Home | History | Annotate | Download | only in arm64
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "codegen_arm64.h"
     18 
     19 #include <inttypes.h>
     20 
     21 #include <string>
     22 
     23 #include "dex/compiler_internals.h"
     24 #include "dex/quick/mir_to_lir-inl.h"
     25 #include "dex/reg_storage_eq.h"
     26 
     27 namespace art {
     28 
     29 static constexpr RegStorage core_regs_arr[] =
     30     {rs_w0, rs_w1, rs_w2, rs_w3, rs_w4, rs_w5, rs_w6, rs_w7,
     31      rs_w8, rs_w9, rs_w10, rs_w11, rs_w12, rs_w13, rs_w14, rs_w15,
     32      rs_w16, rs_w17, rs_w18, rs_w19, rs_w20, rs_w21, rs_w22, rs_w23,
     33      rs_w24, rs_w25, rs_w26, rs_w27, rs_w28, rs_w29, rs_w30, rs_w31,
     34      rs_wzr};
     35 static constexpr RegStorage core64_regs_arr[] =
     36     {rs_x0, rs_x1, rs_x2, rs_x3, rs_x4, rs_x5, rs_x6, rs_x7,
     37      rs_x8, rs_x9, rs_x10, rs_x11, rs_x12, rs_x13, rs_x14, rs_x15,
     38      rs_x16, rs_x17, rs_x18, rs_x19, rs_x20, rs_x21, rs_x22, rs_x23,
     39      rs_x24, rs_x25, rs_x26, rs_x27, rs_x28, rs_x29, rs_x30, rs_x31,
     40      rs_xzr};
     41 static constexpr RegStorage sp_regs_arr[] =
     42     {rs_f0, rs_f1, rs_f2, rs_f3, rs_f4, rs_f5, rs_f6, rs_f7,
     43      rs_f8, rs_f9, rs_f10, rs_f11, rs_f12, rs_f13, rs_f14, rs_f15,
     44      rs_f16, rs_f17, rs_f18, rs_f19, rs_f20, rs_f21, rs_f22, rs_f23,
     45      rs_f24, rs_f25, rs_f26, rs_f27, rs_f28, rs_f29, rs_f30, rs_f31};
     46 static constexpr RegStorage dp_regs_arr[] =
     47     {rs_d0, rs_d1, rs_d2, rs_d3, rs_d4, rs_d5, rs_d6, rs_d7,
     48      rs_d8, rs_d9, rs_d10, rs_d11, rs_d12, rs_d13, rs_d14, rs_d15,
     49      rs_d16, rs_d17, rs_d18, rs_d19, rs_d20, rs_d21, rs_d22, rs_d23,
     50      rs_d24, rs_d25, rs_d26, rs_d27, rs_d28, rs_d29, rs_d30, rs_d31};
     51 // Note: we are not able to call to C function since rs_xSELF is a special register need to be
     52 // preserved but would be scratched by native functions follow aapcs64.
     53 static constexpr RegStorage reserved_regs_arr[] =
     54     {rs_wSUSPEND, rs_wSELF, rs_wsp, rs_wLR, rs_wzr};
     55 static constexpr RegStorage reserved64_regs_arr[] =
     56     {rs_xSUSPEND, rs_xSELF, rs_sp, rs_xLR, rs_xzr};
     57 static constexpr RegStorage core_temps_arr[] =
     58     {rs_w0, rs_w1, rs_w2, rs_w3, rs_w4, rs_w5, rs_w6, rs_w7,
     59      rs_w8, rs_w9, rs_w10, rs_w11, rs_w12, rs_w13, rs_w14, rs_w15, rs_w16,
     60      rs_w17};
     61 static constexpr RegStorage core64_temps_arr[] =
     62     {rs_x0, rs_x1, rs_x2, rs_x3, rs_x4, rs_x5, rs_x6, rs_x7,
     63      rs_x8, rs_x9, rs_x10, rs_x11, rs_x12, rs_x13, rs_x14, rs_x15, rs_x16,
     64      rs_x17};
     65 static constexpr RegStorage sp_temps_arr[] =
     66     {rs_f0, rs_f1, rs_f2, rs_f3, rs_f4, rs_f5, rs_f6, rs_f7,
     67      rs_f16, rs_f17, rs_f18, rs_f19, rs_f20, rs_f21, rs_f22, rs_f23,
     68      rs_f24, rs_f25, rs_f26, rs_f27, rs_f28, rs_f29, rs_f30, rs_f31};
     69 static constexpr RegStorage dp_temps_arr[] =
     70     {rs_d0, rs_d1, rs_d2, rs_d3, rs_d4, rs_d5, rs_d6, rs_d7,
     71      rs_d16, rs_d17, rs_d18, rs_d19, rs_d20, rs_d21, rs_d22, rs_d23,
     72      rs_d24, rs_d25, rs_d26, rs_d27, rs_d28, rs_d29, rs_d30, rs_d31};
     73 
     74 static constexpr ArrayRef<const RegStorage> core_regs(core_regs_arr);
     75 static constexpr ArrayRef<const RegStorage> core64_regs(core64_regs_arr);
     76 static constexpr ArrayRef<const RegStorage> sp_regs(sp_regs_arr);
     77 static constexpr ArrayRef<const RegStorage> dp_regs(dp_regs_arr);
     78 static constexpr ArrayRef<const RegStorage> reserved_regs(reserved_regs_arr);
     79 static constexpr ArrayRef<const RegStorage> reserved64_regs(reserved64_regs_arr);
     80 static constexpr ArrayRef<const RegStorage> core_temps(core_temps_arr);
     81 static constexpr ArrayRef<const RegStorage> core64_temps(core64_temps_arr);
     82 static constexpr ArrayRef<const RegStorage> sp_temps(sp_temps_arr);
     83 static constexpr ArrayRef<const RegStorage> dp_temps(dp_temps_arr);
     84 
     85 RegLocation Arm64Mir2Lir::LocCReturn() {
     86   return arm_loc_c_return;
     87 }
     88 
     89 RegLocation Arm64Mir2Lir::LocCReturnRef() {
     90   return arm_loc_c_return_ref;
     91 }
     92 
     93 RegLocation Arm64Mir2Lir::LocCReturnWide() {
     94   return arm_loc_c_return_wide;
     95 }
     96 
     97 RegLocation Arm64Mir2Lir::LocCReturnFloat() {
     98   return arm_loc_c_return_float;
     99 }
    100 
    101 RegLocation Arm64Mir2Lir::LocCReturnDouble() {
    102   return arm_loc_c_return_double;
    103 }
    104 
    105 // Return a target-dependent special register.
    106 RegStorage Arm64Mir2Lir::TargetReg(SpecialTargetRegister reg) {
    107   RegStorage res_reg = RegStorage::InvalidReg();
    108   switch (reg) {
    109     case kSelf: res_reg = rs_wSELF; break;
    110     case kSuspend: res_reg = rs_wSUSPEND; break;
    111     case kLr: res_reg =  rs_wLR; break;
    112     case kPc: res_reg = RegStorage::InvalidReg(); break;
    113     case kSp: res_reg =  rs_wsp; break;
    114     case kArg0: res_reg = rs_w0; break;
    115     case kArg1: res_reg = rs_w1; break;
    116     case kArg2: res_reg = rs_w2; break;
    117     case kArg3: res_reg = rs_w3; break;
    118     case kArg4: res_reg = rs_w4; break;
    119     case kArg5: res_reg = rs_w5; break;
    120     case kArg6: res_reg = rs_w6; break;
    121     case kArg7: res_reg = rs_w7; break;
    122     case kFArg0: res_reg = rs_f0; break;
    123     case kFArg1: res_reg = rs_f1; break;
    124     case kFArg2: res_reg = rs_f2; break;
    125     case kFArg3: res_reg = rs_f3; break;
    126     case kFArg4: res_reg = rs_f4; break;
    127     case kFArg5: res_reg = rs_f5; break;
    128     case kFArg6: res_reg = rs_f6; break;
    129     case kFArg7: res_reg = rs_f7; break;
    130     case kRet0: res_reg = rs_w0; break;
    131     case kRet1: res_reg = rs_w1; break;
    132     case kInvokeTgt: res_reg = rs_wLR; break;
    133     case kHiddenArg: res_reg = rs_wIP1; break;
    134     case kHiddenFpArg: res_reg = RegStorage::InvalidReg(); break;
    135     case kCount: res_reg = RegStorage::InvalidReg(); break;
    136     default: res_reg = RegStorage::InvalidReg();
    137   }
    138   return res_reg;
    139 }
    140 
    141 /*
    142  * Decode the register id. This routine makes assumptions on the encoding made by RegStorage.
    143  */
    144 ResourceMask Arm64Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
    145   // TODO(Arm64): this function depends too much on the internal RegStorage encoding. Refactor.
    146 
    147   // Check if the shape mask is zero (i.e. invalid).
    148   if (UNLIKELY(reg == rs_wzr || reg == rs_xzr)) {
    149     // The zero register is not a true register. It is just an immediate zero.
    150     return kEncodeNone;
    151   }
    152 
    153   return ResourceMask::Bit(
    154       // FP register starts at bit position 32.
    155       (reg.IsFloat() ? kArm64FPReg0 : 0) + reg.GetRegNum());
    156 }
    157 
    158 ResourceMask Arm64Mir2Lir::GetPCUseDefEncoding() const {
    159   // Note: On arm64, we are not able to set pc except branch instructions, which is regarded as a
    160   //       kind of barrier. All other instructions only use pc, which has no dependency between any
    161   //       of them. So it is fine to just return kEncodeNone here.
    162   return kEncodeNone;
    163 }
    164 
    165 // Arm64 specific setup.  TODO: inline?:
    166 void Arm64Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
    167                                             ResourceMask* use_mask, ResourceMask* def_mask) {
    168   DCHECK_EQ(cu_->instruction_set, kArm64);
    169   DCHECK(!lir->flags.use_def_invalid);
    170 
    171   // Note: REG_USE_PC is ignored, the reason is the same with what we do in GetPCUseDefEncoding().
    172   // These flags are somewhat uncommon - bypass if we can.
    173   if ((flags & (REG_DEF_SP | REG_USE_SP | REG_DEF_LR)) != 0) {
    174     if (flags & REG_DEF_SP) {
    175       def_mask->SetBit(kArm64RegSP);
    176     }
    177 
    178     if (flags & REG_USE_SP) {
    179       use_mask->SetBit(kArm64RegSP);
    180     }
    181 
    182     if (flags & REG_DEF_LR) {
    183       def_mask->SetBit(kArm64RegLR);
    184     }
    185   }
    186 }
    187 
    188 ArmConditionCode Arm64Mir2Lir::ArmConditionEncoding(ConditionCode ccode) {
    189   ArmConditionCode res;
    190   switch (ccode) {
    191     case kCondEq: res = kArmCondEq; break;
    192     case kCondNe: res = kArmCondNe; break;
    193     case kCondCs: res = kArmCondCs; break;
    194     case kCondCc: res = kArmCondCc; break;
    195     case kCondUlt: res = kArmCondCc; break;
    196     case kCondUge: res = kArmCondCs; break;
    197     case kCondMi: res = kArmCondMi; break;
    198     case kCondPl: res = kArmCondPl; break;
    199     case kCondVs: res = kArmCondVs; break;
    200     case kCondVc: res = kArmCondVc; break;
    201     case kCondHi: res = kArmCondHi; break;
    202     case kCondLs: res = kArmCondLs; break;
    203     case kCondGe: res = kArmCondGe; break;
    204     case kCondLt: res = kArmCondLt; break;
    205     case kCondGt: res = kArmCondGt; break;
    206     case kCondLe: res = kArmCondLe; break;
    207     case kCondAl: res = kArmCondAl; break;
    208     case kCondNv: res = kArmCondNv; break;
    209     default:
    210       LOG(FATAL) << "Bad condition code " << ccode;
    211       res = static_cast<ArmConditionCode>(0);  // Quiet gcc
    212   }
    213   return res;
    214 }
    215 
    216 static const char *shift_names[4] = {
    217   "lsl",
    218   "lsr",
    219   "asr",
    220   "ror"
    221 };
    222 
    223 static const char* extend_names[8] = {
    224   "uxtb",
    225   "uxth",
    226   "uxtw",
    227   "uxtx",
    228   "sxtb",
    229   "sxth",
    230   "sxtw",
    231   "sxtx",
    232 };
    233 
    234 /* Decode and print a register extension (e.g. ", uxtb #1") */
    235 static void DecodeRegExtendOrShift(int operand, char *buf, size_t buf_size) {
    236   if ((operand & (1 << 6)) == 0) {
    237     const char *shift_name = shift_names[(operand >> 7) & 0x3];
    238     int amount = operand & 0x3f;
    239     snprintf(buf, buf_size, ", %s #%d", shift_name, amount);
    240   } else {
    241     const char *extend_name = extend_names[(operand >> 3) & 0x7];
    242     int amount = operand & 0x7;
    243     if (amount == 0) {
    244       snprintf(buf, buf_size, ", %s", extend_name);
    245     } else {
    246       snprintf(buf, buf_size, ", %s #%d", extend_name, amount);
    247     }
    248   }
    249 }
    250 
    251 #define BIT_MASK(w) ((UINT64_C(1) << (w)) - UINT64_C(1))
    252 
    253 static uint64_t RotateRight(uint64_t value, unsigned rotate, unsigned width) {
    254   DCHECK_LE(width, 64U);
    255   rotate &= 63;
    256   value = value & BIT_MASK(width);
    257   return ((value & BIT_MASK(rotate)) << (width - rotate)) | (value >> rotate);
    258 }
    259 
    260 static uint64_t RepeatBitsAcrossReg(bool is_wide, uint64_t value, unsigned width) {
    261   unsigned i;
    262   unsigned reg_size = (is_wide) ? 64 : 32;
    263   uint64_t result = value & BIT_MASK(width);
    264   for (i = width; i < reg_size; i *= 2) {
    265     result |= (result << i);
    266   }
    267   DCHECK_EQ(i, reg_size);
    268   return result;
    269 }
    270 
    271 /**
    272  * @brief Decode an immediate in the form required by logical instructions.
    273  *
    274  * @param is_wide Whether @p value encodes a 64-bit (as opposed to 32-bit) immediate.
    275  * @param value The encoded logical immediates that is to be decoded.
    276  * @return The decoded logical immediate.
    277  * @note This is the inverse of Arm64Mir2Lir::EncodeLogicalImmediate().
    278  */
    279 uint64_t Arm64Mir2Lir::DecodeLogicalImmediate(bool is_wide, int value) {
    280   unsigned n     = (value >> 12) & 0x01;
    281   unsigned imm_r = (value >>  6) & 0x3f;
    282   unsigned imm_s = (value >>  0) & 0x3f;
    283 
    284   // An integer is constructed from the n, imm_s and imm_r bits according to
    285   // the following table:
    286   //
    287   // N   imms immr  size S             R
    288   // 1 ssssss rrrrrr 64  UInt(ssssss) UInt(rrrrrr)
    289   // 0 0sssss xrrrrr 32  UInt(sssss)  UInt(rrrrr)
    290   // 0 10ssss xxrrrr 16  UInt(ssss)   UInt(rrrr)
    291   // 0 110sss xxxrrr 8   UInt(sss)    UInt(rrr)
    292   // 0 1110ss xxxxrr 4   UInt(ss)     UInt(rr)
    293   // 0 11110s xxxxxr 2   UInt(s)      UInt(r)
    294   // (s bits must not be all set)
    295   //
    296   // A pattern is constructed of size bits, where the least significant S+1
    297   // bits are set. The pattern is rotated right by R, and repeated across a
    298   // 32 or 64-bit value, depending on destination register width.
    299 
    300   if (n == 1) {
    301     DCHECK_NE(imm_s, 0x3fU);
    302     uint64_t bits = BIT_MASK(imm_s + 1);
    303     return RotateRight(bits, imm_r, 64);
    304   } else {
    305     DCHECK_NE((imm_s >> 1), 0x1fU);
    306     for (unsigned width = 0x20; width >= 0x2; width >>= 1) {
    307       if ((imm_s & width) == 0) {
    308         unsigned mask = (unsigned)(width - 1);
    309         DCHECK_NE((imm_s & mask), mask);
    310         uint64_t bits = BIT_MASK((imm_s & mask) + 1);
    311         return RepeatBitsAcrossReg(is_wide, RotateRight(bits, imm_r & mask, width), width);
    312       }
    313     }
    314   }
    315   return 0;
    316 }
    317 
    318 /**
    319  * @brief Decode an 8-bit single point number encoded with EncodeImmSingle().
    320  */
    321 static float DecodeImmSingle(uint8_t small_float) {
    322   int mantissa = (small_float & 0x0f) + 0x10;
    323   int sign = ((small_float & 0x80) == 0) ? 1 : -1;
    324   float signed_mantissa = static_cast<float>(sign*mantissa);
    325   int exponent = (((small_float >> 4) & 0x7) + 4) & 0x7;
    326   return signed_mantissa*static_cast<float>(1 << exponent)*0.0078125f;
    327 }
    328 
    329 static const char* cc_names[] = {"eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc",
    330                                  "hi", "ls", "ge", "lt", "gt", "le", "al", "nv"};
    331 /*
    332  * Interpret a format string and build a string no longer than size
    333  * See format key in assemble_arm64.cc.
    334  */
    335 std::string Arm64Mir2Lir::BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) {
    336   std::string buf;
    337   const char* fmt_end = &fmt[strlen(fmt)];
    338   char tbuf[256];
    339   const char* name;
    340   char nc;
    341   while (fmt < fmt_end) {
    342     int operand;
    343     if (*fmt == '!') {
    344       fmt++;
    345       DCHECK_LT(fmt, fmt_end);
    346       nc = *fmt++;
    347       if (nc == '!') {
    348         strcpy(tbuf, "!");
    349       } else {
    350          DCHECK_LT(fmt, fmt_end);
    351          DCHECK_LT(static_cast<unsigned>(nc-'0'), 4U);
    352          operand = lir->operands[nc-'0'];
    353          switch (*fmt++) {
    354            case 'e':  {
    355                // Omit ", uxtw #0" in strings like "add w0, w1, w3, uxtw #0" and
    356                // ", uxtx #0" in strings like "add x0, x1, x3, uxtx #0"
    357                int omittable = ((IS_WIDE(lir->opcode)) ? EncodeExtend(kA64Uxtw, 0) :
    358                                 EncodeExtend(kA64Uxtw, 0));
    359                if (LIKELY(operand == omittable)) {
    360                  strcpy(tbuf, "");
    361                } else {
    362                  DecodeRegExtendOrShift(operand, tbuf, arraysize(tbuf));
    363                }
    364              }
    365              break;
    366            case 'o':
    367              // Omit ", lsl #0"
    368              if (LIKELY(operand == EncodeShift(kA64Lsl, 0))) {
    369                strcpy(tbuf, "");
    370              } else {
    371                DecodeRegExtendOrShift(operand, tbuf, arraysize(tbuf));
    372              }
    373              break;
    374            case 'B':
    375              switch (operand) {
    376                case kSY:
    377                  name = "sy";
    378                  break;
    379                case kST:
    380                  name = "st";
    381                  break;
    382                case kISH:
    383                  name = "ish";
    384                  break;
    385                case kISHST:
    386                  name = "ishst";
    387                  break;
    388                case kNSH:
    389                  name = "nsh";
    390                  break;
    391                case kNSHST:
    392                  name = "shst";
    393                  break;
    394                default:
    395                  name = "DecodeError2";
    396                  break;
    397              }
    398              strcpy(tbuf, name);
    399              break;
    400            case 's':
    401              snprintf(tbuf, arraysize(tbuf), "s%d", operand & RegStorage::kRegNumMask);
    402              break;
    403            case 'S':
    404              snprintf(tbuf, arraysize(tbuf), "d%d", operand & RegStorage::kRegNumMask);
    405              break;
    406            case 'f':
    407              snprintf(tbuf, arraysize(tbuf), "%c%d", (IS_FWIDE(lir->opcode)) ? 'd' : 's',
    408                       operand & RegStorage::kRegNumMask);
    409              break;
    410            case 'l': {
    411                bool is_wide = IS_WIDE(lir->opcode);
    412                uint64_t imm = DecodeLogicalImmediate(is_wide, operand);
    413                snprintf(tbuf, arraysize(tbuf), "%" PRId64 " (%#" PRIx64 ")", imm, imm);
    414              }
    415              break;
    416            case 'I':
    417              snprintf(tbuf, arraysize(tbuf), "%f", DecodeImmSingle(operand));
    418              break;
    419            case 'M':
    420              if (LIKELY(operand == 0))
    421                strcpy(tbuf, "");
    422              else
    423                snprintf(tbuf, arraysize(tbuf), ", lsl #%d", 16*operand);
    424              break;
    425            case 'd':
    426              snprintf(tbuf, arraysize(tbuf), "%d", operand);
    427              break;
    428            case 'w':
    429              if (LIKELY(operand != rwzr))
    430                snprintf(tbuf, arraysize(tbuf), "w%d", operand & RegStorage::kRegNumMask);
    431              else
    432                strcpy(tbuf, "wzr");
    433              break;
    434            case 'W':
    435              if (LIKELY(operand != rwsp))
    436                snprintf(tbuf, arraysize(tbuf), "w%d", operand & RegStorage::kRegNumMask);
    437              else
    438                strcpy(tbuf, "wsp");
    439              break;
    440            case 'x':
    441              if (LIKELY(operand != rxzr))
    442                snprintf(tbuf, arraysize(tbuf), "x%d", operand & RegStorage::kRegNumMask);
    443              else
    444                strcpy(tbuf, "xzr");
    445              break;
    446            case 'X':
    447              if (LIKELY(operand != rsp))
    448                snprintf(tbuf, arraysize(tbuf), "x%d", operand & RegStorage::kRegNumMask);
    449              else
    450                strcpy(tbuf, "sp");
    451              break;
    452            case 'D':
    453              snprintf(tbuf, arraysize(tbuf), "%d", operand*((IS_WIDE(lir->opcode)) ? 8 : 4));
    454              break;
    455            case 'E':
    456              snprintf(tbuf, arraysize(tbuf), "%d", operand*4);
    457              break;
    458            case 'F':
    459              snprintf(tbuf, arraysize(tbuf), "%d", operand*2);
    460              break;
    461            case 'G':
    462              if (LIKELY(operand == 0))
    463                strcpy(tbuf, "");
    464              else
    465                strcpy(tbuf, (IS_WIDE(lir->opcode)) ? ", lsl #3" : ", lsl #2");
    466              break;
    467            case 'c':
    468              strcpy(tbuf, cc_names[operand]);
    469              break;
    470            case 't':
    471              snprintf(tbuf, arraysize(tbuf), "0x%08" PRIxPTR " (L%p)",
    472                  reinterpret_cast<uintptr_t>(base_addr) + lir->offset + (operand << 2),
    473                  lir->target);
    474              break;
    475            case 'r': {
    476                bool is_wide = IS_WIDE(lir->opcode);
    477                if (LIKELY(operand != rwzr && operand != rxzr)) {
    478                  snprintf(tbuf, arraysize(tbuf), "%c%d", (is_wide) ? 'x' : 'w',
    479                           operand & RegStorage::kRegNumMask);
    480                } else {
    481                  strcpy(tbuf, (is_wide) ? "xzr" : "wzr");
    482                }
    483              }
    484              break;
    485            case 'R': {
    486                bool is_wide = IS_WIDE(lir->opcode);
    487                if (LIKELY(operand != rwsp && operand != rsp)) {
    488                  snprintf(tbuf, arraysize(tbuf), "%c%d", (is_wide) ? 'x' : 'w',
    489                           operand & RegStorage::kRegNumMask);
    490                } else {
    491                  strcpy(tbuf, (is_wide) ? "sp" : "wsp");
    492                }
    493              }
    494              break;
    495            case 'p':
    496              snprintf(tbuf, arraysize(tbuf), ".+%d (addr %#" PRIxPTR ")", 4*operand,
    497                       reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4*operand);
    498              break;
    499            case 'T':
    500              if (LIKELY(operand == 0))
    501                strcpy(tbuf, "");
    502              else if (operand == 1)
    503                strcpy(tbuf, ", lsl #12");
    504              else
    505                strcpy(tbuf, ", DecodeError3");
    506              break;
    507            default:
    508              strcpy(tbuf, "DecodeError1");
    509              break;
    510         }
    511         buf += tbuf;
    512       }
    513     } else {
    514        buf += *fmt++;
    515     }
    516   }
    517   return buf;
    518 }
    519 
    520 void Arm64Mir2Lir::DumpResourceMask(LIR* arm_lir, const ResourceMask& mask, const char* prefix) {
    521   char buf[256];
    522   buf[0] = 0;
    523 
    524   if (mask.Equals(kEncodeAll)) {
    525     strcpy(buf, "all");
    526   } else {
    527     char num[8];
    528     int i;
    529 
    530     for (i = 0; i < kArm64RegEnd; i++) {
    531       if (mask.HasBit(i)) {
    532         snprintf(num, arraysize(num), "%d ", i);
    533         strcat(buf, num);
    534       }
    535     }
    536 
    537     if (mask.HasBit(ResourceMask::kCCode)) {
    538       strcat(buf, "cc ");
    539     }
    540     if (mask.HasBit(ResourceMask::kFPStatus)) {
    541       strcat(buf, "fpcc ");
    542     }
    543 
    544     /* Memory bits */
    545     if (arm_lir && (mask.HasBit(ResourceMask::kDalvikReg))) {
    546       snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
    547                DECODE_ALIAS_INFO_REG(arm_lir->flags.alias_info),
    548                DECODE_ALIAS_INFO_WIDE(arm_lir->flags.alias_info) ? "(+1)" : "");
    549     }
    550     if (mask.HasBit(ResourceMask::kLiteral)) {
    551       strcat(buf, "lit ");
    552     }
    553 
    554     if (mask.HasBit(ResourceMask::kHeapRef)) {
    555       strcat(buf, "heap ");
    556     }
    557     if (mask.HasBit(ResourceMask::kMustNotAlias)) {
    558       strcat(buf, "noalias ");
    559     }
    560   }
    561   if (buf[0]) {
    562     LOG(INFO) << prefix << ": " << buf;
    563   }
    564 }
    565 
    566 bool Arm64Mir2Lir::IsUnconditionalBranch(LIR* lir) {
    567   return (lir->opcode == kA64B1t);
    568 }
    569 
    570 RegisterClass Arm64Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
    571   if (UNLIKELY(is_volatile)) {
    572     // On arm64, fp register load/store is atomic only for single bytes.
    573     if (size != kSignedByte && size != kUnsignedByte) {
    574       return (size == kReference) ? kRefReg : kCoreReg;
    575     }
    576   }
    577   return RegClassBySize(size);
    578 }
    579 
    580 Arm64Mir2Lir::Arm64Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
    581     : Mir2Lir(cu, mir_graph, arena) {
    582   // Sanity check - make sure encoding map lines up.
    583   for (int i = 0; i < kA64Last; i++) {
    584     if (UNWIDE(Arm64Mir2Lir::EncodingMap[i].opcode) != i) {
    585       LOG(FATAL) << "Encoding order for " << Arm64Mir2Lir::EncodingMap[i].name
    586                  << " is wrong: expecting " << i << ", seeing "
    587                  << static_cast<int>(Arm64Mir2Lir::EncodingMap[i].opcode);
    588     }
    589   }
    590 }
    591 
    592 Mir2Lir* Arm64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
    593                             ArenaAllocator* const arena) {
    594   return new Arm64Mir2Lir(cu, mir_graph, arena);
    595 }
    596 
    597 void Arm64Mir2Lir::CompilerInitializeRegAlloc() {
    598   reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs, core64_regs, sp_regs, dp_regs,
    599                                         reserved_regs, reserved64_regs, core_temps, core64_temps,
    600                                         sp_temps, dp_temps);
    601 
    602   // Target-specific adjustments.
    603   // Alias single precision float registers to corresponding double registers.
    604   GrowableArray<RegisterInfo*>::Iterator fp_it(&reg_pool_->sp_regs_);
    605   for (RegisterInfo* info = fp_it.Next(); info != nullptr; info = fp_it.Next()) {
    606     int fp_reg_num = info->GetReg().GetRegNum();
    607     RegStorage dp_reg = RegStorage::FloatSolo64(fp_reg_num);
    608     RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
    609     // Double precision register's master storage should refer to itself.
    610     DCHECK_EQ(dp_reg_info, dp_reg_info->Master());
    611     // Redirect single precision's master storage to master.
    612     info->SetMaster(dp_reg_info);
    613     // Singles should show a single 32-bit mask bit, at first referring to the low half.
    614     DCHECK_EQ(info->StorageMask(), 0x1U);
    615   }
    616 
    617   // Alias 32bit W registers to corresponding 64bit X registers.
    618   GrowableArray<RegisterInfo*>::Iterator w_it(&reg_pool_->core_regs_);
    619   for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) {
    620     int x_reg_num = info->GetReg().GetRegNum();
    621     RegStorage x_reg = RegStorage::Solo64(x_reg_num);
    622     RegisterInfo* x_reg_info = GetRegInfo(x_reg);
    623     // 64bit X register's master storage should refer to itself.
    624     DCHECK_EQ(x_reg_info, x_reg_info->Master());
    625     // Redirect 32bit W master storage to 64bit X.
    626     info->SetMaster(x_reg_info);
    627     // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
    628     DCHECK_EQ(info->StorageMask(), 0x1U);
    629   }
    630 
    631   // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
    632   // TODO: adjust when we roll to hard float calling convention.
    633   reg_pool_->next_core_reg_ = 2;
    634   reg_pool_->next_sp_reg_ = 0;
    635   reg_pool_->next_dp_reg_ = 0;
    636 }
    637 
    638 /*
    639  * TUNING: is true leaf?  Can't just use METHOD_IS_LEAF to determine as some
    640  * instructions might call out to C/assembly helper functions.  Until
    641  * machinery is in place, always spill lr.
    642  */
    643 
    644 void Arm64Mir2Lir::AdjustSpillMask() {
    645   core_spill_mask_ |= (1 << rs_xLR.GetRegNum());
    646   num_core_spills_++;
    647 }
    648 
    649 /* Clobber all regs that might be used by an external C call */
    650 void Arm64Mir2Lir::ClobberCallerSave() {
    651   Clobber(rs_x0);
    652   Clobber(rs_x1);
    653   Clobber(rs_x2);
    654   Clobber(rs_x3);
    655   Clobber(rs_x4);
    656   Clobber(rs_x5);
    657   Clobber(rs_x6);
    658   Clobber(rs_x7);
    659   Clobber(rs_x8);
    660   Clobber(rs_x9);
    661   Clobber(rs_x10);
    662   Clobber(rs_x11);
    663   Clobber(rs_x12);
    664   Clobber(rs_x13);
    665   Clobber(rs_x14);
    666   Clobber(rs_x15);
    667   Clobber(rs_x16);
    668   Clobber(rs_x17);
    669   Clobber(rs_x30);
    670 
    671   Clobber(rs_f0);
    672   Clobber(rs_f1);
    673   Clobber(rs_f2);
    674   Clobber(rs_f3);
    675   Clobber(rs_f4);
    676   Clobber(rs_f5);
    677   Clobber(rs_f6);
    678   Clobber(rs_f7);
    679   Clobber(rs_f16);
    680   Clobber(rs_f17);
    681   Clobber(rs_f18);
    682   Clobber(rs_f19);
    683   Clobber(rs_f20);
    684   Clobber(rs_f21);
    685   Clobber(rs_f22);
    686   Clobber(rs_f23);
    687   Clobber(rs_f24);
    688   Clobber(rs_f25);
    689   Clobber(rs_f26);
    690   Clobber(rs_f27);
    691   Clobber(rs_f28);
    692   Clobber(rs_f29);
    693   Clobber(rs_f30);
    694   Clobber(rs_f31);
    695 }
    696 
    697 RegLocation Arm64Mir2Lir::GetReturnWideAlt() {
    698   RegLocation res = LocCReturnWide();
    699   res.reg.SetReg(rx2);
    700   res.reg.SetHighReg(rx3);
    701   Clobber(rs_x2);
    702   Clobber(rs_x3);
    703   MarkInUse(rs_x2);
    704   MarkInUse(rs_x3);
    705   MarkWide(res.reg);
    706   return res;
    707 }
    708 
    709 RegLocation Arm64Mir2Lir::GetReturnAlt() {
    710   RegLocation res = LocCReturn();
    711   res.reg.SetReg(rx1);
    712   Clobber(rs_x1);
    713   MarkInUse(rs_x1);
    714   return res;
    715 }
    716 
    717 /* To be used when explicitly managing register use */
    718 void Arm64Mir2Lir::LockCallTemps() {
    719   // TODO: needs cleanup.
    720   LockTemp(rs_x0);
    721   LockTemp(rs_x1);
    722   LockTemp(rs_x2);
    723   LockTemp(rs_x3);
    724   LockTemp(rs_x4);
    725   LockTemp(rs_x5);
    726   LockTemp(rs_x6);
    727   LockTemp(rs_x7);
    728   LockTemp(rs_f0);
    729   LockTemp(rs_f1);
    730   LockTemp(rs_f2);
    731   LockTemp(rs_f3);
    732   LockTemp(rs_f4);
    733   LockTemp(rs_f5);
    734   LockTemp(rs_f6);
    735   LockTemp(rs_f7);
    736 }
    737 
    738 /* To be used when explicitly managing register use */
    739 void Arm64Mir2Lir::FreeCallTemps() {
    740   // TODO: needs cleanup.
    741   FreeTemp(rs_x0);
    742   FreeTemp(rs_x1);
    743   FreeTemp(rs_x2);
    744   FreeTemp(rs_x3);
    745   FreeTemp(rs_x4);
    746   FreeTemp(rs_x5);
    747   FreeTemp(rs_x6);
    748   FreeTemp(rs_x7);
    749   FreeTemp(rs_f0);
    750   FreeTemp(rs_f1);
    751   FreeTemp(rs_f2);
    752   FreeTemp(rs_f3);
    753   FreeTemp(rs_f4);
    754   FreeTemp(rs_f5);
    755   FreeTemp(rs_f6);
    756   FreeTemp(rs_f7);
    757   FreeTemp(TargetReg(kHiddenArg));
    758 }
    759 
    760 RegStorage Arm64Mir2Lir::LoadHelper(QuickEntrypointEnum trampoline) {
    761   // TODO(Arm64): use LoadWordDisp instead.
    762   //   e.g. LoadWordDisp(rs_rA64_SELF, offset.Int32Value(), rs_rA64_LR);
    763   LoadBaseDisp(rs_xSELF, GetThreadOffset<8>(trampoline).Int32Value(), rs_xLR, k64, kNotVolatile);
    764   return rs_xLR;
    765 }
    766 
    767 LIR* Arm64Mir2Lir::CheckSuspendUsingLoad() {
    768   RegStorage tmp = rs_x0;
    769   LoadWordDisp(rs_xSELF, Thread::ThreadSuspendTriggerOffset<8>().Int32Value(), tmp);
    770   LIR* load2 = LoadWordDisp(tmp, 0, tmp);
    771   return load2;
    772 }
    773 
    774 uint64_t Arm64Mir2Lir::GetTargetInstFlags(int opcode) {
    775   DCHECK(!IsPseudoLirOp(opcode));
    776   return Arm64Mir2Lir::EncodingMap[UNWIDE(opcode)].flags;
    777 }
    778 
    779 const char* Arm64Mir2Lir::GetTargetInstName(int opcode) {
    780   DCHECK(!IsPseudoLirOp(opcode));
    781   return Arm64Mir2Lir::EncodingMap[UNWIDE(opcode)].name;
    782 }
    783 
    784 const char* Arm64Mir2Lir::GetTargetInstFmt(int opcode) {
    785   DCHECK(!IsPseudoLirOp(opcode));
    786   return Arm64Mir2Lir::EncodingMap[UNWIDE(opcode)].fmt;
    787 }
    788 
    789 RegStorage Arm64Mir2Lir::InToRegStorageArm64Mapper::GetNextReg(bool is_double_or_float,
    790                                                                bool is_wide,
    791                                                                bool is_ref) {
    792   const RegStorage coreArgMappingToPhysicalReg[] =
    793       {rs_x1, rs_x2, rs_x3, rs_x4, rs_x5, rs_x6, rs_x7};
    794   const int coreArgMappingToPhysicalRegSize =
    795       sizeof(coreArgMappingToPhysicalReg) / sizeof(RegStorage);
    796   const RegStorage fpArgMappingToPhysicalReg[] =
    797       {rs_f0, rs_f1, rs_f2, rs_f3, rs_f4, rs_f5, rs_f6, rs_f7};
    798   const int fpArgMappingToPhysicalRegSize =
    799       sizeof(fpArgMappingToPhysicalReg) / sizeof(RegStorage);
    800 
    801   RegStorage result = RegStorage::InvalidReg();
    802   if (is_double_or_float) {
    803     if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
    804       DCHECK(!is_ref);
    805       result = fpArgMappingToPhysicalReg[cur_fp_reg_++];
    806       if (result.Valid()) {
    807         // TODO: switching between widths remains a bit ugly.  Better way?
    808         int res_reg = result.GetReg();
    809         result = is_wide ? RegStorage::FloatSolo64(res_reg) : RegStorage::FloatSolo32(res_reg);
    810       }
    811     }
    812   } else {
    813     if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
    814       result = coreArgMappingToPhysicalReg[cur_core_reg_++];
    815       if (result.Valid()) {
    816         // TODO: switching between widths remains a bit ugly.  Better way?
    817         int res_reg = result.GetReg();
    818         DCHECK(!(is_wide && is_ref));
    819         result = (is_wide || is_ref) ? RegStorage::Solo64(res_reg) : RegStorage::Solo32(res_reg);
    820       }
    821     }
    822   }
    823   return result;
    824 }
    825 
    826 RegStorage Arm64Mir2Lir::InToRegStorageMapping::Get(int in_position) {
    827   DCHECK(IsInitialized());
    828   auto res = mapping_.find(in_position);
    829   return res != mapping_.end() ? res->second : RegStorage::InvalidReg();
    830 }
    831 
    832 void Arm64Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count,
    833                                                      InToRegStorageMapper* mapper) {
    834   DCHECK(mapper != nullptr);
    835   max_mapped_in_ = -1;
    836   is_there_stack_mapped_ = false;
    837   for (int in_position = 0; in_position < count; in_position++) {
    838      RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp,
    839                                          arg_locs[in_position].wide,
    840                                          arg_locs[in_position].ref);
    841      if (reg.Valid()) {
    842        mapping_[in_position] = reg;
    843        if (arg_locs[in_position].wide) {
    844          // We covered 2 args, so skip the next one
    845          in_position++;
    846        }
    847        max_mapped_in_ = std::max(max_mapped_in_, in_position);
    848      } else {
    849        is_there_stack_mapped_ = true;
    850      }
    851   }
    852   initialized_ = true;
    853 }
    854 
    855 
    856 // Deprecate.  Use the new mechanism.
    857 // TODO(Arm64): reuse info in QuickArgumentVisitor?
    858 static RegStorage GetArgPhysicalReg(RegLocation* loc, int* num_gpr_used, int* num_fpr_used,
    859                                     OpSize* op_size) {
    860   if (loc->fp) {
    861     int n = *num_fpr_used;
    862     if (n < 8) {
    863       *num_fpr_used = n + 1;
    864       RegStorage::RegStorageKind reg_kind;
    865       if (loc->wide) {
    866         *op_size = kDouble;
    867         reg_kind = RegStorage::k64BitSolo;
    868       } else {
    869         *op_size = kSingle;
    870         reg_kind = RegStorage::k32BitSolo;
    871       }
    872       return RegStorage(RegStorage::kValid | reg_kind | RegStorage::kFloatingPoint | n);
    873     }
    874   } else {
    875     int n = *num_gpr_used;
    876     if (n < 8) {
    877       *num_gpr_used = n + 1;
    878       if (loc->wide || loc->ref) {
    879         *op_size = k64;
    880         return RegStorage::Solo64(n);
    881       } else {
    882         *op_size = k32;
    883         return RegStorage::Solo32(n);
    884       }
    885     }
    886   }
    887   *op_size = kWord;
    888   return RegStorage::InvalidReg();
    889 }
    890 
    891 RegStorage Arm64Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
    892   if (!in_to_reg_storage_mapping_.IsInitialized()) {
    893     int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
    894     RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg];
    895 
    896     InToRegStorageArm64Mapper mapper;
    897     in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper);
    898   }
    899   return in_to_reg_storage_mapping_.Get(arg_num);
    900 }
    901 
    902 
    903 /*
    904  * If there are any ins passed in registers that have not been promoted
    905  * to a callee-save register, flush them to the frame.  Perform initial
    906  * assignment of promoted arguments.
    907  *
    908  * ArgLocs is an array of location records describing the incoming arguments
    909  * with one location record per word of argument.
    910  */
    911 void Arm64Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
    912   int num_gpr_used = 1;
    913   int num_fpr_used = 0;
    914 
    915   /*
    916    * Dummy up a RegLocation for the incoming StackReference<mirror::ArtMethod>
    917    * It will attempt to keep kArg0 live (or copy it to home location
    918    * if promoted).
    919    */
    920   RegLocation rl_src = rl_method;
    921   rl_src.location = kLocPhysReg;
    922   rl_src.reg = TargetReg(kArg0, kRef);
    923   rl_src.home = false;
    924   MarkLive(rl_src);
    925   StoreValue(rl_method, rl_src);
    926   // If Method* has been promoted, explicitly flush
    927   if (rl_method.location == kLocPhysReg) {
    928     StoreRefDisp(TargetPtrReg(kSp), 0, rl_src.reg, kNotVolatile);
    929   }
    930 
    931   if (cu_->num_ins == 0) {
    932     return;
    933   }
    934 
    935   // Handle dalvik registers.
    936   ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
    937   int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
    938   for (int i = 0; i < cu_->num_ins; i++) {
    939     RegLocation* t_loc = &ArgLocs[i];
    940     OpSize op_size;
    941     RegStorage reg = GetArgPhysicalReg(t_loc, &num_gpr_used, &num_fpr_used, &op_size);
    942 
    943     if (reg.Valid()) {
    944       // If arriving in register.
    945 
    946       // We have already updated the arg location with promoted info
    947       // so we can be based on it.
    948       if (t_loc->location == kLocPhysReg) {
    949         // Just copy it.
    950         OpRegCopy(t_loc->reg, reg);
    951       } else {
    952         // Needs flush.
    953         if (t_loc->ref) {
    954           StoreRefDisp(TargetPtrReg(kSp), SRegOffset(start_vreg + i), reg, kNotVolatile);
    955         } else {
    956           StoreBaseDisp(TargetPtrReg(kSp), SRegOffset(start_vreg + i), reg, t_loc->wide ? k64 : k32,
    957               kNotVolatile);
    958         }
    959       }
    960     } else {
    961       // If arriving in frame & promoted.
    962       if (t_loc->location == kLocPhysReg) {
    963         if (t_loc->ref) {
    964           LoadRefDisp(TargetPtrReg(kSp), SRegOffset(start_vreg + i), t_loc->reg, kNotVolatile);
    965         } else {
    966           LoadBaseDisp(TargetPtrReg(kSp), SRegOffset(start_vreg + i), t_loc->reg,
    967                        t_loc->wide ? k64 : k32, kNotVolatile);
    968         }
    969       }
    970     }
    971     if (t_loc->wide) {
    972       // Increment i to skip the next one.
    973       i++;
    974     }
    975     //      if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) {
    976     //        OpRegCopy(RegStorage::Solo32(v_map->core_reg), reg);
    977     //      } else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) {
    978     //        OpRegCopy(RegStorage::Solo32(v_map->fp_reg), reg);
    979     //      } else {
    980     //        StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, op_size, kNotVolatile);
    981     //        if (reg.Is64Bit()) {
    982     //          if (SRegOffset(start_vreg + i) + 4 != SRegOffset(start_vreg + i + 1)) {
    983     //            LOG(FATAL) << "64 bit value stored in non-consecutive 4 bytes slots";
    984     //          }
    985     //          i += 1;
    986     //        }
    987     //      }
    988     //    } else {
    989     //      // If arriving in frame & promoted
    990     //      if (v_map->core_location == kLocPhysReg) {
    991     //        LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i),
    992     //                     RegStorage::Solo32(v_map->core_reg));
    993     //      }
    994     //      if (v_map->fp_location == kLocPhysReg) {
    995     //        LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i), RegStorage::Solo32(v_map->fp_reg));
    996     //      }
    997   }
    998 }
    999 
   1000 /*
   1001  * Load up to 5 arguments, the first three of which will be in
   1002  * kArg1 .. kArg3.  On entry kArg0 contains the current method pointer,
   1003  * and as part of the load sequence, it must be replaced with
   1004  * the target method pointer.
   1005  */
   1006 int Arm64Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
   1007                                        int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
   1008                                        const MethodReference& target_method,
   1009                                        uint32_t vtable_idx, uintptr_t direct_code,
   1010                                        uintptr_t direct_method, InvokeType type, bool skip_this) {
   1011   return GenDalvikArgsRange(info,
   1012                        call_state, pcrLabel, next_call_insn,
   1013                        target_method,
   1014                        vtable_idx, direct_code,
   1015                        direct_method, type, skip_this);
   1016 }
   1017 
   1018 /*
   1019  * May have 0+ arguments (also used for jumbo).  Note that
   1020  * source virtual registers may be in physical registers, so may
   1021  * need to be flushed to home location before copying.  This
   1022  * applies to arg3 and above (see below).
   1023  *
   1024  * FIXME: update comments.
   1025  *
   1026  * Two general strategies:
   1027  *    If < 20 arguments
   1028  *       Pass args 3-18 using vldm/vstm block copy
   1029  *       Pass arg0, arg1 & arg2 in kArg1-kArg3
   1030  *    If 20+ arguments
   1031  *       Pass args arg19+ using memcpy block copy
   1032  *       Pass arg0, arg1 & arg2 in kArg1-kArg3
   1033  *
   1034  */
   1035 int Arm64Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
   1036                                      LIR** pcrLabel, NextCallInsn next_call_insn,
   1037                                      const MethodReference& target_method,
   1038                                      uint32_t vtable_idx, uintptr_t direct_code,
   1039                                      uintptr_t direct_method, InvokeType type, bool skip_this) {
   1040   /* If no arguments, just return */
   1041   if (info->num_arg_words == 0)
   1042     return call_state;
   1043 
   1044   const int start_index = skip_this ? 1 : 0;
   1045 
   1046   InToRegStorageArm64Mapper mapper;
   1047   InToRegStorageMapping in_to_reg_storage_mapping;
   1048   in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper);
   1049   const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn();
   1050   int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + 1);
   1051 
   1052   // First of all, check whether it makes sense to use bulk copying.
   1053   // Bulk copying is done only for the range case.
   1054   // TODO: make a constant instead of 2
   1055   if (info->is_range && regs_left_to_pass_via_stack >= 2) {
   1056     // Scan the rest of the args - if in phys_reg flush to memory
   1057     for (int next_arg = last_mapped_in + 1; next_arg < info->num_arg_words;) {
   1058       RegLocation loc = info->args[next_arg];
   1059       if (loc.wide) {
   1060         loc = UpdateLocWide(loc);
   1061         if (loc.location == kLocPhysReg) {
   1062           ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
   1063           StoreBaseDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
   1064         }
   1065         next_arg += 2;
   1066       } else {
   1067         loc = UpdateLoc(loc);
   1068         if (loc.location == kLocPhysReg) {
   1069           ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
   1070           if (loc.ref) {
   1071             StoreRefDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, kNotVolatile);
   1072           } else {
   1073             StoreBaseDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k32,
   1074                           kNotVolatile);
   1075           }
   1076         }
   1077         next_arg++;
   1078       }
   1079     }
   1080 
   1081     // Logic below assumes that Method pointer is at offset zero from SP.
   1082     DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
   1083 
   1084     // The rest can be copied together
   1085     int start_offset = SRegOffset(info->args[last_mapped_in + 1].s_reg_low);
   1086     int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + 1,
   1087                                                    cu_->instruction_set);
   1088 
   1089     int current_src_offset = start_offset;
   1090     int current_dest_offset = outs_offset;
   1091 
   1092     // Only davik regs are accessed in this loop; no next_call_insn() calls.
   1093     ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
   1094     while (regs_left_to_pass_via_stack > 0) {
   1095       /*
   1096        * TODO: Improve by adding block copy for large number of arguments.  This
   1097        * should be done, if possible, as a target-depending helper.  For now, just
   1098        * copy a Dalvik vreg at a time.
   1099        */
   1100       // Moving 32-bits via general purpose register.
   1101       size_t bytes_to_move = sizeof(uint32_t);
   1102 
   1103       // Instead of allocating a new temp, simply reuse one of the registers being used
   1104       // for argument passing.
   1105       RegStorage temp = TargetReg(kArg3, kNotWide);
   1106 
   1107       // Now load the argument VR and store to the outs.
   1108       Load32Disp(TargetPtrReg(kSp), current_src_offset, temp);
   1109       Store32Disp(TargetPtrReg(kSp), current_dest_offset, temp);
   1110 
   1111       current_src_offset += bytes_to_move;
   1112       current_dest_offset += bytes_to_move;
   1113       regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
   1114     }
   1115     DCHECK_EQ(regs_left_to_pass_via_stack, 0);
   1116   }
   1117 
   1118   // Now handle rest not registers if they are
   1119   if (in_to_reg_storage_mapping.IsThereStackMapped()) {
   1120     RegStorage regWide = TargetReg(kArg3, kWide);
   1121     for (int i = start_index; i <= last_mapped_in + regs_left_to_pass_via_stack; i++) {
   1122       RegLocation rl_arg = info->args[i];
   1123       rl_arg = UpdateRawLoc(rl_arg);
   1124       RegStorage reg = in_to_reg_storage_mapping.Get(i);
   1125       if (!reg.Valid()) {
   1126         int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
   1127 
   1128         {
   1129           ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
   1130           if (rl_arg.wide) {
   1131             if (rl_arg.location == kLocPhysReg) {
   1132               StoreBaseDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, k64, kNotVolatile);
   1133             } else {
   1134               LoadValueDirectWideFixed(rl_arg, regWide);
   1135               StoreBaseDisp(TargetPtrReg(kSp), out_offset, regWide, k64, kNotVolatile);
   1136             }
   1137           } else {
   1138             if (rl_arg.location == kLocPhysReg) {
   1139               if (rl_arg.ref) {
   1140                 StoreRefDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, kNotVolatile);
   1141               } else {
   1142                 StoreBaseDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, k32, kNotVolatile);
   1143               }
   1144             } else {
   1145               if (rl_arg.ref) {
   1146                 RegStorage regSingle = TargetReg(kArg2, kRef);
   1147                 LoadValueDirectFixed(rl_arg, regSingle);
   1148                 StoreRefDisp(TargetPtrReg(kSp), out_offset, regSingle, kNotVolatile);
   1149               } else {
   1150                 RegStorage regSingle = TargetReg(kArg2, kNotWide);
   1151                 LoadValueDirectFixed(rl_arg, regSingle);
   1152                 StoreBaseDisp(TargetPtrReg(kSp), out_offset, regSingle, k32, kNotVolatile);
   1153               }
   1154             }
   1155           }
   1156         }
   1157         call_state = next_call_insn(cu_, info, call_state, target_method,
   1158                                     vtable_idx, direct_code, direct_method, type);
   1159       }
   1160       if (rl_arg.wide) {
   1161         i++;
   1162       }
   1163     }
   1164   }
   1165 
   1166   // Finish with mapped registers
   1167   for (int i = start_index; i <= last_mapped_in; i++) {
   1168     RegLocation rl_arg = info->args[i];
   1169     rl_arg = UpdateRawLoc(rl_arg);
   1170     RegStorage reg = in_to_reg_storage_mapping.Get(i);
   1171     if (reg.Valid()) {
   1172       if (rl_arg.wide) {
   1173         LoadValueDirectWideFixed(rl_arg, reg);
   1174       } else {
   1175         LoadValueDirectFixed(rl_arg, reg);
   1176       }
   1177       call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
   1178                                   direct_code, direct_method, type);
   1179     }
   1180     if (rl_arg.wide) {
   1181       i++;
   1182     }
   1183   }
   1184 
   1185   call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
   1186                            direct_code, direct_method, type);
   1187   if (pcrLabel) {
   1188     if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
   1189       *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
   1190     } else {
   1191       *pcrLabel = nullptr;
   1192       // In lieu of generating a check for kArg1 being null, we need to
   1193       // perform a load when doing implicit checks.
   1194       RegStorage tmp = AllocTemp();
   1195       Load32Disp(TargetReg(kArg1, kRef), 0, tmp);
   1196       MarkPossibleNullPointerException(info->opt_flags);
   1197       FreeTemp(tmp);
   1198     }
   1199   }
   1200   return call_state;
   1201 }
   1202 
   1203 }  // namespace art
   1204