raw_map = map_cache->get(i + 1);
   2417           if (raw_map->IsHeapObject() && IsMarked(raw_map)) {
   2418             ++used_elements;
   2419           } else {
   2420             // Delete useless entries with unmarked maps.
   2421             DCHECK(raw_map->IsMap());
   2422             map_cache->set_the_hole(i);
   2423             map_cache->set_the_hole(i + 1);
   2424           }
   2425         }
   2426         if (used_elements == 0) {
   2427           context->set(Context::MAP_CACHE_INDEX, heap()->undefined_value());
   2428         } else {
   2429           // Note: we don't actually shrink the cache here to avoid
   2430           // extra complexity during GC. We rely on subsequent cache
   2431           // usages (EnsureCapacity) to do this.
   2432           map_cache->ElementsRemoved(existing_elements - used_elements);
   2433           MarkBit map_cache_markbit = Marking::MarkBitFrom(map_cache);
   2434           MarkObject(map_cache, map_cache_markbit);
   2435         }
   2436       }
   2437     }
   2438     // Move to next element in the list.
   2439     raw_context = context->get(Context::NEXT_CONTEXT_LINK);
   2440   }
   2441   ProcessMarkingDeque();
   2442 }
   2443 
   2444 
   2445 void MarkCompactCollector::ClearNonLiveReferences() {
   2446   // Iterate over the map space, setting map transitions that go from
   2447   // a marked map to an unmarked map to null transitions.  This action
   2448   // is carried out only on maps of JSObjects and related subtypes.
   2449   HeapObjectIterator map_iterator(heap()->map_space());
   2450   for (HeapObject* obj = map_iterator.Next(); obj != NULL;
   2451        obj = map_iterator.Next()) {
   2452     Map* map = Map::cast(obj);
   2453 
   2454     if (!map->CanTransition()) continue;
   2455 
   2456     MarkBit map_mark = Marking::MarkBitFrom(map);
   2457     ClearNonLivePrototypeTransitions(map);
   2458     ClearNonLiveMapTransitions(map, map_mark);
   2459 
   2460     if (map_mark.Get()) {
   2461       ClearNonLiveDependentCode(map->dependent_code());
   2462     } else {
   2463       ClearDependentCode(map->dependent_code());
   2464       map->set_dependent_code(DependentCode::cast(heap()->empty_fixed_array()));
   2465     }
   2466   }
   2467 
   2468   // Iterate over property cell space, removing dependent code that is not
   2469   // otherwise kept alive by strong references.
   2470   HeapObjectIterator cell_iterator(heap_->property_cell_space());
   2471   for (HeapObject* cell = cell_iterator.Next(); cell != NULL;
   2472        cell = cell_iterator.Next()) {
   2473     if (IsMarked(cell)) {
   2474       ClearNonLiveDependentCode(PropertyCell::cast(cell)->dependent_code());
   2475     }
   2476   }
   2477 
   2478   // Iterate over allocation sites, removing dependent code that is not
   2479   // otherwise kept alive by strong references.
   2480   Object* undefined = heap()->undefined_value();
   2481   for (Object* site = heap()->allocation_sites_list(); site != undefined;
   2482        site = AllocationSite::cast(site)->weak_next()) {
   2483     if (IsMarked(site)) {
   2484       ClearNonLiveDependentCode(AllocationSite::cast(site)->dependent_code());
   2485     }
   2486   }
   2487 
   2488   if (heap_->weak_object_to_code_table()->IsHashTable()) {
   2489     WeakHashTable* table =
   2490         WeakHashTable::cast(heap_->weak_object_to_code_table());
   2491     uint32_t capacity = table->Capacity();
   2492     for (uint32_t i = 0; i < capacity; i++) {
   2493       uint32_t key_index = table->EntryToIndex(i);
   2494       Object* key = table->get(key_index);
   2495       if (!table->IsKey(key)) continue;
   2496       uint32_t value_index = table->EntryToValueIndex(i);
   2497       Object* value = table->get(value_index);
   2498       if (key->IsCell() && !IsMarked(key)) {
   2499         Cell* cell = Cell::cast(key);
   2500         Object* object = cell->value();
   2501         if (IsMarked(object)) {
   2502           MarkBit mark = Marking::MarkBitFrom(cell);
   2503           SetMark(cell, mark);
   2504           Object** value_slot = HeapObject::RawField(cell, Cell::kValueOffset);
   2505           RecordSlot(value_slot, value_slot, *value_slot);
   2506         }
   2507       }
   2508       if (IsMarked(key)) {
   2509         if (!IsMarked(value)) {
   2510           HeapObject* obj = HeapObject::cast(value);
   2511           MarkBit mark = Marking::MarkBitFrom(obj);
   2512           SetMark(obj, mark);
   2513         }
   2514         ClearNonLiveDependentCode(DependentCode::cast(value));
   2515       } else {
   2516         ClearDependentCode(DependentCode::cast(value));
   2517         table->set(key_index, heap_->the_hole_value());
   2518         table->set(value_index, heap_->the_hole_value());
   2519         table->ElementRemoved();
   2520       }
   2521     }
   2522   }
   2523 }
   2524 
   2525 
   2526 void MarkCompactCollector::ClearNonLivePrototypeTransitions(Map* map) {
   2527   int number_of_transitions = map->NumberOfProtoTransitions();
   2528   FixedArray* prototype_transitions = map->GetPrototypeTransitions();
   2529 
   2530   int new_number_of_transitions = 0;
   2531   const int header = Map::kProtoTransitionHeaderSize;
   2532   const int proto_offset = header + Map::kProtoTransitionPrototypeOffset;
   2533   const int map_offset = header + Map::kProtoTransitionMapOffset;
   2534   const int step = Map::kProtoTransitionElementsPerEntry;
   2535   for (int i = 0; i < number_of_transitions; i++) {
   2536     Object* prototype = prototype_transitions->get(proto_offset + i * step);
   2537     Object* cached_map = prototype_transitions->get(map_offset + i * step);
   2538     if (IsMarked(prototype) && IsMarked(cached_map)) {
   2539       DCHECK(!prototype->IsUndefined());
   2540       int proto_index = proto_offset + new_number_of_transitions * step;
   2541       int map_index = map_offset + new_number_of_transitions * step;
   2542       if (new_number_of_transitions != i) {
   2543         prototype_transitions->set(proto_index, prototype,
   2544                                    UPDATE_WRITE_BARRIER);
   2545         prototype_transitions->set(map_index, cached_map, SKIP_WRITE_BARRIER);
   2546       }
   2547       Object** slot = prototype_transitions->RawFieldOfElementAt(proto_index);
   2548       RecordSlot(slot, slot, prototype);
   2549       new_number_of_transitions++;
   2550     }
   2551   }
   2552 
   2553   if (new_number_of_transitions != number_of_transitions) {
   2554     map->SetNumberOfProtoTransitions(new_number_of_transitions);
   2555   }
   2556 
   2557   // Fill slots that became free with undefined value.
   2558   for (int i = new_number_of_transitions * step;
   2559        i < number_of_transitions * step; i++) {
   2560     prototype_transitions->set_undefined(header + i);
   2561   }
   2562 }
   2563 
   2564 
   2565 void MarkCompactCollector::ClearNonLiveMapTransitions(Map* map,
   2566                                                       MarkBit map_mark) {
   2567   Object* potential_parent = map->GetBackPointer();
   2568   if (!potential_parent->IsMap()) return;
   2569   Map* parent = Map::cast(potential_parent);
   2570 
   2571   // Follow back pointer, check whether we are dealing with a map transition
   2572   // from a live map to a dead path and in case clear transitions of parent.
   2573   bool current_is_alive = map_mark.Get();
   2574   bool parent_is_alive = Marking::MarkBitFrom(parent).Get();
   2575   if (!current_is_alive && parent_is_alive) {
   2576     ClearMapTransitions(parent);
   2577   }
   2578 }
   2579 
   2580 
   2581 // Clear a possible back pointer in case the transition leads to a dead map.
   2582 // Return true in case a back pointer has been cleared and false otherwise.
   2583 bool MarkCompactCollector::ClearMapBackPointer(Map* target) {
   2584   if (Marking::MarkBitFrom(target).Get()) return false;
   2585   target->SetBackPointer(heap_->undefined_value(), SKIP_WRITE_BARRIER);
   2586   return true;
   2587 }
   2588 
   2589 
   2590 void MarkCompactCollector::ClearMapTransitions(Map* map) {
   2591   // If there are no transitions to be cleared, return.
   2592   // TODO(verwaest) Should be an assert, otherwise back pointers are not
   2593   // properly cleared.
   2594   if (!map->HasTransitionArray()) return;
   2595 
   2596   TransitionArray* t = map->transitions();
   2597 
   2598   int transition_index = 0;
   2599 
   2600   DescriptorArray* descriptors = map->instance_descriptors();
   2601   bool descriptors_owner_died = false;
   2602 
   2603   // Compact all live descriptors to the left.
   2604   for (int i = 0; i < t->number_of_transitions(); ++i) {
   2605     Map* target = t->GetTarget(i);
   2606     if (ClearMapBackPointer(target)) {
   2607       if (target->instance_descriptors() == descriptors) {
   2608         descriptors_owner_died = true;
   2609       }
   2610     } else {
   2611       if (i != transition_index) {
   2612         Name* key = t->GetKey(i);
   2613         t->SetKey(transition_index, key);
   2614         Object** key_slot = t->GetKeySlot(transition_index);
   2615         RecordSlot(key_slot, key_slot, key);
   2616         // Target slots do not need to be recorded since maps are not compacted.
   2617         t->SetTarget(transition_index, t->GetTarget(i));
   2618       }
   2619       transition_index++;
   2620     }
   2621   }
   2622 
   2623   // If there are no transitions to be cleared, return.
   2624   // TODO(verwaest) Should be an assert, otherwise back pointers are not
   2625   // properly cleared.
   2626   if (transition_index == t->number_of_transitions()) return;
   2627 
   2628   int number_of_own_descriptors = map->NumberOfOwnDescriptors();
   2629 
   2630   if (descriptors_owner_died) {
   2631     if (number_of_own_descriptors > 0) {
   2632       TrimDescriptorArray(map, descriptors, number_of_own_descriptors);
   2633       DCHECK(descriptors->number_of_descriptors() == number_of_own_descriptors);
   2634       map->set_owns_descriptors(true);
   2635     } else {
   2636       DCHECK(descriptors == heap_->empty_descriptor_array());
   2637     }
   2638   }
   2639 
   2640   // Note that we never eliminate a transition array, though we might right-trim
   2641   // such that number_of_transitions() == 0. If this assumption changes,
   2642   // TransitionArray::CopyInsert() will need to deal with the case that a
   2643   // transition array disappeared during GC.
   2644   int trim = t->number_of_transitions() - transition_index;
   2645   if (trim > 0) {
   2646     heap_->RightTrimFixedArray<Heap::FROM_GC>(
   2647         t, t->IsSimpleTransition() ? trim
   2648                                    : trim * TransitionArray::kTransitionSize);
   2649   }
   2650   DCHECK(map->HasTransitionArray());
   2651 }
   2652 
   2653 
   2654 void MarkCompactCollector::TrimDescriptorArray(Map* map,
   2655                                                DescriptorArray* descriptors,
   2656                                                int number_of_own_descriptors) {
   2657   int number_of_descriptors = descriptors->number_of_descriptors_storage();
   2658   int to_trim = number_of_descriptors - number_of_own_descriptors;
   2659   if (to_trim == 0) return;
   2660 
   2661   heap_->RightTrimFixedArray<Heap::FROM_GC>(
   2662       descriptors, to_trim * DescriptorArray::kDescriptorSize);
   2663   descriptors->SetNumberOfDescriptors(number_of_own_descriptors);
   2664 
   2665   if (descriptors->HasEnumCache()) TrimEnumCache(map, descriptors);
   2666   descriptors->Sort();
   2667 }
   2668 
   2669 
   2670 void MarkCompactCollector::TrimEnumCache(Map* map,
   2671                                          DescriptorArray* descriptors) {
   2672   int live_enum = map->EnumLength();
   2673   if (live_enum == kInvalidEnumCacheSentinel) {
   2674     live_enum = map->NumberOfDescribedProperties(OWN_DESCRIPTORS, DONT_ENUM);
   2675   }
   2676   if (live_enum == 0) return descriptors->ClearEnumCache();
   2677 
   2678   FixedArray* enum_cache = descriptors->GetEnumCache();
   2679 
   2680   int to_trim = enum_cache->length() - live_enum;
   2681   if (to_trim <= 0) return;
   2682   heap_->RightTrimFixedArray<Heap::FROM_GC>(descriptors->GetEnumCache(),
   2683                                             to_trim);
   2684 
   2685   if (!descriptors->HasEnumIndicesCache()) return;
   2686   FixedArray* enum_indices_cache = descriptors->GetEnumIndicesCache();
   2687   heap_->RightTrimFixedArray<Heap::FROM_GC>(enum_indices_cache, to_trim);
   2688 }
   2689 
   2690 
   2691 void MarkCompactCollector::ClearDependentICList(Object* head) {
   2692   Object* current = head;
   2693   Object* undefined = heap()->undefined_value();
   2694   while (current != undefined) {
   2695     Code* code = Code::cast(current);
   2696     if (IsMarked(code)) {
   2697       DCHECK(code->is_weak_stub());
   2698       IC::InvalidateMaps(code);
   2699     }
   2700     current = code->next_code_link();
   2701     code->set_next_code_link(undefined);
   2702   }
   2703 }
   2704 
   2705 
   2706 void MarkCompactCollector::ClearDependentCode(DependentCode* entries) {
   2707   DisallowHeapAllocation no_allocation;
   2708   DependentCode::GroupStartIndexes starts(entries);
   2709   int number_of_entries = starts.number_of_entries();
   2710   if (number_of_entries == 0) return;
   2711   int g = DependentCode::kWeakICGroup;
   2712   if (starts.at(g) != starts.at(g + 1)) {
   2713     int i = starts.at(g);
   2714     DCHECK(i + 1 == starts.at(g + 1));
   2715     Object* head = entries->object_at(i);
   2716     ClearDependentICList(head);
   2717   }
   2718   g = DependentCode::kWeakCodeGroup;
   2719   for (int i = starts.at(g); i < starts.at(g + 1); i++) {
   2720     // If the entry is compilation info then the map must be alive,
   2721     // and ClearDependentCode shouldn't be called.
   2722     DCHECK(entries->is_code_at(i));
   2723     Code* code = entries->code_at(i);
   2724     if (IsMarked(code) && !code->marked_for_deoptimization()) {
   2725       DependentCode::SetMarkedForDeoptimization(
   2726           code, static_cast<DependentCode::DependencyGroup>(g));
   2727       code->InvalidateEmbeddedObjects();
   2728       have_code_to_deoptimize_ = true;
   2729     }
   2730   }
   2731   for (int i = 0; i < number_of_entries; i++) {
   2732     entries->clear_at(i);
   2733   }
   2734 }
   2735 
   2736 
   2737 int MarkCompactCollector::ClearNonLiveDependentCodeInGroup(
   2738     DependentCode* entries, int group, int start, int end, int new_start) {
   2739   int survived = 0;
   2740   if (group == DependentCode::kWeakICGroup) {
   2741     // Dependent weak IC stubs form a linked list and only the head is stored
   2742     // in the dependent code array.
   2743     if (start != end) {
   2744       DCHECK(start + 1 == end);
   2745       Object* old_head = entries->object_at(start);
   2746       MarkCompactWeakObjectRetainer retainer;
   2747       Object* head = VisitWeakList<Code>(heap(), old_head, &retainer);
   2748       entries->set_object_at(new_start, head);
   2749       Object** slot = entries->slot_at(new_start);
   2750       RecordSlot(slot, slot, head);
   2751       // We do not compact this group even if the head is undefined,
   2752       // more dependent ICs are likely to be added later.
   2753       survived = 1;
   2754     }
   2755   } else {
   2756     for (int i = start; i < end; i++) {
   2757       Object* obj = entries->object_at(i);
   2758       DCHECK(obj->IsCode() || IsMarked(obj));
   2759       if (IsMarked(obj) &&
   2760           (!obj->IsCode() || !WillBeDeoptimized(Code::cast(obj)))) {
   2761         if (new_start + survived != i) {
   2762           entries->set_object_at(new_start + survived, obj);
   2763         }
   2764         Object** slot = entries->slot_at(new_start + survived);
   2765         RecordSlot(slot, slot, obj);
   2766         survived++;
   2767       }
   2768     }
   2769   }
   2770   entries->set_number_of_entries(
   2771       static_cast<DependentCode::DependencyGroup>(group), survived);
   2772   return survived;
   2773 }
   2774 
   2775 
   2776 void MarkCompactCollector::ClearNonLiveDependentCode(DependentCode* entries) {
   2777   DisallowHeapAllocation no_allocation;
   2778   DependentCode::GroupStartIndexes starts(entries);
   2779   int number_of_entries = starts.number_of_entries();
   2780   if (number_of_entries == 0) return;
   2781   int new_number_of_entries = 0;
   2782   // Go through all groups, remove dead codes and compact.
   2783   for (int g = 0; g < DependentCode::kGroupCount; g++) {
   2784     int survived = ClearNonLiveDependentCodeInGroup(
   2785         entries, g, starts.at(g), starts.at(g + 1), new_number_of_entries);
   2786     new_number_of_entries += survived;
   2787   }
   2788   for (int i = new_number_of_entries; i < number_of_entries; i++) {
   2789     entries->clear_at(i);
   2790   }
   2791 }
   2792 
   2793 
   2794 void MarkCompactCollector::ProcessWeakCollections() {
   2795   GCTracer::Scope gc_scope(heap()->tracer(),
   2796                            GCTracer::Scope::MC_WEAKCOLLECTION_PROCESS);
   2797   Object* weak_collection_obj = heap()->encountered_weak_collections();
   2798   while (weak_collection_obj != Smi::FromInt(0)) {
   2799     JSWeakCollection* weak_collection =
   2800         reinterpret_cast<JSWeakCollection*>(weak_collection_obj);
   2801     DCHECK(MarkCompactCollector::IsMarked(weak_collection));
   2802     if (weak_collection->table()->IsHashTable()) {
   2803       ObjectHashTable* table = ObjectHashTable::cast(weak_collection->table());
   2804       Object** anchor = reinterpret_cast<Object**>(table->address());
   2805       for (int i = 0; i < table->Capacity(); i++) {
   2806         if (MarkCompactCollector::IsMarked(HeapObject::cast(table->KeyAt(i)))) {
   2807           Object** key_slot =
   2808               table->RawFieldOfElementAt(ObjectHashTable::EntryToIndex(i));
   2809           RecordSlot(anchor, key_slot, *key_slot);
   2810           Object** value_slot =
   2811               table->RawFieldOfElementAt(ObjectHashTable::EntryToValueIndex(i));
   2812           MarkCompactMarkingVisitor::MarkObjectByPointer(this, anchor,
   2813                                                          value_slot);
   2814         }
   2815       }
   2816     }
   2817     weak_collection_obj = weak_collection->next();
   2818   }
   2819 }
   2820 
   2821 
   2822 void MarkCompactCollector::ClearWeakCollections() {
   2823   GCTracer::Scope gc_scope(heap()->tracer(),
   2824                            GCTracer::Scope::MC_WEAKCOLLECTION_CLEAR);
   2825   Object* weak_collection_obj = heap()->encountered_weak_collections();
   2826   while (weak_collection_obj != Smi::FromInt(0)) {
   2827     JSWeakCollection* weak_collection =
   2828         reinterpret_cast<JSWeakCollection*>(weak_collection_obj);
   2829     DCHECK(MarkCompactCollector::IsMarked(weak_collection));
   2830     if (weak_collection->table()->IsHashTable()) {
   2831       ObjectHashTable* table = ObjectHashTable::cast(weak_collection->table());
   2832       for (int i = 0; i < table->Capacity(); i++) {
   2833         HeapObject* key = HeapObject::cast(table->KeyAt(i));
   2834         if (!MarkCompactCollector::IsMarked(key)) {
   2835           table->RemoveEntry(i);
   2836         }
   2837       }
   2838     }
   2839     weak_collection_obj = weak_collection->next();
   2840     weak_collection->set_next(heap()->undefined_value());
   2841   }
   2842   heap()->set_encountered_weak_collections(Smi::FromInt(0));
   2843 }
   2844 
   2845 
   2846 void MarkCompactCollector::AbortWeakCollections() {
   2847   GCTracer::Scope gc_scope(heap()->tracer(),
   2848                            GCTracer::Scope::MC_WEAKCOLLECTION_ABORT);
   2849   Object* weak_collection_obj = heap()->encountered_weak_collections();
   2850   while (weak_collection_obj != Smi::FromInt(0)) {
   2851     JSWeakCollection* weak_collection =
   2852         reinterpret_cast<JSWeakCollection*>(weak_collection_obj);
   2853     weak_collection_obj = weak_collection->next();
   2854     weak_collection->set_next(heap()->undefined_value());
   2855   }
   2856   heap()->set_encountered_weak_collections(Smi::FromInt(0));
   2857 }
   2858 
   2859 
   2860 void MarkCompactCollector::RecordMigratedSlot(Object* value, Address slot) {
   2861   if (heap_->InNewSpace(value)) {
   2862     heap_->store_buffer()->Mark(slot);
   2863   } else if (value->IsHeapObject() && IsOnEvacuationCandidate(value)) {
   2864     SlotsBuffer::AddTo(&slots_buffer_allocator_, &migration_slots_buffer_,
   2865                        reinterpret_cast<Object**>(slot),
   2866                        SlotsBuffer::IGNORE_OVERFLOW);
   2867   }
   2868 }
   2869 
   2870 
   2871 // We scavange new space simultaneously with sweeping. This is done in two
   2872 // passes.
   2873 //
   2874 // The first pass migrates all alive objects from one semispace to another or
   2875 // promotes them to old space.  Forwarding address is written directly into
   2876 // first word of object without any encoding.  If object is dead we write
   2877 // NULL as a forwarding address.
   2878 //
   2879 // The second pass updates pointers to new space in all spaces.  It is possible
   2880 // to encounter pointers to dead new space objects during traversal of pointers
   2881 // to new space.  We should clear them to avoid encountering them during next
   2882 // pointer iteration.  This is an issue if the store buffer overflows and we
   2883 // have to scan the entire old space, including dead objects, looking for
   2884 // pointers to new space.
   2885 void MarkCompactCollector::MigrateObject(HeapObject* dst, HeapObject* src,
   2886                                          int size, AllocationSpace dest) {
   2887   Address dst_addr = dst->address();
   2888   Address src_addr = src->address();
   2889   DCHECK(heap()->AllowedToBeMigrated(src, dest));
   2890   DCHECK(dest != LO_SPACE && size <= Page::kMaxRegularHeapObjectSize);
   2891   if (dest == OLD_POINTER_SPACE) {
   2892     Address src_slot = src_addr;
   2893     Address dst_slot = dst_addr;
   2894     DCHECK(IsAligned(size, kPointerSize));
   2895 
   2896     for (int remaining = size / kPointerSize; remaining > 0; remaining--) {
   2897       Object* value = Memory::Object_at(src_slot);
   2898 
   2899       Memory::Object_at(dst_slot) = value;
   2900 
   2901       if (!src->MayContainRawValues()) {
   2902         RecordMigratedSlot(value, dst_slot);
   2903       }
   2904 
   2905       src_slot += kPointerSize;
   2906       dst_slot += kPointerSize;
   2907     }
   2908 
   2909     if (compacting_ && dst->IsJSFunction()) {
   2910       Address code_entry_slot = dst_addr + JSFunction::kCodeEntryOffset;
   2911       Address code_entry = Memory::Address_at(code_entry_slot);
   2912 
   2913       if (Page::FromAddress(code_entry)->IsEvacuationCandidate()) {
   2914         SlotsBuffer::AddTo(&slots_buffer_allocator_, &migration_slots_buffer_,
   2915                            SlotsBuffer::CODE_ENTRY_SLOT, code_entry_slot,
   2916                            SlotsBuffer::IGNORE_OVERFLOW);
   2917       }
   2918     } else if (dst->IsConstantPoolArray()) {
   2919       // We special case ConstantPoolArrays since they could contain integers
   2920       // value entries which look like tagged pointers.
   2921       // TODO(mstarzinger): restructure this code to avoid this special-casing.
   2922       ConstantPoolArray* array = ConstantPoolArray::cast(dst);
   2923       ConstantPoolArray::Iterator code_iter(array, ConstantPoolArray::CODE_PTR);
   2924       while (!code_iter.is_finished()) {
   2925         Address code_entry_slot =
   2926             dst_addr + array->OffsetOfElementAt(code_iter.next_index());
   2927         Address code_entry = Memory::Address_at(code_entry_slot);
   2928 
   2929         if (Page::FromAddress(code_entry)->IsEvacuationCandidate()) {
   2930           SlotsBuffer::AddTo(&slots_buffer_allocator_, &migration_slots_buffer_,
   2931                              SlotsBuffer::CODE_ENTRY_SLOT, code_entry_slot,
   2932                              SlotsBuffer::IGNORE_OVERFLOW);
   2933         }
   2934       }
   2935       ConstantPoolArray::Iterator heap_iter(array, ConstantPoolArray::HEAP_PTR);
   2936       while (!heap_iter.is_finished()) {
   2937         Address heap_slot =
   2938             dst_addr + array->OffsetOfElementAt(heap_iter.next_index());
   2939         Object* value = Memory::Object_at(heap_slot);
   2940         RecordMigratedSlot(value, heap_slot);
   2941       }
   2942     }
   2943   } else if (dest == CODE_SPACE) {
   2944     PROFILE(isolate(), CodeMoveEvent(src_addr, dst_addr));
   2945     heap()->MoveBlock(dst_addr, src_addr, size);
   2946     SlotsBuffer::AddTo(&slots_buffer_allocator_, &migration_slots_buffer_,
   2947                        SlotsBuffer::RELOCATED_CODE_OBJECT, dst_addr,
   2948                        SlotsBuffer::IGNORE_OVERFLOW);
   2949     Code::cast(dst)->Relocate(dst_addr - src_addr);
   2950   } else {
   2951     DCHECK(dest == OLD_DATA_SPACE || dest == NEW_SPACE);
   2952     heap()->MoveBlock(dst_addr, src_addr, size);
   2953   }
   2954   heap()->OnMoveEvent(dst, src, size);
   2955   Memory::Address_at(src_addr) = dst_addr;
   2956 }
   2957 
   2958 
   2959 // Visitor for updating pointers from live objects in old spaces to new space.
   2960 // It does not expect to encounter pointers to dead objects.
   2961 class PointersUpdatingVisitor : public ObjectVisitor {
   2962  public:
   2963   explicit PointersUpdatingVisitor(Heap* heap) : heap_(heap) {}
   2964 
   2965   void VisitPointer(Object** p) { UpdatePointer(p); }
   2966 
   2967   void VisitPointers(Object** start, Object** end) {
   2968     for (Object** p = start; p < end; p++) UpdatePointer(p);
   2969   }
   2970 
   2971   void VisitEmbeddedPointer(RelocInfo* rinfo) {
   2972     DCHECK(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT);
   2973     Object* target = rinfo->target_object();
   2974     Object* old_target = target;
   2975     VisitPointer(&target);
   2976     // Avoid unnecessary changes that might unnecessary flush the instruction
   2977     // cache.
   2978     if (target != old_target) {
   2979       rinfo->set_target_object(target);
   2980     }
   2981   }
   2982 
   2983   void VisitCodeTarget(RelocInfo* rinfo) {
   2984     DCHECK(RelocInfo::IsCodeTarget(rinfo->rmode()));
   2985     Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
   2986     Object* old_target = target;
   2987     VisitPointer(&target);
   2988     if (target != old_target) {
   2989       rinfo->set_target_address(Code::cast(target)->instruction_start());
   2990     }
   2991   }
   2992 
   2993   void VisitCodeAgeSequence(RelocInfo* rinfo) {
   2994     DCHECK(RelocInfo::IsCodeAgeSequence(rinfo->rmode()));
   2995     Object* stub = rinfo->code_age_stub();
   2996     DCHECK(stub != NULL);
   2997     VisitPointer(&stub);
   2998     if (stub != rinfo->code_age_stub()) {
   2999       rinfo->set_code_age_stub(Code::cast(stub));
   3000     }
   3001   }
   3002 
   3003   void VisitDebugTarget(RelocInfo* rinfo) {
   3004     DCHECK((RelocInfo::IsJSReturn(rinfo->rmode()) &&
   3005             rinfo->IsPatchedReturnSequence()) ||
   3006            (RelocInfo::IsDebugBreakSlot(rinfo->rmode()) &&
   3007             rinfo->IsPatchedDebugBreakSlotSequence()));
   3008     Object* target = Code::GetCodeFromTargetAddress(rinfo->call_address());
   3009     VisitPointer(&target);
   3010     rinfo->set_call_address(Code::cast(target)->instruction_start());
   3011   }
   3012 
   3013   static inline void UpdateSlot(Heap* heap, Object** slot) {
   3014     Object* obj = *slot;
   3015 
   3016     if (!obj->IsHeapObject()) return;
   3017 
   3018     HeapObject* heap_obj = HeapObject::cast(obj);
   3019 
   3020     MapWord map_word = heap_obj->map_word();
   3021     if (map_word.IsForwardingAddress()) {
   3022       DCHECK(heap->InFromSpace(heap_obj) ||
   3023              MarkCompactCollector::IsOnEvacuationCandidate(heap_obj));
   3024       HeapObject* target = map_word.ToForwardingAddress();
   3025       *slot = target;
   3026       DCHECK(!heap->InFromSpace(target) &&
   3027              !MarkCompactCollector::IsOnEvacuationCandidate(target));
   3028     }
   3029   }
   3030 
   3031  private:
   3032   inline void UpdatePointer(Object** p) { UpdateSlot(heap_, p); }
   3033 
   3034   Heap* heap_;
   3035 };
   3036 
   3037 
   3038 static void UpdatePointer(HeapObject** address, HeapObject* object) {
   3039   Address new_addr = Memory::Address_at(object->address());
   3040 
   3041   // The new space sweep will overwrite the map word of dead objects
   3042   // with NULL. In this case we do not need to transfer this entry to
   3043   // the store buffer which we are rebuilding.
   3044   // We perform the pointer update with a no barrier compare-and-swap. The
   3045   // compare and swap may fail in the case where the pointer update tries to
   3046   // update garbage memory which was concurrently accessed by the sweeper.
   3047   if (new_addr != NULL) {
   3048     base::NoBarrier_CompareAndSwap(
   3049         reinterpret_cast<base::AtomicWord*>(address),
   3050         reinterpret_cast<base::AtomicWord>(object),
   3051         reinterpret_cast<base::AtomicWord>(HeapObject::FromAddress(new_addr)));
   3052   }
   3053 }
   3054 
   3055 
   3056 static String* UpdateReferenceInExternalStringTableEntry(Heap* heap,
   3057                                                          Object** p) {
   3058   MapWord map_word = HeapObject::cast(*p)->map_word();
   3059 
   3060   if (map_word.IsForwardingAddress()) {
   3061     return String::cast(map_word.ToForwardingAddress());
   3062   }
   3063 
   3064   return String::cast(*p);
   3065 }
   3066 
   3067 
   3068 bool MarkCompactCollector::TryPromoteObject(HeapObject* object,
   3069                                             int object_size) {
   3070   DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
   3071 
   3072   OldSpace* target_space = heap()->TargetSpace(object);
   3073 
   3074   DCHECK(target_space == heap()->old_pointer_space() ||
   3075          target_space == heap()->old_data_space());
   3076   HeapObject* target;
   3077   AllocationResult allocation = target_space->AllocateRaw(object_size);
   3078   if (allocation.To(&target)) {
   3079     MigrateObject(target, object, object_size, target_space->identity());
   3080     heap()->IncrementPromotedObjectsSize(object_size);
   3081     return true;
   3082   }
   3083 
   3084   return false;
   3085 }
   3086 
   3087 
   3088 void MarkCompactCollector::EvacuateNewSpace() {
   3089   // There are soft limits in the allocation code, designed trigger a mark
   3090   // sweep collection by failing allocations.  But since we are already in
   3091   // a mark-sweep allocation, there is no sense in trying to trigger one.
   3092   AlwaysAllocateScope scope(isolate());
   3093 
   3094   NewSpace* new_space = heap()->new_space();
   3095 
   3096   // Store allocation range before flipping semispaces.
   3097   Address from_bottom = new_space->bottom();
   3098   Address from_top = new_space->top();
   3099 
   3100   // Flip the semispaces.  After flipping, to space is empty, from space has
   3101   // live objects.
   3102   new_space->Flip();
   3103   new_space->ResetAllocationInfo();
   3104 
   3105   int survivors_size = 0;
   3106 
   3107   // First pass: traverse all objects in inactive semispace, remove marks,
   3108   // migrate live objects and write forwarding addresses.  This stage puts
   3109   // new entries in the store buffer and may cause some pages to be marked
   3110   // scan-on-scavenge.
   3111   NewSpacePageIterator it(from_bottom, from_top);
   3112   while (it.has_next()) {
   3113     NewSpacePage* p = it.next();
   3114     survivors_size += DiscoverAndEvacuateBlackObjectsOnPage(new_space, p);
   3115   }
   3116 
   3117   heap_->IncrementYoungSurvivorsCounter(survivors_size);
   3118   new_space->set_age_mark(new_space->top());
   3119 }
   3120 
   3121 
   3122 void MarkCompactCollector::EvacuateLiveObjectsFromPage(Page* p) {
   3123   AlwaysAllocateScope always_allocate(isolate());
   3124   PagedSpace* space = static_cast<PagedSpace*>(p->owner());
   3125   DCHECK(p->IsEvacuationCandidate() && !p->WasSwept());
   3126   p->SetWasSwept();
   3127 
   3128   int offsets[16];
   3129 
   3130   for (MarkBitCellIterator it(p); !it.Done(); it.Advance()) {
   3131     Address cell_base = it.CurrentCellBase();
   3132     MarkBit::CellType* cell = it.CurrentCell();
   3133 
   3134     if (*cell == 0) continue;
   3135 
   3136     int live_objects = MarkWordToObjectStarts(*cell, offsets);
   3137     for (int i = 0; i < live_objects; i++) {
   3138       Address object_addr = cell_base + offsets[i] * kPointerSize;
   3139       HeapObject* object = HeapObject::FromAddress(object_addr);
   3140       DCHECK(Marking::IsBlack(Marking::MarkBitFrom(object)));
   3141 
   3142       int size = object->Size();
   3143 
   3144       HeapObject* target_object;
   3145       AllocationResult allocation = space->AllocateRaw(size);
   3146       if (!allocation.To(&target_object)) {
   3147         // If allocation failed, use emergency memory and re-try allocation.
   3148         CHECK(space->HasEmergencyMemory());
   3149         space->UseEmergencyMemory();
   3150         allocation = space->AllocateRaw(size);
   3151       }
   3152       if (!allocation.To(&target_object)) {
   3153         // OS refused to give us memory.
   3154         V8::FatalProcessOutOfMemory("Evacuation");
   3155         return;
   3156       }
   3157 
   3158       MigrateObject(target_object, object, size, space->identity());
   3159       DCHECK(object->map_word().IsForwardingAddress());
   3160     }
   3161 
   3162     // Clear marking bits for current cell.
   3163     *cell = 0;
   3164   }
   3165   p->ResetLiveBytes();
   3166 }
   3167 
   3168 
   3169 void MarkCompactCollector::EvacuatePages() {
   3170   int npages = evacuation_candidates_.length();
   3171   for (int i = 0; i < npages; i++) {
   3172     Page* p = evacuation_candidates_[i];
   3173     DCHECK(p->IsEvacuationCandidate() ||
   3174            p->IsFlagSet(Page::RESCAN_ON_EVACUATION));
   3175     DCHECK(static_cast<int>(p->parallel_sweeping()) ==
   3176            MemoryChunk::SWEEPING_DONE);
   3177     PagedSpace* space = static_cast<PagedSpace*>(p->owner());
   3178     // Allocate emergency memory for the case when compaction fails due to out
   3179     // of memory.
   3180     if (!space->HasEmergencyMemory()) {
   3181       space->CreateEmergencyMemory();
   3182     }
   3183     if (p->IsEvacuationCandidate()) {
   3184       // During compaction we might have to request a new page. Check that we
   3185       // have an emergency page and the space still has room for that.
   3186       if (space->HasEmergencyMemory() && space->CanExpand()) {
   3187         EvacuateLiveObjectsFromPage(p);
   3188       } else {
   3189         // Without room for expansion evacuation is not guaranteed to succeed.
   3190         // Pessimistically abandon unevacuated pages.
   3191         for (int j = i; j < npages; j++) {
   3192           Page* page = evacuation_candidates_[j];
   3193           slots_buffer_allocator_.DeallocateChain(page->slots_buffer_address());
   3194           page->ClearEvacuationCandidate();
   3195           page->SetFlag(Page::RESCAN_ON_EVACUATION);
   3196         }
   3197         break;
   3198       }
   3199     }
   3200   }
   3201   if (npages > 0) {
   3202     // Release emergency memory.
   3203     PagedSpaces spaces(heap());
   3204     for (PagedSpace* space = spaces.next(); space != NULL;
   3205          space = spaces.next()) {
   3206       if (space->HasEmergencyMemory()) {
   3207         space->FreeEmergencyMemory();
   3208       }
   3209     }
   3210   }
   3211 }
   3212 
   3213 
   3214 class EvacuationWeakObjectRetainer : public WeakObjectRetainer {
   3215  public:
   3216   virtual Object* RetainAs(Object* object) {
   3217     if (object->IsHeapObject()) {
   3218       HeapObject* heap_object = HeapObject::cast(object);
   3219       MapWord map_word = heap_object->map_word();
   3220       if (map_word.IsForwardingAddress()) {
   3221         return map_word.ToForwardingAddress();
   3222       }
   3223     }
   3224     return object;
   3225   }
   3226 };
   3227 
   3228 
   3229 static inline void UpdateSlot(Isolate* isolate, ObjectVisitor* v,
   3230                               SlotsBuffer::SlotType slot_type, Address addr) {
   3231   switch (slot_type) {
   3232     case SlotsBuffer::CODE_TARGET_SLOT: {
   3233       RelocInfo rinfo(addr, RelocInfo::CODE_TARGET, 0, NULL);
   3234       rinfo.Visit(isolate, v);
   3235       break;
   3236     }
   3237     case SlotsBuffer::CODE_ENTRY_SLOT: {
   3238       v->VisitCodeEntry(addr);
   3239       break;
   3240     }
   3241     case SlotsBuffer::RELOCATED_CODE_OBJECT: {
   3242       HeapObject* obj = HeapObject::FromAddress(addr);
   3243       Code::cast(obj)->CodeIterateBody(v);
   3244       break;
   3245     }
   3246     case SlotsBuffer::DEBUG_TARGET_SLOT: {
   3247       RelocInfo rinfo(addr, RelocInfo::DEBUG_BREAK_SLOT, 0, NULL);
   3248       if (rinfo.IsPatchedDebugBreakSlotSequence()) rinfo.Visit(isolate, v);
   3249       break;
   3250     }
   3251     case SlotsBuffer::JS_RETURN_SLOT: {
   3252       RelocInfo rinfo(addr, RelocInfo::JS_RETURN, 0, NULL);
   3253       if (rinfo.IsPatchedReturnSequence()) rinfo.Visit(isolate, v);
   3254       break;
   3255     }
   3256     case SlotsBuffer::EMBEDDED_OBJECT_SLOT: {
   3257       RelocInfo rinfo(addr, RelocInfo::EMBEDDED_OBJECT, 0, NULL);
   3258       rinfo.Visit(isolate, v);
   3259       break;
   3260     }
   3261     default:
   3262       UNREACHABLE();
   3263       break;
   3264   }
   3265 }
   3266 
   3267 
   3268 enum SweepingMode { SWEEP_ONLY, SWEEP_AND_VISIT_LIVE_OBJECTS };
   3269 
   3270 
   3271 enum SkipListRebuildingMode { REBUILD_SKIP_LIST, IGNORE_SKIP_LIST };
   3272 
   3273 
   3274 enum FreeSpaceTreatmentMode { IGNORE_FREE_SPACE, ZAP_FREE_SPACE };
   3275 
   3276 
   3277 template <MarkCompactCollector::SweepingParallelism mode>
   3278 static intptr_t Free(PagedSpace* space, FreeList* free_list, Address start,
   3279                      int size) {
   3280   if (mode == MarkCompactCollector::SWEEP_ON_MAIN_THREAD) {
   3281     DCHECK(free_list == NULL);
   3282     return space->Free(start, size);
   3283   } else {
   3284     // TODO(hpayer): account for wasted bytes in concurrent sweeping too.
   3285     return size - free_list->Free(start, size);
   3286   }
   3287 }
   3288 
   3289 
   3290 // Sweeps a page. After sweeping the page can be iterated.
   3291 // Slots in live objects pointing into evacuation candidates are updated
   3292 // if requested.
   3293 // Returns the size of the biggest continuous freed memory chunk in bytes.
   3294 template <SweepingMode sweeping_mode,
   3295           MarkCompactCollector::SweepingParallelism parallelism,
   3296           SkipListRebuildingMode skip_list_mode,
   3297           FreeSpaceTreatmentMode free_space_mode>
   3298 static int Sweep(PagedSpace* space, FreeList* free_list, Page* p,
   3299                  ObjectVisitor* v) {
   3300   DCHECK(!p->IsEvacuationCandidate() && !p->WasSwept());
   3301   DCHECK_EQ(skip_list_mode == REBUILD_SKIP_LIST,
   3302             space->identity() == CODE_SPACE);
   3303   DCHECK((p->skip_list() == NULL) || (skip_list_mode == REBUILD_SKIP_LIST));
   3304   DCHECK(parallelism == MarkCompactCollector::SWEEP_ON_MAIN_THREAD ||
   3305          sweeping_mode == SWEEP_ONLY);
   3306 
   3307   Address free_start = p->area_start();
   3308   DCHECK(reinterpret_cast<intptr_t>(free_start) % (32 * kPointerSize) == 0);
   3309   int offsets[16];
   3310 
   3311   SkipList* skip_list = p->skip_list();
   3312   int curr_region = -1;
   3313   if ((skip_list_mode == REBUILD_SKIP_LIST) && skip_list) {
   3314     skip_list->Clear();
   3315   }
   3316 
   3317   intptr_t freed_bytes = 0;
   3318   intptr_t max_freed_bytes = 0;
   3319 
   3320   for (MarkBitCellIterator it(p); !it.Done(); it.Advance()) {
   3321     Address cell_base = it.CurrentCellBase();
   3322     MarkBit::CellType* cell = it.CurrentCell();
   3323     int live_objects = MarkWordToObjectStarts(*cell, offsets);
   3324     int live_index = 0;
   3325     for (; live_objects != 0; live_objects--) {
   3326       Address free_end = cell_base + offsets[live_index++] * kPointerSize;
   3327       if (free_end != free_start) {
   3328         int size = static_cast<int>(free_end - free_start);
   3329         if (free_space_mode == ZAP_FREE_SPACE) {
   3330           memset(free_start, 0xcc, size);
   3331         }
   3332         freed_bytes = Free<parallelism>(space, free_list, free_start, size);
   3333         max_freed_bytes = Max(freed_bytes, max_freed_bytes);
   3334 #ifdef ENABLE_GDB_JIT_INTERFACE
   3335         if (FLAG_gdbjit && space->identity() == CODE_SPACE) {
   3336           GDBJITInterface::RemoveCodeRange(free_start, free_end);
   3337         }
   3338 #endif
   3339       }
   3340       HeapObject* live_object = HeapObject::FromAddress(free_end);
   3341       DCHECK(Marking::IsBlack(Marking::MarkBitFrom(live_object)));
   3342       Map* map = live_object->map();
   3343       int size = live_object->SizeFromMap(map);
   3344       if (sweeping_mode == SWEEP_AND_VISIT_LIVE_OBJECTS) {
   3345         live_object->IterateBody(map->instance_type(), size, v);
   3346       }
   3347       if ((skip_list_mode == REBUILD_SKIP_LIST) && skip_list != NULL) {
   3348         int new_region_start = SkipList::RegionNumber(free_end);
   3349         int new_region_end =
   3350             SkipList::RegionNumber(free_end + size - kPointerSize);
   3351         if (new_region_start != curr_region || new_region_end != curr_region) {
   3352           skip_list->AddObject(free_end, size);
   3353           curr_region = new_region_end;
   3354         }
   3355       }
   3356       free_start = free_end + size;
   3357     }
   3358     // Clear marking bits for current cell.
   3359     *cell = 0;
   3360   }
   3361   if (free_start != p->area_end()) {
   3362     int size = static_cast<int>(p->area_end() - free_start);
   3363     if (free_space_mode == ZAP_FREE_SPACE) {
   3364       memset(free_start, 0xcc, size);
   3365     }
   3366     freed_bytes = Free<parallelism>(space, free_list, free_start, size);
   3367     max_freed_bytes = Max(freed_bytes, max_freed_bytes);
   3368 #ifdef ENABLE_GDB_JIT_INTERFACE
   3369     if (FLAG_gdbjit && space->identity() == CODE_SPACE) {
   3370       GDBJITInterface::RemoveCodeRange(free_start, p->area_end());
   3371     }
   3372 #endif
   3373   }
   3374   p->ResetLiveBytes();
   3375 
   3376   if (parallelism == MarkCompactCollector::SWEEP_IN_PARALLEL) {
   3377     // When concurrent sweeping is active, the page will be marked after
   3378     // sweeping by the main thread.
   3379     p->set_parallel_sweeping(MemoryChunk::SWEEPING_FINALIZE);
   3380   } else {
   3381     p->SetWasSwept();
   3382   }
   3383   return FreeList::GuaranteedAllocatable(static_cast<int>(max_freed_bytes));
   3384 }
   3385 
   3386 
   3387 static bool SetMarkBitsUnderInvalidatedCode(Code* code, bool value) {
   3388   Page* p = Page::FromAddress(code->address());
   3389 
   3390   if (p->IsEvacuationCandidate() || p->IsFlagSet(Page::RESCAN_ON_EVACUATION)) {
   3391     return false;
   3392   }
   3393 
   3394   Address code_start = code->address();
   3395   Address code_end = code_start + code->Size();
   3396 
   3397   uint32_t start_index = MemoryChunk::FastAddressToMarkbitIndex(code_start);
   3398   uint32_t end_index =
   3399       MemoryChunk::FastAddressToMarkbitIndex(code_end - kPointerSize);
   3400 
   3401   Bitmap* b = p->markbits();
   3402 
   3403   MarkBit start_mark_bit = b->MarkBitFromIndex(start_index);
   3404   MarkBit end_mark_bit = b->MarkBitFromIndex(end_index);
   3405 
   3406   MarkBit::CellType* start_cell = start_mark_bit.cell();
   3407   MarkBit::CellType* end_cell = end_mark_bit.cell();
   3408 
   3409   if (value) {
   3410     MarkBit::CellType start_mask = ~(start_mark_bit.mask() - 1);
   3411     MarkBit::CellType end_mask = (end_mark_bit.mask() << 1) - 1;
   3412 
   3413     if (start_cell == end_cell) {
   3414       *start_cell |= start_mask & end_mask;
   3415     } else {
   3416       *start_cell |= start_mask;
   3417       for (MarkBit::CellType* cell = start_cell + 1; cell < end_cell; cell++) {
   3418         *cell = ~0;
   3419       }
   3420       *end_cell |= end_mask;
   3421     }
   3422   } else {
   3423     for (MarkBit::CellType* cell = start_cell; cell <= end_cell; cell++) {
   3424       *cell = 0;
   3425     }
   3426   }
   3427 
   3428   return true;
   3429 }
   3430 
   3431 
   3432 static bool IsOnInvalidatedCodeObject(Address addr) {
   3433   // We did not record any slots in large objects thus
   3434   // we can safely go to the page from the slot address.
   3435   Page* p = Page::FromAddress(addr);
   3436 
   3437   // First check owner's identity because old pointer and old data spaces
   3438   // are swept lazily and might still have non-zero mark-bits on some
   3439   // pages.
   3440   if (p->owner()->identity() != CODE_SPACE) return false;
   3441 
   3442   // In code space only bits on evacuation candidates (but we don't record
   3443   // any slots on them) and under invalidated code objects are non-zero.
   3444   MarkBit mark_bit =
   3445       p->markbits()->MarkBitFromIndex(Page::FastAddressToMarkbitIndex(addr));
   3446 
   3447   return mark_bit.Get();
   3448 }
   3449 
   3450 
   3451 void MarkCompactCollector::InvalidateCode(Code* code) {
   3452   if (heap_->incremental_marking()->IsCompacting() &&
   3453       !ShouldSkipEvacuationSlotRecording(code)) {
   3454     DCHECK(compacting_);
   3455 
   3456     // If the object is white than no slots were recorded on it yet.
   3457     MarkBit mark_bit = Marking::MarkBitFrom(code);
   3458     if (Marking::IsWhite(mark_bit)) return;
   3459 
   3460     invalidated_code_.Add(code);
   3461   }
   3462 }
   3463 
   3464 
   3465 // Return true if the given code is deoptimized or will be deoptimized.
   3466 bool MarkCompactCollector::WillBeDeoptimized(Code* code) {
   3467   return code->is_optimized_code() && code->marked_for_deoptimization();
   3468 }
   3469 
   3470 
   3471 bool MarkCompactCollector::MarkInvalidatedCode() {
   3472   bool code_marked = false;
   3473 
   3474   int length = invalidated_code_.length();
   3475   for (int i = 0; i < length; i++) {
   3476     Code* code = invalidated_code_[i];
   3477 
   3478     if (SetMarkBitsUnderInvalidatedCode(code, true)) {
   3479       code_marked = true;
   3480     }
   3481   }
   3482 
   3483   return code_marked;
   3484 }
   3485 
   3486 
   3487 void MarkCompactCollector::RemoveDeadInvalidatedCode() {
   3488   int length = invalidated_code_.length();
   3489   for (int i = 0; i < length; i++) {
   3490     if (!IsMarked(invalidated_code_[i])) invalidated_code_[i] = NULL;
   3491   }
   3492 }
   3493 
   3494 
   3495 void MarkCompactCollector::ProcessInvalidatedCode(ObjectVisitor* visitor) {
   3496   int length = invalidated_code_.length();
   3497   for (int i = 0; i < length; i++) {
   3498     Code* code = invalidated_code_[i];
   3499     if (code != NULL) {
   3500       code->Iterate(visitor);
   3501       SetMarkBitsUnderInvalidatedCode(code, false);
   3502     }
   3503   }
   3504   invalidated_code_.Rewind(0);
   3505 }
   3506 
   3507 
   3508 void MarkCompactCollector::EvacuateNewSpaceAndCandidates() {
   3509   Heap::RelocationLock relocation_lock(heap());
   3510 
   3511   bool code_slots_filtering_required;
   3512   {
   3513     GCTracer::Scope gc_scope(heap()->tracer(),
   3514                              GCTracer::Scope::MC_SWEEP_NEWSPACE);
   3515     code_slots_filtering_required = MarkInvalidatedCode();
   3516     EvacuateNewSpace();
   3517   }
   3518 
   3519   {
   3520     GCTracer::Scope gc_scope(heap()->tracer(),
   3521                              GCTracer::Scope::MC_EVACUATE_PAGES);
   3522     EvacuatePages();
   3523   }
   3524 
   3525   // Second pass: find pointers to new space and update them.
   3526   PointersUpdatingVisitor updating_visitor(heap());
   3527 
   3528   {
   3529     GCTracer::Scope gc_scope(heap()->tracer(),
   3530                              GCTracer::Scope::MC_UPDATE_NEW_TO_NEW_POINTERS);
   3531     // Update pointers in to space.
   3532     SemiSpaceIterator to_it(heap()->new_space()->bottom(),
   3533                             heap()->new_space()->top());
   3534     for (HeapObject* object = to_it.Next(); object != NULL;
   3535          object = to_it.Next()) {
   3536       Map* map = object->map();
   3537       object->IterateBody(map->instance_type(), object->SizeFromMap(map),
   3538                           &updating_visitor);
   3539     }
   3540   }
   3541 
   3542   {
   3543     GCTracer::Scope gc_scope(heap()->tracer(),
   3544                              GCTracer::Scope::MC_UPDATE_ROOT_TO_NEW_POINTERS);
   3545     // Update roots.
   3546     heap_->IterateRoots(&updating_visitor, VISIT_ALL_IN_SWEEP_NEWSPACE);
   3547   }
   3548 
   3549   {
   3550     GCTracer::Scope gc_scope(heap()->tracer(),
   3551                              GCTracer::Scope::MC_UPDATE_OLD_TO_NEW_POINTERS);
   3552     StoreBufferRebuildScope scope(heap_, heap_->store_buffer(),
   3553                                   &Heap::ScavengeStoreBufferCallback);
   3554     heap_->store_buffer()->IteratePointersToNewSpaceAndClearMaps(
   3555         &UpdatePointer);
   3556   }
   3557 
   3558   {
   3559     GCTracer::Scope gc_scope(heap()->tracer(),
   3560                              GCTracer::Scope::MC_UPDATE_POINTERS_TO_EVACUATED);
   3561     SlotsBuffer::UpdateSlotsRecordedIn(heap_, migration_slots_buffer_,
   3562                                        code_slots_filtering_required);
   3563     if (FLAG_trace_fragmentation) {
   3564       PrintF("  migration slots buffer: %d\n",
   3565              SlotsBuffer::SizeOfChain(migration_slots_buffer_));
   3566     }
   3567 
   3568     if (compacting_ && was_marked_incrementally_) {
   3569       // It's difficult to filter out slots recorded for large objects.
   3570       LargeObjectIterator it(heap_->lo_space());
   3571       for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
   3572         // LargeObjectSpace is not swept yet thus we have to skip
   3573         // dead objects explicitly.
   3574         if (!IsMarked(obj)) continue;
   3575 
   3576         Page* p = Page::FromAddress(obj->address());
   3577         if (p->IsFlagSet(Page::RESCAN_ON_EVACUATION)) {
   3578           obj->Iterate(&updating_visitor);
   3579           p->ClearFlag(Page::RESCAN_ON_EVACUATION);
   3580         }
   3581       }
   3582     }
   3583   }
   3584 
   3585   int npages = evacuation_candidates_.length();
   3586   {
   3587     GCTracer::Scope gc_scope(
   3588         heap()->tracer(),
   3589         GCTracer::Scope::MC_UPDATE_POINTERS_BETWEEN_EVACUATED);
   3590     for (int i = 0; i < npages; i++) {
   3591       Page* p = evacuation_candidates_[i];
   3592       DCHECK(p->IsEvacuationCandidate() ||
   3593              p->IsFlagSet(Page::RESCAN_ON_EVACUATION));
   3594 
   3595       if (p->IsEvacuationCandidate()) {
   3596         SlotsBuffer::UpdateSlotsRecordedIn(heap_, p->slots_buffer(),
   3597                                            code_slots_filtering_required);
   3598         if (FLAG_trace_fragmentation) {
   3599           PrintF("  page %p slots buffer: %d\n", reinterpret_cast<void*>(p),
   3600                  SlotsBuffer::SizeOfChain(p->slots_buffer()));
   3601         }
   3602 
   3603         // Important: skip list should be cleared only after roots were updated
   3604         // because root iteration traverses the stack and might have to find
   3605         // code objects from non-updated pc pointing into evacuation candidate.
   3606         SkipList* list = p->skip_list();
   3607         if (list != NULL) list->Clear();
   3608       } else {
   3609         if (FLAG_gc_verbose) {
   3610           PrintF("Sweeping 0x%" V8PRIxPTR " during evacuation.\n",
   3611                  reinterpret_cast<intptr_t>(p));
   3612         }
   3613         PagedSpace* space = static_cast<PagedSpace*>(p->owner());
   3614         p->ClearFlag(MemoryChunk::RESCAN_ON_EVACUATION);
   3615 
   3616         switch (space->identity()) {
   3617           case OLD_DATA_SPACE:
   3618             Sweep<SWEEP_AND_VISIT_LIVE_OBJECTS, SWEEP_ON_MAIN_THREAD,
   3619                   IGNORE_SKIP_LIST, IGNORE_FREE_SPACE>(space, NULL, p,
   3620                                                        &updating_visitor);
   3621             break;
   3622           case OLD_POINTER_SPACE:
   3623             Sweep<SWEEP_AND_VISIT_LIVE_OBJECTS, SWEEP_ON_MAIN_THREAD,
   3624                   IGNORE_SKIP_LIST, IGNORE_FREE_SPACE>(space, NULL, p,
   3625                                                        &updating_visitor);
   3626             break;
   3627           case CODE_SPACE:
   3628             if (FLAG_zap_code_space) {
   3629               Sweep<SWEEP_AND_VISIT_LIVE_OBJECTS, SWEEP_ON_MAIN_THREAD,
   3630                     REBUILD_SKIP_LIST, ZAP_FREE_SPACE>(space, NULL, p,
   3631                                                        &updating_visitor);
   3632             } else {
   3633               Sweep<SWEEP_AND_VISIT_LIVE_OBJECTS, SWEEP_ON_MAIN_THREAD,
   3634                     REBUILD_SKIP_LIST, IGNORE_FREE_SPACE>(space, NULL, p,
   3635                                                           &updating_visitor);
   3636             }
   3637             break;
   3638           default:
   3639             UNREACHABLE();
   3640             break;
   3641         }
   3642       }
   3643     }
   3644   }
   3645 
   3646   GCTracer::Scope gc_scope(heap()->tracer(),
   3647                            GCTracer::Scope::MC_UPDATE_MISC_POINTERS);
   3648 
   3649   // Update pointers from cells.
   3650   HeapObjectIterator cell_iterator(heap_->cell_space());
   3651   for (HeapObject* cell = cell_iterator.Next(); cell != NULL;
   3652        cell = cell_iterator.Next()) {
   3653     if (cell->IsCell()) {
   3654       Cell::BodyDescriptor::IterateBody(cell, &updating_visitor);
   3655     }
   3656   }
   3657 
   3658   HeapObjectIterator js_global_property_cell_iterator(
   3659       heap_->property_cell_space());
   3660   for (HeapObject* cell = js_global_property_cell_iterator.Next(); cell != NULL;
   3661        cell = js_global_property_cell_iterator.Next()) {
   3662     if (cell->IsPropertyCell()) {
   3663       PropertyCell::BodyDescriptor::IterateBody(cell, &updating_visitor);
   3664     }
   3665   }
   3666 
   3667   heap_->string_table()->Iterate(&updating_visitor);
   3668   updating_visitor.VisitPointer(heap_->weak_object_to_code_table_address());
   3669   if (heap_->weak_object_to_code_table()->IsHashTable()) {
   3670     WeakHashTable* table =
   3671         WeakHashTable::cast(heap_->weak_object_to_code_table());
   3672     table->Iterate(&updating_visitor);
   3673     table->Rehash(heap_->isolate()->factory()->undefined_value());
   3674   }
   3675 
   3676   // Update pointers from external string table.
   3677   heap_->UpdateReferencesInExternalStringTable(
   3678       &UpdateReferenceInExternalStringTableEntry);
   3679 
   3680   EvacuationWeakObjectRetainer evacuation_object_retainer;
   3681   heap()->ProcessWeakReferences(&evacuation_object_retainer);
   3682 
   3683   // Visit invalidated code (we ignored all slots on it) and clear mark-bits
   3684   // under it.
   3685   ProcessInvalidatedCode(&updating_visitor);
   3686 
   3687   heap_->isolate()->inner_pointer_to_code_cache()->Flush();
   3688 
   3689   slots_buffer_allocator_.DeallocateChain(&migration_slots_buffer_);
   3690   DCHECK(migration_slots_buffer_ == NULL);
   3691 }
   3692 
   3693 
   3694 void MarkCompactCollector::MoveEvacuationCandidatesToEndOfPagesList() {
   3695   int npages = evacuation_candidates_.length();
   3696   for (int i = 0; i < npages; i++) {
   3697     Page* p = evacuation_candidates_[i];
   3698     if (!p->IsEvacuationCandidate()) continue;
   3699     p->Unlink();
   3700     PagedSpace* space = static_cast<PagedSpace*>(p->owner());
   3701     p->InsertAfter(space->LastPage());
   3702   }
   3703 }
   3704 
   3705 
   3706 void MarkCompactCollector::ReleaseEvacuationCandidates() {
   3707   int npages = evacuation_candidates_.length();
   3708   for (int i = 0; i < npages; i++) {
   3709     Page* p = evacuation_candidates_[i];
   3710     if (!p->IsEvacuationCandidate()) continue;
   3711     PagedSpace* space = static_cast<PagedSpace*>(p->owner());
   3712     space->Free(p->area_start(), p->area_size());
   3713     p->set_scan_on_scavenge(false);
   3714     slots_buffer_allocator_.DeallocateChain(p->slots_buffer_address());
   3715     p->ResetLiveBytes();
   3716     space->ReleasePage(p);
   3717   }
   3718   evacuation_candidates_.Rewind(0);
   3719   compacting_ = false;
   3720   heap()->FreeQueuedChunks();
   3721 }
   3722 
   3723 
   3724 static const int kStartTableEntriesPerLine = 5;
   3725 static const int kStartTableLines = 171;
   3726 static const int kStartTableInvalidLine = 127;
   3727 static const int kStartTableUnusedEntry = 126;
   3728 
   3729 #define _ kStartTableUnusedEntry
   3730 #define X kStartTableInvalidLine
   3731 // Mark-bit to object start offset table.
   3732 //
   3733 // The line is indexed by the mark bits in a byte.  The first number on
   3734 // the line describes the number of live object starts for the line and the
   3735 // other numbers on the line describe the offsets (in words) of the object
   3736 // starts.
   3737 //
   3738 // Since objects are at least 2 words large we don't have entries for two
   3739 // consecutive 1 bits.  All entries after 170 have at least 2 consecutive bits.
   3740 char kStartTable[kStartTableLines * kStartTableEntriesPerLine] = {
   3741     0, _, _,
   3742     _, _,  // 0
   3743     1, 0, _,
   3744     _, _,  // 1
   3745     1, 1, _,
   3746     _, _,  // 2
   3747     X, _, _,
   3748     _, _,  // 3
   3749     1, 2, _,
   3750     _, _,  // 4
   3751     2, 0, 2,
   3752     _, _,  // 5
   3753     X, _, _,
   3754     _, _,  // 6
   3755     X, _, _,
   3756     _, _,  // 7
   3757     1, 3, _,
   3758     _, _,  // 8
   3759     2, 0, 3,
   3760     _, _,  // 9
   3761     2, 1, 3,
   3762     _, _,  // 10
   3763     X, _, _,
   3764     _, _,  // 11
   3765     X, _, _,
   3766     _, _,  // 12
   3767     X, _, _,
   3768     _, _,  // 13
   3769     X, _, _,
   3770     _, _,  // 14
   3771     X, _, _,
   3772     _, _,  // 15
   3773     1, 4, _,
   3774     _, _,  // 16
   3775     2, 0, 4,
   3776     _, _,  // 17
   3777     2, 1, 4,
   3778     _, _,  // 18
   3779     X, _, _,
   3780     _, _,  // 19
   3781     2, 2, 4,
   3782     _, _,  // 20
   3783     3, 0, 2,
   3784     4, _,  // 21
   3785     X, _, _,
   3786     _, _,  // 22
   3787     X, _, _,
   3788     _, _,  // 23
   3789     X, _, _,
   3790     _, _,  // 24
   3791     X, _, _,
   3792     _, _,  // 25
   3793     X, _, _,
   3794     _, _,  // 26
   3795     X, _, _,
   3796     _, _,  // 27
   3797     X, _, _,
   3798     _, _,  // 28
   3799     X, _, _,
   3800     _, _,  // 29
   3801     X, _, _,
   3802     _, _,  // 30
   3803     X, _, _,
   3804     _, _,  // 31
   3805     1, 5, _,
   3806     _, _,  // 32
   3807     2, 0, 5,
   3808     _, _,  // 33
   3809     2, 1, 5,
   3810     _, _,  // 34
   3811     X, _, _,
   3812     _, _,  // 35
   3813     2, 2, 5,
   3814     _, _,  // 36
   3815     3, 0, 2,
   3816     5, _,  // 37
   3817     X, _, _,
   3818     _, _,  // 38
   3819     X, _, _,
   3820     _, _,  // 39
   3821     2, 3, 5,
   3822     _, _,  // 40
   3823     3, 0, 3,
   3824     5, _,  // 41
   3825     3, 1, 3,
   3826     5, _,  // 42
   3827     X, _, _,
   3828     _, _,  // 43
   3829     X, _, _,
   3830     _, _,  // 44
   3831     X, _, _,
   3832     _, _,  // 45
   3833     X, _, _,
   3834     _, _,  // 46
   3835     X, _, _,
   3836     _, _,  // 47
   3837     X, _, _,
   3838     _, _,  // 48
   3839     X, _, _,
   3840     _, _,  // 49
   3841     X, _, _,
   3842     _, _,  // 50
   3843     X, _, _,
   3844     _, _,  // 51
   3845     X, _, _,
   3846     _, _,  // 52
   3847     X, _, _,
   3848     _, _,  // 53
   3849     X, _, _,
   3850     _, _,  // 54
   3851     X, _, _,
   3852     _, _,  // 55
   3853     X, _, _,
   3854     _, _,  // 56
   3855     X, _, _,
   3856     _, _,  // 57
   3857     X, _, _,
   3858     _, _,  // 58
   3859     X, _, _,
   3860     _, _,  // 59
   3861     X, _, _,
   3862     _, _,  // 60
   3863     X, _, _,
   3864     _, _,  // 61
   3865     X, _, _,
   3866     _, _,  // 62
   3867     X, _, _,
   3868     _, _,  // 63
   3869     1, 6, _,
   3870     _, _,  // 64
   3871     2, 0, 6,
   3872     _, _,  // 65
   3873     2, 1, 6,
   3874     _, _,  // 66
   3875     X, _, _,
   3876     _, _,  // 67
   3877     2, 2, 6,
   3878     _, _,  // 68
   3879     3, 0, 2,
   3880     6, _,  // 69
   3881     X, _, _,
   3882     _, _,  // 70
   3883     X, _, _,
   3884     _, _,  // 71
   3885     2, 3, 6,
   3886     _, _,  // 72
   3887     3, 0, 3,
   3888     6, _,  // 73
   3889     3, 1, 3,
   3890     6, _,  // 74
   3891     X, _, _,
   3892     _, _,  // 75
   3893     X, _, _,
   3894     _, _,  // 76
   3895     X, _, _,
   3896     _, _,  // 77
   3897     X, _, _,
   3898     _, _,  // 78
   3899     X, _, _,
   3900     _, _,  // 79
   3901     2, 4, 6,
   3902     _, _,  // 80
   3903     3, 0, 4,
   3904     6, _,  // 81
   3905     3, 1, 4,
   3906     6, _,  // 82
   3907     X, _, _,
   3908     _, _,  // 83
   3909     3, 2, 4,
   3910     6, _,  // 84
   3911     4, 0, 2,
   3912     4, 6,  // 85
   3913     X, _, _,
   3914     _, _,  // 86
   3915     X, _, _,
   3916     _, _,  // 87
   3917     X, _, _,
   3918     _, _,  // 88
   3919     X, _, _,
   3920     _, _,  // 89
   3921     X, _, _,
   3922     _, _,  // 90
   3923     X, _, _,
   3924     _, _,  // 91
   3925     X, _, _,
   3926     _, _,  // 92
   3927     X, _, _,
   3928     _, _,  // 93
   3929     X, _, _,
   3930     _, _,  // 94
   3931     X, _, _,
   3932     _, _,  // 95
   3933     X, _, _,
   3934     _, _,  // 96
   3935     X, _, _,
   3936     _, _,  // 97
   3937     X, _, _,
   3938     _, _,  // 98
   3939     X, _, _,
   3940     _, _,  // 99
   3941     X, _, _,
   3942     _, _,  // 100
   3943     X, _, _,
   3944     _, _,  // 101
   3945     X, _, _,
   3946     _, _,  // 102
   3947     X, _, _,
   3948     _, _,  // 103
   3949     X, _, _,
   3950     _, _,  // 104
   3951     X, _, _,
   3952     _, _,  // 105
   3953     X, _, _,
   3954     _, _,  // 106
   3955     X, _, _,
   3956     _, _,  // 107
   3957     X, _, _,
   3958     _, _,  // 108
   3959     X, _, _,
   3960     _, _,  // 109
   3961     X, _, _,
   3962     _, _,  // 110
   3963     X, _, _,
   3964     _, _,  // 111
   3965     X, _, _,
   3966     _, _,  // 112
   3967     X, _, _,
   3968     _, _,  // 113
   3969     X, _, _,
   3970     _, _,  // 114
   3971     X, _, _,
   3972     _, _,  // 115
   3973     X, _, _,
   3974     _, _,  // 116
   3975     X, _, _,
   3976     _, _,  // 117
   3977     X, _, _,
   3978     _, _,  // 118
   3979     X, _, _,
   3980     _, _,  // 119
   3981     X, _, _,
   3982     _, _,  // 120
   3983     X, _, _,
   3984     _, _,  // 121
   3985     X, _, _,
   3986     _, _,  // 122
   3987     X, _, _,
   3988     _, _,  // 123
   3989     X, _, _,
   3990     _, _,  // 124
   3991     X, _, _,
   3992     _, _,  // 125
   3993     X, _, _,
   3994     _, _,  // 126
   3995     X, _, _,
   3996     _, _,  // 127
   3997     1, 7, _,
   3998     _, _,  // 128
   3999     2, 0, 7,
   4000     _, _,  // 129
   4001     2, 1, 7,
   4002     _, _,  // 130
   4003     X, _, _,
   4004     _, _,  // 131
   4005     2, 2, 7,
   4006     _, _,  // 132
   4007     3, 0, 2,
   4008     7, _,  // 133
   4009     X, _, _,
   4010     _, _,  // 134
   4011     X, _, _,
   4012     _, _,  // 135
   4013     2, 3, 7,
   4014     _, _,  // 136
   4015     3, 0, 3,
   4016     7, _,  // 137
   4017     3, 1, 3,
   4018     7, _,  // 138
   4019     X, _, _,
   4020     _, _,  // 139
   4021     X, _, _,
   4022     _, _,  // 140
   4023     X, _, _,
   4024     _, _,  // 141
   4025     X, _, _,
   4026     _, _,  // 142
   4027     X, _, _,
   4028     _, _,  // 143
   4029     2, 4, 7,
   4030     _, _,  // 144
   4031     3, 0, 4,
   4032     7, _,  // 145
   4033     3, 1, 4,
   4034     7, _,  // 146
   4035     X, _, _,
   4036     _, _,  // 147
   4037     3, 2, 4,
   4038     7, _,  // 148
   4039     4, 0, 2,
   4040     4, 7,  // 149
   4041     X, _, _,
   4042     _, _,  // 150
   4043     X, _, _,
   4044     _, _,  // 151
   4045     X, _, _,
   4046     _, _,  // 152
   4047     X, _, _,
   4048     _, _,  // 153
   4049     X, _, _,
   4050     _, _,  // 154
   4051     X, _, _,
   4052     _, _,  // 155
   4053     X, _, _,
   4054     _, _,  // 156
   4055     X, _, _,
   4056     _, _,  // 157
   4057     X, _, _,
   4058     _, _,  // 158
   4059     X, _, _,
   4060     _, _,  // 159
   4061     2, 5, 7,
   4062     _, _,  // 160
   4063     3, 0, 5,
   4064     7, _,  // 161
   4065     3, 1, 5,
   4066     7, _,  // 162
   4067     X, _, _,
   4068     _, _,  // 163
   4069     3, 2, 5,
   4070     7, _,  // 164
   4071     4, 0, 2,
   4072     5, 7,  // 165
   4073     X, _, _,
   4074     _, _,  // 166
   4075     X, _, _,
   4076     _, _,  // 167
   4077     3, 3, 5,
   4078     7, _,  // 168
   4079     4, 0, 3,
   4080     5, 7,  // 169
   4081     4, 1, 3,
   4082     5, 7  // 170
   4083 };
   4084 #undef _
   4085 #undef X
   4086 
   4087 
   4088 // Takes a word of mark bits.  Returns the number of objects that start in the
   4089 // range.  Puts the offsets of the words in the supplied array.
   4090 static inline int MarkWordToObjectStarts(uint32_t mark_bits, int* starts) {
   4091   int objects = 0;
   4092   int offset = 0;
   4093 
   4094   // No consecutive 1 bits.
   4095   DCHECK((mark_bits & 0x180) != 0x180);
   4096   DCHECK((mark_bits & 0x18000) != 0x18000);
   4097   DCHECK((mark_bits & 0x1800000) != 0x1800000);
   4098 
   4099   while (mark_bits != 0) {
   4100     int byte = (mark_bits & 0xff);
   4101     mark_bits >>= 8;
   4102     if (byte != 0) {
   4103       DCHECK(byte < kStartTableLines);  // No consecutive 1 bits.
   4104       char* table = kStartTable + byte * kStartTableEntriesPerLine;
   4105       int objects_in_these_8_words = table[0];
   4106       DCHECK(objects_in_these_8_words != kStartTableInvalidLine);
   4107       DCHECK(objects_in_these_8_words < kStartTableEntriesPerLine);
   4108       for (int i = 0; i < objects_in_these_8_words; i++) {
   4109         starts[objects++] = offset + table[1 + i];
   4110       }
   4111     }
   4112     offset += 8;
   4113   }
   4114   return objects;
   4115 }
   4116 
   4117 
   4118 int MarkCompactCollector::SweepInParallel(PagedSpace* space,
   4119                                           int required_freed_bytes) {
   4120   int max_freed = 0;
   4121   int max_freed_overall = 0;
   4122   PageIterator it(space);
   4123   while (it.has_next()) {
   4124     Page* p = it.next();
   4125     max_freed = SweepInParallel(p, space);
   4126     DCHECK(max_freed >= 0);
   4127     if (required_freed_bytes > 0 && max_freed >= required_freed_bytes) {
   4128       return max_freed;
   4129     }
   4130     max_freed_overall = Max(max_freed, max_freed_overall);
   4131     if (p == space->end_of_unswept_pages()) break;
   4132   }
   4133   return max_freed_overall;
   4134 }
   4135 
   4136 
   4137 int MarkCompactCollector::SweepInParallel(Page* page, PagedSpace* space) {
   4138   int max_freed = 0;
   4139   if (page->TryParallelSweeping()) {
   4140     FreeList* free_list = space == heap()->old_pointer_space()
   4141                               ? free_list_old_pointer_space_.get()
   4142                               : free_list_old_data_space_.get();
   4143     FreeList private_free_list(space);
   4144     max_freed = Sweep<SWEEP_ONLY, SWEEP_IN_PARALLEL, IGNORE_SKIP_LIST,
   4145                       IGNORE_FREE_SPACE>(space, &private_free_list, page, NULL);
   4146     free_list->Concatenate(&private_free_list);
   4147   }
   4148   return max_freed;
   4149 }
   4150 
   4151 
   4152 void MarkCompactCollector::SweepSpace(PagedSpace* space, SweeperType sweeper) {
   4153   space->ClearStats();
   4154 
   4155   // We defensively initialize end_of_unswept_pages_ here with the first page
   4156   // of the pages list.
   4157   space->set_end_of_unswept_pages(space->FirstPage());
   4158 
   4159   PageIterator it(space);
   4160 
   4161   int pages_swept = 0;
   4162   bool unused_page_present = false;
   4163   bool parallel_sweeping_active = false;
   4164 
   4165   while (it.has_next()) {
   4166     Page* p = it.next();
   4167     DCHECK(p->parallel_sweeping() == MemoryChunk::SWEEPING_DONE);
   4168 
   4169     // Clear sweeping flags indicating that marking bits are still intact.
   4170     p->ClearWasSwept();
   4171 
   4172     if (p->IsFlagSet(Page::RESCAN_ON_EVACUATION) ||
   4173         p->IsEvacuationCandidate()) {
   4174       // Will be processed in EvacuateNewSpaceAndCandidates.
   4175       DCHECK(evacuation_candidates_.length() > 0);
   4176       continue;
   4177     }
   4178 
   4179     // One unused page is kept, all further are released before sweeping them.
   4180     if (p->LiveBytes() == 0) {
   4181       if (unused_page_present) {
   4182         if (FLAG_gc_verbose) {
   4183           PrintF("Sweeping 0x%" V8PRIxPTR " released page.\n",
   4184                  reinterpret_cast<intptr_t>(p));
   4185         }
   4186         // Adjust unswept free bytes because releasing a page expects said
   4187         // counter to be accurate for unswept pages.
   4188         space->IncreaseUnsweptFreeBytes(p);
   4189         space->ReleasePage(p);
   4190         continue;
   4191       }
   4192       unused_page_present = true;
   4193     }
   4194 
   4195     switch (sweeper) {
   4196       case CONCURRENT_SWEEPING:
   4197       case PARALLEL_SWEEPING:
   4198         if (!parallel_sweeping_active) {
   4199           if (FLAG_gc_verbose) {
   4200             PrintF("Sweeping 0x%" V8PRIxPTR ".\n",
   4201                    reinterpret_cast<intptr_t>(p));
   4202           }
   4203           Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, IGNORE_SKIP_LIST,
   4204                 IGNORE_FREE_SPACE>(space, NULL, p, NULL);
   4205           pages_swept++;
   4206           parallel_sweeping_active = true;
   4207         } else {
   4208           if (FLAG_gc_verbose) {
   4209             PrintF("Sweeping 0x%" V8PRIxPTR " in parallel.\n",
   4210                    reinterpret_cast<intptr_t>(p));
   4211           }
   4212           p->set_parallel_sweeping(MemoryChunk::SWEEPING_PENDING);
   4213           space->IncreaseUnsweptFreeBytes(p);
   4214         }
   4215         space->set_end_of_unswept_pages(p);
   4216         break;
   4217       case SEQUENTIAL_SWEEPING: {
   4218         if (FLAG_gc_verbose) {
   4219           PrintF("Sweeping 0x%" V8PRIxPTR ".\n", reinterpret_cast<intptr_t>(p));
   4220         }
   4221         if (space->identity() == CODE_SPACE && FLAG_zap_code_space) {
   4222           Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, REBUILD_SKIP_LIST,
   4223                 ZAP_FREE_SPACE>(space, NULL, p, NULL);
   4224         } else if (space->identity() == CODE_SPACE) {
   4225           Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, REBUILD_SKIP_LIST,
   4226                 IGNORE_FREE_SPACE>(space, NULL, p, NULL);
   4227         } else {
   4228           Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, IGNORE_SKIP_LIST,
   4229                 IGNORE_FREE_SPACE>(space, NULL, p, NULL);
   4230         }
   4231         pages_swept++;
   4232         break;
   4233       }
   4234       default: { UNREACHABLE(); }
   4235     }
   4236   }
   4237 
   4238   if (FLAG_gc_verbose) {
   4239     PrintF("SweepSpace: %s (%d pages swept)\n",
   4240            AllocationSpaceName(space->identity()), pages_swept);
   4241   }
   4242 
   4243   // Give pages that are queued to be freed back to the OS.
   4244   heap()->FreeQueuedChunks();
   4245 }
   4246 
   4247 
   4248 static bool ShouldStartSweeperThreads(MarkCompactCollector::SweeperType type) {
   4249   return type == MarkCompactCollector::PARALLEL_SWEEPING ||
   4250          type == MarkCompactCollector::CONCURRENT_SWEEPING;
   4251 }
   4252 
   4253 
   4254 static bool ShouldWaitForSweeperThreads(
   4255     MarkCompactCollector::SweeperType type) {
   4256   return type == MarkCompactCollector::PARALLEL_SWEEPING;
   4257 }
   4258 
   4259 
   4260 void MarkCompactCollector::SweepSpaces() {
   4261   GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_SWEEP);
   4262   double start_time = 0.0;
   4263   if (FLAG_print_cumulative_gc_stat) {
   4264     start_time = base::OS::TimeCurrentMillis();
   4265   }
   4266 
   4267 #ifdef DEBUG
   4268   state_ = SWEEP_SPACES;
   4269 #endif
   4270   SweeperType how_to_sweep = CONCURRENT_SWEEPING;
   4271   if (FLAG_parallel_sweeping) how_to_sweep = PARALLEL_SWEEPING;
   4272   if (FLAG_concurrent_sweeping) how_to_sweep = CONCURRENT_SWEEPING;
   4273 
   4274   MoveEvacuationCandidatesToEndOfPagesList();
   4275 
   4276   // Noncompacting collections simply sweep the spaces to clear the mark
   4277   // bits and free the nonlive blocks (for old and map spaces).  We sweep
   4278   // the map space last because freeing non-live maps overwrites them and
   4279   // the other spaces rely on possibly non-live maps to get the sizes for
   4280   // non-live objects.
   4281   {
   4282     GCTracer::Scope sweep_scope(heap()->tracer(),
   4283                                 GCTracer::Scope::MC_SWEEP_OLDSPACE);
   4284     {
   4285       SequentialSweepingScope scope(this);
   4286       SweepSpace(heap()->old_pointer_space(), how_to_sweep);
   4287       SweepSpace(heap()->old_data_space(), how_to_sweep);
   4288     }
   4289 
   4290     if (ShouldStartSweeperThreads(how_to_sweep)) {
   4291       StartSweeperThreads();
   4292     }
   4293 
   4294     if (ShouldWaitForSweeperThreads(how_to_sweep)) {
   4295       EnsureSweepingCompleted();
   4296     }
   4297   }
   4298   RemoveDeadInvalidatedCode();
   4299 
   4300   {
   4301     GCTracer::Scope sweep_scope(heap()->tracer(),
   4302                                 GCTracer::Scope::MC_SWEEP_CODE);
   4303     SweepSpace(heap()->code_space(), SEQUENTIAL_SWEEPING);
   4304   }
   4305 
   4306   {
   4307     GCTracer::Scope sweep_scope(heap()->tracer(),
   4308                                 GCTracer::Scope::MC_SWEEP_CELL);
   4309     SweepSpace(heap()->cell_space(), SEQUENTIAL_SWEEPING);
   4310     SweepSpace(heap()->property_cell_space(), SEQUENTIAL_SWEEPING);
   4311   }
   4312 
   4313   EvacuateNewSpaceAndCandidates();
   4314 
   4315   // ClearNonLiveTransitions depends on precise sweeping of map space to
   4316   // detect whether unmarked map became dead in this collection or in one
   4317   // of the previous ones.
   4318   {
   4319     GCTracer::Scope sweep_scope(heap()->tracer(),
   4320                                 GCTracer::Scope::MC_SWEEP_MAP);
   4321     SweepSpace(heap()->map_space(), SEQUENTIAL_SWEEPING);
   4322   }
   4323 
   4324   // Deallocate unmarked objects and clear marked bits for marked objects.
   4325   heap_->lo_space()->FreeUnmarkedObjects();
   4326 
   4327   // Deallocate evacuated candidate pages.
   4328   ReleaseEvacuationCandidates();
   4329 
   4330   if (FLAG_print_cumulative_gc_stat) {
   4331     heap_->tracer()->AddSweepingTime(base::OS::TimeCurrentMillis() -
   4332                                      start_time);
   4333   }
   4334 }
   4335 
   4336 
   4337 void MarkCompactCollector::ParallelSweepSpaceComplete(PagedSpace* space) {
   4338   PageIterator it(space);
   4339   while (it.has_next()) {
   4340     Page* p = it.next();
   4341     if (p->parallel_sweeping() == MemoryChunk::SWEEPING_FINALIZE) {
   4342       p->set_parallel_sweeping(MemoryChunk::SWEEPING_DONE);
   4343       p->SetWasSwept();
   4344     }
   4345     DCHECK(p->parallel_sweeping() == MemoryChunk::SWEEPING_DONE);
   4346   }
   4347 }
   4348 
   4349 
   4350 void MarkCompactCollector::ParallelSweepSpacesComplete() {
   4351   ParallelSweepSpaceComplete(heap()->old_pointer_space());
   4352   ParallelSweepSpaceComplete(heap()->old_data_space());
   4353 }
   4354 
   4355 
   4356 void MarkCompactCollector::EnableCodeFlushing(bool enable) {
   4357   if (isolate()->debug()->is_loaded() ||
   4358       isolate()->debug()->has_break_points()) {
   4359     enable = false;
   4360   }
   4361 
   4362   if (enable) {
   4363     if (code_flusher_ != NULL) return;
   4364     code_flusher_ = new CodeFlusher(isolate());
   4365   } else {
   4366     if (code_flusher_ == NULL) return;
   4367     code_flusher_->EvictAllCandidates();
   4368     delete code_flusher_;
   4369     code_flusher_ = NULL;
   4370   }
   4371 
   4372   if (FLAG_trace_code_flushing) {
   4373     PrintF("[code-flushing is now %s]\n", enable ? "on" : "off");
   4374   }
   4375 }
   4376 
   4377 
   4378 // TODO(1466) ReportDeleteIfNeeded is not called currently.
   4379 // Our profiling tools do not expect intersections between
   4380 // code objects. We should either reenable it or change our tools.
   4381 void MarkCompactCollector::ReportDeleteIfNeeded(HeapObject* obj,
   4382                                                 Isolate* isolate) {
   4383   if (obj->IsCode()) {
   4384     PROFILE(isolate, CodeDeleteEvent(obj->address()));
   4385   }
   4386 }
   4387 
   4388 
   4389 Isolate* MarkCompactCollector::isolate() const { return heap_->isolate(); }
   4390 
   4391 
   4392 void MarkCompactCollector::Initialize() {
   4393   MarkCompactMarkingVisitor::Initialize();
   4394   IncrementalMarking::Initialize();
   4395 }
   4396 
   4397 
   4398 bool SlotsBuffer::IsTypedSlot(ObjectSlot slot) {
   4399   return reinterpret_cast<uintptr_t>(slot) < NUMBER_OF_SLOT_TYPES;
   4400 }
   4401 
   4402 
   4403 bool SlotsBuffer::AddTo(SlotsBufferAllocator* allocator,
   4404                         SlotsBuffer** buffer_address, SlotType type,
   4405                         Address addr, AdditionMode mode) {
   4406   SlotsBuffer* buffer = *buffer_address;
   4407   if (buffer == NULL || !buffer->HasSpaceForTypedSlot()) {
   4408     if (mode == FAIL_ON_OVERFLOW && ChainLengthThresholdReached(buffer)) {
   4409       allocator->DeallocateChain(buffer_address);
   4410       return false;
   4411     }
   4412     buffer = allocator->AllocateBuffer(buffer);
   4413     *buffer_address = buffer;
   4414   }
   4415   DCHECK(buffer->HasSpaceForTypedSlot());
   4416   buffer->Add(reinterpret_cast<ObjectSlot>(type));
   4417   buffer->Add(reinterpret_cast<ObjectSlot>(addr));
   4418   return true;
   4419 }
   4420 
   4421 
   4422 static inline SlotsBuffer::SlotType SlotTypeForRMode(RelocInfo::Mode rmode) {
   4423   if (RelocInfo::IsCodeTarget(rmode)) {
   4424     return SlotsBuffer::CODE_TARGET_SLOT;
   4425   } else if (RelocInfo::IsEmbeddedObject(rmode)) {
   4426     return SlotsBuffer::EMBEDDED_OBJECT_SLOT;
   4427   } else if (RelocInfo::IsDebugBreakSlot(rmode)) {
   4428     return SlotsBuffer::DEBUG_TARGET_SLOT;
   4429   } else if (RelocInfo::IsJSReturn(rmode)) {
   4430     return SlotsBuffer::JS_RETURN_SLOT;
   4431   }
   4432   UNREACHABLE();
   4433   return SlotsBuffer::NUMBER_OF_SLOT_TYPES;
   4434 }
   4435 
   4436 
   4437 void MarkCompactCollector::RecordRelocSlot(RelocInfo* rinfo, Object* target) {
   4438   Page* target_page = Page::FromAddress(reinterpret_cast<Address>(target));
   4439   RelocInfo::Mode rmode = rinfo->rmode();
   4440   if (target_page->IsEvacuationCandidate() &&
   4441       (rinfo->host() == NULL ||
   4442        !ShouldSkipEvacuationSlotRecording(rinfo->host()))) {
   4443     bool success;
   4444     if (RelocInfo::IsEmbeddedObject(rmode) && rinfo->IsInConstantPool()) {
   4445       // This doesn't need to be typed since it is just a normal heap pointer.
   4446       Object** target_pointer =
   4447           reinterpret_cast<Object**>(rinfo->constant_pool_entry_address());
   4448       success = SlotsBuffer::AddTo(
   4449           &slots_buffer_allocator_, target_page->slots_buffer_address(),
   4450           target_pointer, SlotsBuffer::FAIL_ON_OVERFLOW);
   4451     } else if (RelocInfo::IsCodeTarget(rmode) && rinfo->IsInConstantPool()) {
   4452       success = SlotsBuffer::AddTo(
   4453           &slots_buffer_allocator_, target_page->slots_buffer_address(),
   4454           SlotsBuffer::CODE_ENTRY_SLOT, rinfo->constant_pool_entry_address(),
   4455           SlotsBuffer::FAIL_ON_OVERFLOW);
   4456     } else {
   4457       success = SlotsBuffer::AddTo(
   4458           &slots_buffer_allocator_, target_page->slots_buffer_address(),
   4459           SlotTypeForRMode(rmode), rinfo->pc(), SlotsBuffer::FAIL_ON_OVERFLOW);
   4460     }
   4461     if (!success) {
   4462       EvictEvacuationCandidate(target_page);
   4463     }
   4464   }
   4465 }
   4466 
   4467 
   4468 void MarkCompactCollector::RecordCodeEntrySlot(Address slot, Code* target) {
   4469   Page* target_page = Page::FromAddress(reinterpret_cast<Address>(target));
   4470   if (target_page->IsEvacuationCandidate() &&
   4471       !ShouldSkipEvacuationSlotRecording(reinterpret_cast<Object**>(slot))) {
   4472     if (!SlotsBuffer::AddTo(&slots_buffer_allocator_,
   4473                             target_page->slots_buffer_address(),
   4474                             SlotsBuffer::CODE_ENTRY_SLOT, slot,
   4475                             SlotsBuffer::FAIL_ON_OVERFLOW)) {
   4476       EvictEvacuationCandidate(target_page);
   4477     }
   4478   }
   4479 }
   4480 
   4481 
   4482 void MarkCompactCollector::RecordCodeTargetPatch(Address pc, Code* target) {
   4483   DCHECK(heap()->gc_state() == Heap::MARK_COMPACT);
   4484   if (is_compacting()) {
   4485     Code* host =
   4486         isolate()->inner_pointer_to_code_cache()->GcSafeFindCodeForInnerPointer(
   4487             pc);
   4488     MarkBit mark_bit = Marking::MarkBitFrom(host);
   4489     if (Marking::IsBlack(mark_bit)) {
   4490       RelocInfo rinfo(pc, RelocInfo::CODE_TARGET, 0, host);
   4491       RecordRelocSlot(&rinfo, target);
   4492     }
   4493   }
   4494 }
   4495 
   4496 
   4497 static inline SlotsBuffer::SlotType DecodeSlotType(
   4498     SlotsBuffer::ObjectSlot slot) {
   4499   return static_cast<SlotsBuffer::SlotType>(reinterpret_cast<intptr_t>(slot));
   4500 }
   4501 
   4502 
   4503 void SlotsBuffer::UpdateSlots(Heap* heap) {
   4504   PointersUpdatingVisitor v(heap);
   4505 
   4506   for (int slot_idx = 0; slot_idx < idx_; ++slot_idx) {
   4507     ObjectSlot slot = slots_[slot_idx];
   4508     if (!IsTypedSlot(slot)) {
   4509       PointersUpdatingVisitor::UpdateSlot(heap, slot);
   4510     } else {
   4511       ++slot_idx;
   4512       DCHECK(slot_idx < idx_);
   4513       UpdateSlot(heap->isolate(), &v, DecodeSlotType(slot),
   4514                  reinterpret_cast<Address>(slots_[slot_idx]));
   4515     }
   4516   }
   4517 }
   4518 
   4519 
   4520 void SlotsBuffer::UpdateSlotsWithFilter(Heap* heap) {
   4521   PointersUpdatingVisitor v(heap);
   4522 
   4523   for (int slot_idx = 0; slot_idx < idx_; ++slot_idx) {
   4524     ObjectSlot slot = slots_[slot_idx];
   4525     if (!IsTypedSlot(slot)) {
   4526       if (!IsOnInvalidatedCodeObject(reinterpret_cast<Address>(slot))) {
   4527         PointersUpdatingVisitor::UpdateSlot(heap, slot);
   4528       }
   4529     } else {
   4530       ++slot_idx;
   4531       DCHECK(slot_idx < idx_);
   4532       Address pc = reinterpret_cast<Address>(slots_[slot_idx]);
   4533       if (!IsOnInvalidatedCodeObject(pc)) {
   4534         UpdateSlot(heap->isolate(), &v, DecodeSlotType(slot),
   4535                    reinterpret_cast<Address>(slots_[slot_idx]));
   4536       }
   4537     }
   4538   }
   4539 }
   4540 
   4541 
   4542 SlotsBuffer* SlotsBufferAllocator::AllocateBuffer(SlotsBuffer* next_buffer) {
   4543   return new SlotsBuffer(next_buffer);
   4544 }
   4545 
   4546 
   4547 void SlotsBufferAllocator::DeallocateBuffer(SlotsBuffer* buffer) {
   4548   delete buffer;
   4549 }
   4550 
   4551 
   4552 void SlotsBufferAllocator::DeallocateChain(SlotsBuffer** buffer_address) {
   4553   SlotsBuffer* buffer = *buffer_address;
   4554   while (buffer != NULL) {
   4555     SlotsBuffer* next_buffer = buffer->next();
   4556     DeallocateBuffer(buffer);
   4557     buffer = next_buffer;
   4558   }
   4559   *buffer_address = NULL;
   4560 }
   4561 }
   4562 }  // namespace v8::internal
   4563