Home | History | Annotate | Download | only in openssl
      1 /* Copyright (C) 1995-1997 Eric Young (eay (at) cryptsoft.com)
      2  * All rights reserved.
      3  *
      4  * This package is an SSL implementation written
      5  * by Eric Young (eay (at) cryptsoft.com).
      6  * The implementation was written so as to conform with Netscapes SSL.
      7  *
      8  * This library is free for commercial and non-commercial use as long as
      9  * the following conditions are aheared to.  The following conditions
     10  * apply to all code found in this distribution, be it the RC4, RSA,
     11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
     12  * included with this distribution is covered by the same copyright terms
     13  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
     14  *
     15  * Copyright remains Eric Young's, and as such any Copyright notices in
     16  * the code are not to be removed.
     17  * If this package is used in a product, Eric Young should be given attribution
     18  * as the author of the parts of the library used.
     19  * This can be in the form of a textual message at program startup or
     20  * in documentation (online or textual) provided with the package.
     21  *
     22  * Redistribution and use in source and binary forms, with or without
     23  * modification, are permitted provided that the following conditions
     24  * are met:
     25  * 1. Redistributions of source code must retain the copyright
     26  *    notice, this list of conditions and the following disclaimer.
     27  * 2. Redistributions in binary form must reproduce the above copyright
     28  *    notice, this list of conditions and the following disclaimer in the
     29  *    documentation and/or other materials provided with the distribution.
     30  * 3. All advertising materials mentioning features or use of this software
     31  *    must display the following acknowledgement:
     32  *    "This product includes cryptographic software written by
     33  *     Eric Young (eay (at) cryptsoft.com)"
     34  *    The word 'cryptographic' can be left out if the rouines from the library
     35  *    being used are not cryptographic related :-).
     36  * 4. If you include any Windows specific code (or a derivative thereof) from
     37  *    the apps directory (application code) you must include an acknowledgement:
     38  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
     39  *
     40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
     41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     50  * SUCH DAMAGE.
     51  *
     52  * The licence and distribution terms for any publically available version or
     53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
     54  * copied and put under another distribution licence
     55  * [including the GNU Public Licence.]
     56  */
     57 /* ====================================================================
     58  * Copyright (c) 1998-2006 The OpenSSL Project.  All rights reserved.
     59  *
     60  * Redistribution and use in source and binary forms, with or without
     61  * modification, are permitted provided that the following conditions
     62  * are met:
     63  *
     64  * 1. Redistributions of source code must retain the above copyright
     65  *    notice, this list of conditions and the following disclaimer.
     66  *
     67  * 2. Redistributions in binary form must reproduce the above copyright
     68  *    notice, this list of conditions and the following disclaimer in
     69  *    the documentation and/or other materials provided with the
     70  *    distribution.
     71  *
     72  * 3. All advertising materials mentioning features or use of this
     73  *    software must display the following acknowledgment:
     74  *    "This product includes software developed by the OpenSSL Project
     75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     76  *
     77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     78  *    endorse or promote products derived from this software without
     79  *    prior written permission. For written permission, please contact
     80  *    openssl-core (at) openssl.org.
     81  *
     82  * 5. Products derived from this software may not be called "OpenSSL"
     83  *    nor may "OpenSSL" appear in their names without prior written
     84  *    permission of the OpenSSL Project.
     85  *
     86  * 6. Redistributions of any form whatsoever must retain the following
     87  *    acknowledgment:
     88  *    "This product includes software developed by the OpenSSL Project
     89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     90  *
     91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
    100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
    102  * OF THE POSSIBILITY OF SUCH DAMAGE.
    103  * ====================================================================
    104  *
    105  * This product includes cryptographic software written by Eric Young
    106  * (eay (at) cryptsoft.com).  This product includes software written by Tim
    107  * Hudson (tjh (at) cryptsoft.com).
    108  *
    109  */
    110 /* ====================================================================
    111  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
    112  *
    113  * Portions of the attached software ("Contribution") are developed by
    114  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
    115  *
    116  * The Contribution is licensed pursuant to the Eric Young open source
    117  * license provided above.
    118  *
    119  * The binary polynomial arithmetic software is originally written by
    120  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
    121  * Laboratories. */
    122 
    123 #ifndef OPENSSL_HEADER_BN_H
    124 #define OPENSSL_HEADER_BN_H
    125 
    126 #include <openssl/base.h>
    127 
    128 #include <stdio.h>  /* for FILE* */
    129 
    130 #if defined(__cplusplus)
    131 extern "C" {
    132 #endif
    133 
    134 
    135 /* BN provides support for working with arbitary sized integers. For example,
    136  * although the largest integer supported by the compiler might be 64 bits, BN
    137  * will allow you to work with numbers until you run out of memory. */
    138 
    139 
    140 /* BN_ULONG is the native word size when working with big integers. */
    141 #if defined(OPENSSL_64_BIT)
    142 #define BN_ULONG uint64_t
    143 #define BN_BITS2 64
    144 #elif defined(OPENSSL_32_BIT)
    145 #define BN_ULONG uint32_t
    146 #define BN_BITS2 32
    147 #else
    148 #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
    149 #endif
    150 
    151 
    152 /* Allocation and freeing. */
    153 
    154 /* BN_new creates a new, allocated BIGNUM and initialises it. */
    155 OPENSSL_EXPORT BIGNUM *BN_new(void);
    156 
    157 /* BN_init initialises a stack allocated |BIGNUM|. */
    158 OPENSSL_EXPORT void BN_init(BIGNUM *bn);
    159 
    160 /* BN_free frees the data referenced by |bn| and, if |bn| was originally
    161  * allocated on the heap, frees |bn| also. */
    162 OPENSSL_EXPORT void BN_free(BIGNUM *bn);
    163 
    164 /* BN_clear_free erases and frees the data referenced by |bn| and, if |bn| was
    165  * originally allocated on the heap, frees |bn| also. */
    166 OPENSSL_EXPORT void BN_clear_free(BIGNUM *bn);
    167 
    168 /* BN_dup allocates a new BIGNUM and sets it equal to |src|. It returns the
    169  * allocated BIGNUM on success or NULL otherwise. */
    170 OPENSSL_EXPORT BIGNUM *BN_dup(const BIGNUM *src);
    171 
    172 /* BN_copy sets |dest| equal to |src| and returns |dest|. */
    173 OPENSSL_EXPORT BIGNUM *BN_copy(BIGNUM *dest, const BIGNUM *src);
    174 
    175 /* BN_clear sets |bn| to zero and erases the old data. */
    176 OPENSSL_EXPORT void BN_clear(BIGNUM *bn);
    177 
    178 /* BN_value_one returns a static BIGNUM with value 1. */
    179 OPENSSL_EXPORT const BIGNUM *BN_value_one(void);
    180 
    181 /* BN_with_flags initialises a stack allocated |BIGNUM| with pointers to the
    182  * contents of |in| but with |flags| ORed into the flags field.
    183  *
    184  * Note: the two BIGNUMs share state and so |out| should /not/ be passed to
    185  * |BN_free|. */
    186 OPENSSL_EXPORT void BN_with_flags(BIGNUM *out, const BIGNUM *in, int flags);
    187 
    188 
    189 /* Basic functions. */
    190 
    191 /* BN_num_bits returns the minimum number of bits needed to represent the
    192  * absolute value of |bn|. */
    193 OPENSSL_EXPORT unsigned BN_num_bits(const BIGNUM *bn);
    194 
    195 /* BN_num_bytes returns the minimum number of bytes needed to represent the
    196  * absolute value of |bn|. */
    197 OPENSSL_EXPORT unsigned BN_num_bytes(const BIGNUM *bn);
    198 
    199 /* BN_zero sets |bn| to zero. */
    200 OPENSSL_EXPORT void BN_zero(BIGNUM *bn);
    201 
    202 /* BN_one sets |bn| to one. It returns one on success or zero on allocation
    203  * failure. */
    204 OPENSSL_EXPORT int BN_one(BIGNUM *bn);
    205 
    206 /* BN_set_word sets |bn| to |value|. It returns one on success or zero on
    207  * allocation failure. */
    208 OPENSSL_EXPORT int BN_set_word(BIGNUM *bn, BN_ULONG value);
    209 
    210 /* BN_set_negative sets the sign of |bn|. */
    211 OPENSSL_EXPORT void BN_set_negative(BIGNUM *bn, int sign);
    212 
    213 /* BN_is_negative returns one if |bn| is negative and zero otherwise. */
    214 OPENSSL_EXPORT int BN_is_negative(const BIGNUM *bn);
    215 
    216 /* BN_get_flags returns |bn->flags| & |flags|. */
    217 OPENSSL_EXPORT int BN_get_flags(const BIGNUM *bn, int flags);
    218 
    219 /* BN_set_flags sets |flags| on |bn|. */
    220 OPENSSL_EXPORT void BN_set_flags(BIGNUM *bn, int flags);
    221 
    222 
    223 /* Conversion functions. */
    224 
    225 /* BN_bin2bn sets |*ret| to the value of |len| bytes from |in|, interpreted as
    226  * a big-endian number, and returns |ret|. If |ret| is NULL then a fresh
    227  * |BIGNUM| is allocated and returned. It returns NULL on allocation
    228  * failure. */
    229 OPENSSL_EXPORT BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret);
    230 
    231 /* BN_bn2bin serialises the absolute value of |in| to |out| as a big-endian
    232  * integer, which must have |BN_num_bytes| of space available. It returns the
    233  * number of bytes written. */
    234 OPENSSL_EXPORT size_t BN_bn2bin(const BIGNUM *in, uint8_t *out);
    235 
    236 /* BN_bn2bin_padded serialises the absolute value of |in| to |out| as a
    237  * big-endian integer. The integer is padded with leading zeros up to size
    238  * |len|. If |len| is smaller than |BN_num_bytes|, the function fails and
    239  * returns 0. Otherwise, it returns 1. */
    240 OPENSSL_EXPORT int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in);
    241 
    242 /* BN_bn2hex returns an allocated string that contains a NUL-terminated, hex
    243  * representation of |bn|. If |bn| is negative, the first char in the resulting
    244  * string will be '-'. Returns NULL on allocation failure. */
    245 OPENSSL_EXPORT char *BN_bn2hex(const BIGNUM *bn);
    246 
    247 /* BN_hex2bn parses the leading hex number from |in|, which may be proceeded by
    248  * a '-' to indicate a negative number and may contain trailing, non-hex data.
    249  * If |outp| is not NULL, it constructs a BIGNUM equal to the hex number and
    250  * stores it in |*outp|. If |*outp| is NULL then it allocates a new BIGNUM and
    251  * updates |*outp|. It returns the number of bytes of |in| processed or zero on
    252  * error. */
    253 OPENSSL_EXPORT int BN_hex2bn(BIGNUM **outp, const char *in);
    254 
    255 /* BN_bn2dec returns an allocated string that contains a NUL-terminated,
    256  * decimal representation of |bn|. If |bn| is negative, the first char in the
    257  * resulting string will be '-'. Returns NULL on allocation failure. */
    258 OPENSSL_EXPORT char *BN_bn2dec(const BIGNUM *a);
    259 
    260 /* BN_dec2bn parses the leading decimal number from |in|, which may be
    261  * proceeded by a '-' to indicate a negative number and may contain trailing,
    262  * non-decimal data. If |outp| is not NULL, it constructs a BIGNUM equal to the
    263  * decimal number and stores it in |*outp|. If |*outp| is NULL then it
    264  * allocates a new BIGNUM and updates |*outp|. It returns the number of bytes
    265  * of |in| processed or zero on error. */
    266 OPENSSL_EXPORT int BN_dec2bn(BIGNUM **outp, const char *in);
    267 
    268 /* BN_asc2bn acts like |BN_dec2bn| or |BN_hex2bn| depending on whether |in|
    269  * begins with "0X" or "0x" (indicating hex) or not (indicating decimal). A
    270  * leading '-' is still permitted and comes before the optional 0X/0x. It
    271  * returns one on success or zero on error. */
    272 OPENSSL_EXPORT int BN_asc2bn(BIGNUM **outp, const char *in);
    273 
    274 /* BN_print writes a hex encoding of |a| to |bio|. It returns one on success
    275  * and zero on error. */
    276 OPENSSL_EXPORT int BN_print(BIO *bio, const BIGNUM *a);
    277 
    278 /* BN_print_fp acts like |BIO_print|, but wraps |fp| in a |BIO| first. */
    279 OPENSSL_EXPORT int BN_print_fp(FILE *fp, const BIGNUM *a);
    280 
    281 /* BN_get_word returns the absolute value of |bn| as a single word. If |bn| is
    282  * too large to be represented as a single word, the maximum possible value
    283  * will be returned. */
    284 OPENSSL_EXPORT BN_ULONG BN_get_word(const BIGNUM *bn);
    285 
    286 
    287 /* Internal functions.
    288  *
    289  * These functions are useful for code that is doing low-level manipulations of
    290  * BIGNUM values. However, be sure that no other function in this file does
    291  * what you want before turning to these. */
    292 
    293 /* bn_correct_top decrements |bn->top| until |bn->d[top-1]| is non-zero or
    294  * until |top| is zero. */
    295 OPENSSL_EXPORT void bn_correct_top(BIGNUM *bn);
    296 
    297 /* bn_wexpand ensures that |bn| has at least |words| works of space without
    298  * altering its value. It returns one on success or zero on allocation
    299  * failure. */
    300 OPENSSL_EXPORT BIGNUM *bn_wexpand(BIGNUM *bn, unsigned words);
    301 
    302 
    303 /* BIGNUM pools.
    304  *
    305  * Certain BIGNUM operations need to use many temporary variables and
    306  * allocating and freeing them can be quite slow. Thus such opertions typically
    307  * take a |BN_CTX| parameter, which contains a pool of |BIGNUMs|. The |ctx|
    308  * argument to a public function may be NULL, in which case a local |BN_CTX|
    309  * will be created just for the lifetime of that call.
    310  *
    311  * A function must call |BN_CTX_start| first. Then, |BN_CTX_get| may be called
    312  * repeatedly to obtain temporary |BIGNUM|s. All |BN_CTX_get| calls must be made
    313  * before calling any other functions that use the |ctx| as an argument.
    314  *
    315  * Finally, |BN_CTX_end| must be called before returning from the function.
    316  * When |BN_CTX_end| is called, the |BIGNUM| pointers obtained from
    317  * |BN_CTX_get| become invalid. */
    318 
    319 /* BN_CTX_new returns a new, empty BN_CTX or NULL on allocation failure. */
    320 OPENSSL_EXPORT BN_CTX *BN_CTX_new(void);
    321 
    322 /* BN_CTX_free frees all BIGNUMs contained in |ctx| and then frees |ctx|
    323  * itself. */
    324 OPENSSL_EXPORT void BN_CTX_free(BN_CTX *ctx);
    325 
    326 /* BN_CTX_start "pushes" a new entry onto the |ctx| stack and allows future
    327  * calls to |BN_CTX_get|. */
    328 OPENSSL_EXPORT void BN_CTX_start(BN_CTX *ctx);
    329 
    330 /* BN_CTX_get returns a new |BIGNUM|, or NULL on allocation failure. Once
    331  * |BN_CTX_get| has returned NULL, all future calls will also return NULL until
    332  * |BN_CTX_end| is called. */
    333 OPENSSL_EXPORT BIGNUM *BN_CTX_get(BN_CTX *ctx);
    334 
    335 /* BN_CTX_end invalidates all |BIGNUM|s returned from |BN_CTX_get| since the
    336  * matching |BN_CTX_start| call. */
    337 OPENSSL_EXPORT void BN_CTX_end(BN_CTX *ctx);
    338 
    339 
    340 /* Simple arithmetic */
    341 
    342 /* BN_add sets |r| = |a| + |b|, where |r| may be the same pointer as either |a|
    343  * or |b|. It returns one on success and zero on allocation failure. */
    344 OPENSSL_EXPORT int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
    345 
    346 /* BN_uadd sets |r| = |a| + |b|, where |a| and |b| are non-negative and |r| may
    347  * be the same pointer as either |a| or |b|. It returns one on success and zero
    348  * on allocation failure. */
    349 OPENSSL_EXPORT int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
    350 
    351 /* BN_add_word adds |w| to |a|. It returns one on success and zero otherwise. */
    352 OPENSSL_EXPORT int BN_add_word(BIGNUM *a, BN_ULONG w);
    353 
    354 /* BN_sub sets |r| = |a| - |b|, where |r| must be a distinct pointer from |a|
    355  * and |b|. It returns one on success and zero on allocation failure. */
    356 OPENSSL_EXPORT int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
    357 
    358 /* BN_usub sets |r| = |a| - |b|, where |a| and |b| are non-negative integers,
    359  * |b| < |a| and |r| must be a distinct pointer from |a| and |b|. It returns
    360  * one on success and zero on allocation failure. */
    361 OPENSSL_EXPORT int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
    362 
    363 /* BN_sub_word subtracts |w| from |a|. It returns one on success and zero on
    364  * allocation failure. */
    365 OPENSSL_EXPORT int BN_sub_word(BIGNUM *a, BN_ULONG w);
    366 
    367 /* BN_mul sets |r| = |a| * |b|, where |r| may be the same pointer as |a| or
    368  * |b|. Returns one on success and zero otherwise. */
    369 OPENSSL_EXPORT int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    370                           BN_CTX *ctx);
    371 
    372 /* BN_mul_word sets |bn| = |bn| * |w|. It returns one on success or zero on
    373  * allocation failure. */
    374 OPENSSL_EXPORT int BN_mul_word(BIGNUM *bn, BN_ULONG w);
    375 
    376 /* BN_sqr sets |r| = |a|^2 (i.e. squares), where |r| may be the same pointer as
    377  * |a|. Returns one on success and zero otherwise. This is more efficient than
    378  * BN_mul(r, a, a, ctx). */
    379 OPENSSL_EXPORT int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
    380 
    381 /* BN_div divides |numerator| by |divisor| and places the result in |quotient|
    382  * and the remainder in |rem|. Either of |quotient| or |rem| may be NULL, in
    383  * which case the respective value is not returned. The result is rounded
    384  * towards zero; thus if |numerator| is negative, the remainder will be zero or
    385  * negative. It returns one on success or zero on error. */
    386 OPENSSL_EXPORT int BN_div(BIGNUM *quotient, BIGNUM *rem,
    387                           const BIGNUM *numerator, const BIGNUM *divisor,
    388                           BN_CTX *ctx);
    389 
    390 /* BN_div_word sets |numerator| = |numerator|/|divisor| and returns the
    391  * remainder or (BN_ULONG)-1 on error. */
    392 OPENSSL_EXPORT BN_ULONG BN_div_word(BIGNUM *numerator, BN_ULONG divisor);
    393 
    394 /* BN_sqrt sets |*out_sqrt| (which may be the same |BIGNUM| as |in|) to the
    395  * square root of |in|, using |ctx|. It returns one on success or zero on
    396  * error. Negative numbers and non-square numbers will result in an error with
    397  * appropriate errors on the error queue. */
    398 OPENSSL_EXPORT int BN_sqrt(BIGNUM *out_sqrt, const BIGNUM *in, BN_CTX *ctx);
    399 
    400 
    401 /* Comparison functions */
    402 
    403 /* BN_cmp returns a value less than, equal to or greater than zero if |a| is
    404  * less than, equal to or greater than |b|, respectively. */
    405 OPENSSL_EXPORT int BN_cmp(const BIGNUM *a, const BIGNUM *b);
    406 
    407 /* BN_ucmp returns a value less than, equal to or greater than zero if the
    408  * absolute value of |a| is less than, equal to or greater than the absolute
    409  * value of |b|, respectively. */
    410 OPENSSL_EXPORT int BN_ucmp(const BIGNUM *a, const BIGNUM *b);
    411 
    412 /* BN_abs_is_word returns one if the absolute value of |bn| equals |w| and zero
    413  * otherwise. */
    414 OPENSSL_EXPORT int BN_abs_is_word(const BIGNUM *bn, BN_ULONG w);
    415 
    416 /* BN_is_zero returns one if |bn| is zero and zero otherwise. */
    417 OPENSSL_EXPORT int BN_is_zero(const BIGNUM *bn);
    418 
    419 /* BN_is_one returns one if |bn| equals one and zero otherwise. */
    420 OPENSSL_EXPORT int BN_is_one(const BIGNUM *bn);
    421 
    422 /* BN_is_word returns one if |bn| is exactly |w| and zero otherwise. */
    423 OPENSSL_EXPORT int BN_is_word(const BIGNUM *bn, BN_ULONG w);
    424 
    425 /* BN_is_odd returns one if |bn| is odd and zero otherwise. */
    426 OPENSSL_EXPORT int BN_is_odd(const BIGNUM *bn);
    427 
    428 
    429 /* Bitwise operations. */
    430 
    431 /* BN_lshift sets |r| equal to |a| << n. The |a| and |r| arguments may be the
    432  * same |BIGNUM|. It returns one on success and zero on allocation failure. */
    433 OPENSSL_EXPORT int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);
    434 
    435 /* BN_lshift1 sets |r| equal to |a| << 1, where |r| and |a| may be the same
    436  * pointer. It returns one on success and zero on allocation failure. */
    437 OPENSSL_EXPORT int BN_lshift1(BIGNUM *r, const BIGNUM *a);
    438 
    439 /* BN_rshift sets |r| equal to |a| >> n, where |r| and |a| may be the same
    440  * pointer. It returns one on success and zero on allocation failure. */
    441 OPENSSL_EXPORT int BN_rshift(BIGNUM *r, const BIGNUM *a, int n);
    442 
    443 /* BN_rshift1 sets |r| equal to |a| >> 1, where |r| and |a| may be the same
    444  * pointer. It returns one on success and zero on allocation failure. */
    445 OPENSSL_EXPORT int BN_rshift1(BIGNUM *r, const BIGNUM *a);
    446 
    447 /* BN_set_bit sets the |n|th, least-significant bit in |a|. For example, if |a|
    448  * is 2 then setting bit zero will make it 3. It returns one on success or zero
    449  * on allocation failure. */
    450 OPENSSL_EXPORT int BN_set_bit(BIGNUM *a, int n);
    451 
    452 /* BN_clear_bit clears the |n|th, least-significant bit in |a|. For example, if
    453  * |a| is 3, clearing bit zero will make it two. It returns one on success or
    454  * zero on allocation failure. */
    455 OPENSSL_EXPORT int BN_clear_bit(BIGNUM *a, int n);
    456 
    457 /* BN_is_bit_set returns the value of the |n|th, least-significant bit in |a|,
    458  * or zero if the bit doesn't exist. */
    459 OPENSSL_EXPORT int BN_is_bit_set(const BIGNUM *a, int n);
    460 
    461 /* BN_mask_bits truncates |a| so that it is only |n| bits long. It returns one
    462  * on success or zero if |n| is greater than the length of |a| already. */
    463 OPENSSL_EXPORT int BN_mask_bits(BIGNUM *a, int n);
    464 
    465 
    466 /* Modulo arithmetic. */
    467 
    468 /* BN_mod_word returns |a| mod |w|. */
    469 OPENSSL_EXPORT BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);
    470 
    471 /* BN_mod is a helper macro that calls |BN_div| and discards the quotient. */
    472 #define BN_mod(rem, numerator, divisor, ctx) \
    473   BN_div(NULL, (rem), (numerator), (divisor), (ctx))
    474 
    475 /* BN_nnmod is a non-negative modulo function. It acts like |BN_mod|, but 0 <=
    476  * |rem| < |divisor| is always true. */
    477 OPENSSL_EXPORT int BN_nnmod(BIGNUM *rem, const BIGNUM *numerator,
    478                             const BIGNUM *divisor, BN_CTX *ctx);
    479 
    480 /* BN_mod_add sets |r| = |a| + |b| mod |m|. It returns one on success and zero
    481  * on error. */
    482 OPENSSL_EXPORT int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    483                               const BIGNUM *m, BN_CTX *ctx);
    484 
    485 /* BN_mod_add_quick acts like |BN_mod_add| but requires that |a| and |b| be
    486  * non-negative and less than |m|. */
    487 OPENSSL_EXPORT int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    488                                     const BIGNUM *m);
    489 
    490 /* BN_mod_sub sets |r| = |a| - |b| mod |m|. It returns one on success and zero
    491  * on error. */
    492 OPENSSL_EXPORT int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    493                               const BIGNUM *m, BN_CTX *ctx);
    494 
    495 /* BN_mod_sub_quick acts like |BN_mod_sub| but requires that |a| and |b| be
    496  * non-negative and less than |m|. */
    497 OPENSSL_EXPORT int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    498                                     const BIGNUM *m);
    499 
    500 /* BN_mod_mul sets |r| = |a|*|b| mod |m|. It returns one on success and zero
    501  * on error. */
    502 OPENSSL_EXPORT int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    503                               const BIGNUM *m, BN_CTX *ctx);
    504 
    505 /* BN_mod_mul sets |r| = |a|^2 mod |m|. It returns one on success and zero
    506  * on error. */
    507 OPENSSL_EXPORT int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
    508                               BN_CTX *ctx);
    509 
    510 /* BN_mod_lshift sets |r| = (|a| << n) mod |m|, where |r| and |a| may be the
    511  * same pointer. It returns one on success and zero on error. */
    512 OPENSSL_EXPORT int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n,
    513                                  const BIGNUM *m, BN_CTX *ctx);
    514 
    515 /* BN_mod_lshift_quick acts like |BN_mod_lshift| but requires that |a| be
    516  * non-negative and less than |m|. */
    517 OPENSSL_EXPORT int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n,
    518                                        const BIGNUM *m);
    519 
    520 /* BN_mod_lshift1 sets |r| = (|a| << 1) mod |m|, where |r| and |a| may be the
    521  * same pointer. It returns one on success and zero on error. */
    522 OPENSSL_EXPORT int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
    523                                   BN_CTX *ctx);
    524 
    525 /* BN_mod_lshift1_quick acts like |BN_mod_lshift1| but requires that |a| be
    526  * non-negative and less than |m|. */
    527 OPENSSL_EXPORT int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a,
    528                                         const BIGNUM *m);
    529 
    530 /* BN_mod_sqrt returns a |BIGNUM|, r, such that r^2 == a (mod p). */
    531 OPENSSL_EXPORT BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p,
    532                                    BN_CTX *ctx);
    533 
    534 
    535 /* Random and prime number generation. */
    536 
    537 /* BN_rand sets |rnd| to a random number of length |bits|. If |top| is zero,
    538  * the most-significant bit will be set. If |top| is one, the two most
    539  * significant bits will be set.
    540  *
    541  * If |top| is -1 then no extra action will be taken and |BN_num_bits(rnd)| may
    542  * not equal |bits| if the most significant bits randomly ended up as zeros.
    543  *
    544  * If |bottom| is non-zero, the least-significant bit will be set. The function
    545  * returns one on success or zero otherwise. */
    546 OPENSSL_EXPORT int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);
    547 
    548 /* BN_pseudo_rand is an alias for |BN_rand|. */
    549 OPENSSL_EXPORT int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);
    550 
    551 /* BN_rand_range sets |rnd| to a random value [0..range). It returns one on
    552  * success and zero otherwise. */
    553 OPENSSL_EXPORT int BN_rand_range(BIGNUM *rnd, const BIGNUM *range);
    554 
    555 /* BN_pseudo_rand_range is an alias for BN_rand_range. */
    556 OPENSSL_EXPORT int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range);
    557 
    558 /* BN_generate_dsa_nonce generates a random number 0 <= out < range. Unlike
    559  * BN_rand_range, it also includes the contents of |priv| and |message| in the
    560  * generation so that an RNG failure isn't fatal as long as |priv| remains
    561  * secret. This is intended for use in DSA and ECDSA where an RNG weakness
    562  * leads directly to private key exposure unless this function is used.
    563  * It returns one on success and zero on error. */
    564 OPENSSL_EXPORT int BN_generate_dsa_nonce(BIGNUM *out, const BIGNUM *range,
    565                                          const BIGNUM *priv,
    566                                          const uint8_t *message,
    567                                          size_t message_len, BN_CTX *ctx);
    568 
    569 /* BN_GENCB holds a callback function that is used by generation functions that
    570  * can take a very long time to complete. Use |BN_GENCB_set| to initialise a
    571  * |BN_GENCB| structure.
    572  *
    573  * The callback receives the address of that |BN_GENCB| structure as its last
    574  * argument and the user is free to put an arbitary pointer in |arg|. The other
    575  * arguments are set as follows:
    576  *   event=BN_GENCB_GENERATED, n=i:   after generating the i'th possible prime
    577  *                                    number.
    578  *   event=BN_GENCB_PRIME_TEST, n=-1: when finished trial division primality
    579  *                                    checks.
    580  *   event=BN_GENCB_PRIME_TEST, n=i:  when the i'th primality test has finished.
    581  *
    582  * The callback can return zero to abort the generation progress or one to
    583  * allow it to continue.
    584  *
    585  * When other code needs to call a BN generation function it will often take a
    586  * BN_GENCB argument and may call the function with other argument values. */
    587 #define BN_GENCB_GENERATED 0
    588 #define BN_GENCB_PRIME_TEST 1
    589 
    590 struct bn_gencb_st {
    591   void *arg;        /* callback-specific data */
    592   int (*callback)(int event, int n, struct bn_gencb_st *);
    593 };
    594 
    595 /* BN_GENCB_set configures |callback| to call |f| and sets |callout->arg| to
    596  * |arg|. */
    597 OPENSSL_EXPORT void BN_GENCB_set(BN_GENCB *callback,
    598                                  int (*f)(int event, int n,
    599                                           struct bn_gencb_st *),
    600                                  void *arg);
    601 
    602 /* BN_GENCB_call calls |callback|, if not NULL, and returns the return value of
    603  * the callback, or 1 if |callback| is NULL. */
    604 OPENSSL_EXPORT int BN_GENCB_call(BN_GENCB *callback, int event, int n);
    605 
    606 /* BN_generate_prime_ex sets |ret| to a prime number of |bits| length. If safe
    607  * is non-zero then the prime will be such that (ret-1)/2 is also a prime.
    608  * (This is needed for Diffie-Hellman groups to ensure that the only subgroups
    609  * are of size 2 and (p-1)/2.).
    610  *
    611  * If |add| is not NULL, the prime will fulfill the condition |ret| % |add| ==
    612  * |rem| in order to suit a given generator. (If |rem| is NULL then |ret| %
    613  * |add| == 1.)
    614  *
    615  * If |cb| is not NULL, it will be called during processing to give an
    616  * indication of progress. See the comments for |BN_GENCB|. It returns one on
    617  * success and zero otherwise. */
    618 OPENSSL_EXPORT int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
    619                                         const BIGNUM *add, const BIGNUM *rem,
    620                                         BN_GENCB *cb);
    621 
    622 /* BN_prime_checks is magic value that can be used as the |checks| argument to
    623  * the primality testing functions in order to automatically select a number of
    624  * Miller-Rabin checks that gives a false positive rate of ~2^{-80}. */
    625 #define BN_prime_checks 0
    626 
    627 /* BN_primality_test sets |*is_probably_prime| to one if |candidate| is
    628  * probably a prime number by the Miller-Rabin test or zero if it's certainly
    629  * not.
    630  *
    631  * If |do_trial_division| is non-zero then |candidate| will be tested against a
    632  * list of small primes before Miller-Rabin tests. The probability of this
    633  * function returning a false positive is 2^{2*checks}. If |checks| is
    634  * |BN_prime_checks| then a value that results in approximately 2^{-80} false
    635  * positive probability is used. If |cb| is not NULL then it is called during
    636  * the checking process. See the comment above |BN_GENCB|.
    637  *
    638  * The function returns one on success and zero on error.
    639  *
    640  * (If you are unsure whether you want |do_trial_division|, don't set it.) */
    641 OPENSSL_EXPORT int BN_primality_test(int *is_probably_prime,
    642                                      const BIGNUM *candidate, int checks,
    643                                      BN_CTX *ctx, int do_trial_division,
    644                                      BN_GENCB *cb);
    645 
    646 /* BN_is_prime_fasttest_ex returns one if |candidate| is probably a prime
    647  * number by the Miller-Rabin test, zero if it's certainly not and -1 on error.
    648  *
    649  * If |do_trial_division| is non-zero then |candidate| will be tested against a
    650  * list of small primes before Miller-Rabin tests. The probability of this
    651  * function returning one when |candidate| is composite is 2^{2*checks}. If
    652  * |checks| is |BN_prime_checks| then a value that results in approximately
    653  * 2^{-80} false positive probability is used. If |cb| is not NULL then it is
    654  * called during the checking process. See the comment above |BN_GENCB|.
    655  *
    656  * WARNING: deprecated. Use |BN_primality_test|. */
    657 OPENSSL_EXPORT int BN_is_prime_fasttest_ex(const BIGNUM *candidate, int checks,
    658                                            BN_CTX *ctx, int do_trial_division,
    659                                            BN_GENCB *cb);
    660 
    661 /* BN_is_prime_ex acts the same as |BN_is_prime_fasttest_ex| with
    662  * |do_trial_division| set to zero.
    663  *
    664  * WARNING: deprecated: Use |BN_primality_test|. */
    665 OPENSSL_EXPORT int BN_is_prime_ex(const BIGNUM *candidate, int checks,
    666                                   BN_CTX *ctx, BN_GENCB *cb);
    667 
    668 
    669 /* Number theory functions */
    670 
    671 /* BN_gcd sets |r| = gcd(|a|, |b|). It returns one on success and zero
    672  * otherwise. */
    673 OPENSSL_EXPORT int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    674                           BN_CTX *ctx);
    675 
    676 /* BN_mod_inverse sets |out| equal to |a|^-1, mod |n|. If either of |a| or |n|
    677  * have |BN_FLG_CONSTTIME| set then the operation is performed in constant
    678  * time. If |out| is NULL, a fresh BIGNUM is allocated. It returns the result
    679  * or NULL on error. */
    680 OPENSSL_EXPORT BIGNUM *BN_mod_inverse(BIGNUM *out, const BIGNUM *a,
    681                                       const BIGNUM *n, BN_CTX *ctx);
    682 
    683 /* BN_kronecker returns the Kronecker symbol of |a| and |b| (which is -1, 0 or
    684  * 1), or -2 on error. */
    685 OPENSSL_EXPORT int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
    686 
    687 
    688 /* Montgomery arithmetic. */
    689 
    690 /* BN_MONT_CTX contains the precomputed values needed to work in a specific
    691  * Montgomery domain. */
    692 
    693 /* BN_MONT_CTX_new returns a fresh BN_MONT_CTX or NULL on allocation failure. */
    694 OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new(void);
    695 
    696 /* BN_MONT_CTX_init initialises a stack allocated |BN_MONT_CTX|. */
    697 OPENSSL_EXPORT void BN_MONT_CTX_init(BN_MONT_CTX *mont);
    698 
    699 /* BN_MONT_CTX_free frees the contexts of |mont| and, if it was originally
    700  * allocated with |BN_MONT_CTX_new|, |mont| itself. */
    701 OPENSSL_EXPORT void BN_MONT_CTX_free(BN_MONT_CTX *mont);
    702 
    703 /* BN_MONT_CTX_copy sets |to| equal to |from|. It returns |to| on success or
    704  * NULL on error. */
    705 OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to,
    706                                              BN_MONT_CTX *from);
    707 
    708 /* BN_MONT_CTX_set sets up a Montgomery context given the modulus, |mod|. It
    709  * returns one on success and zero on error. */
    710 OPENSSL_EXPORT int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod,
    711                                    BN_CTX *ctx);
    712 
    713 /* BN_MONT_CTX_set_locked takes the lock indicated by |lock| and checks whether
    714  * |*pmont| is NULL. If so, it creates a new |BN_MONT_CTX| and sets the modulus
    715  * for it to |mod|. It then stores it as |*pmont| and returns it, or NULL on
    716  * error.
    717  *
    718  * If |*pmont| is already non-NULL then the existing value is returned. */
    719 OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont,
    720                                                    int lock, const BIGNUM *mod,
    721                                                    BN_CTX *ctx);
    722 
    723 /* BN_to_montgomery sets |ret| equal to |a| in the Montgomery domain. It
    724  * returns one on success and zero on error. */
    725 OPENSSL_EXPORT int BN_to_montgomery(BIGNUM *ret, const BIGNUM *a,
    726                                     const BN_MONT_CTX *mont, BN_CTX *ctx);
    727 
    728 /* BN_from_montgomery sets |ret| equal to |a| * R^-1, i.e. translates values
    729  * out of the Montgomery domain. It returns one on success or zero on error. */
    730 OPENSSL_EXPORT int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a,
    731                                       const BN_MONT_CTX *mont, BN_CTX *ctx);
    732 
    733 /* BN_mod_mul_montgomery set |r| equal to |a| * |b|, in the Montgomery domain.
    734  * Both |a| and |b| must already be in the Montgomery domain (by
    735  * |BN_to_montgomery|). It returns one on success or zero on error. */
    736 OPENSSL_EXPORT int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a,
    737                                          const BIGNUM *b,
    738                                          const BN_MONT_CTX *mont, BN_CTX *ctx);
    739 
    740 
    741 /* Exponentiation. */
    742 
    743 /* BN_exp sets |r| equal to |a|^{|p|}. It does so with a square-and-multiply
    744  * algorithm that leaks side-channel information. It returns one on success or
    745  * zero otherwise. */
    746 OPENSSL_EXPORT int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
    747                           BN_CTX *ctx);
    748 
    749 /* BN_mod_exp sets |r| equal to |a|^{|p|} mod |m|. It does so with the best
    750  * algorithm for the values provided and can run in constant time if
    751  * |BN_FLG_CONSTTIME| is set for |p|. It returns one on success or zero
    752  * otherwise. */
    753 OPENSSL_EXPORT int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
    754                               const BIGNUM *m, BN_CTX *ctx);
    755 
    756 OPENSSL_EXPORT int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
    757                                    const BIGNUM *m, BN_CTX *ctx,
    758                                    BN_MONT_CTX *m_ctx);
    759 
    760 OPENSSL_EXPORT int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a,
    761                                              const BIGNUM *p, const BIGNUM *m,
    762                                              BN_CTX *ctx, BN_MONT_CTX *in_mont);
    763 
    764 OPENSSL_EXPORT int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p,
    765                                         const BIGNUM *m, BN_CTX *ctx,
    766                                         BN_MONT_CTX *m_ctx);
    767 OPENSSL_EXPORT int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1,
    768                                     const BIGNUM *p1, const BIGNUM *a2,
    769                                     const BIGNUM *p2, const BIGNUM *m,
    770                                     BN_CTX *ctx, BN_MONT_CTX *m_ctx);
    771 
    772 
    773 /* Private functions */
    774 
    775 struct bignum_st {
    776   BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit chunks in little-endian
    777                   order. */
    778   int top;   /* Index of last used element in |d|, plus one. */
    779   int dmax;  /* Size of |d|, in words. */
    780   int neg;   /* one if the number is negative */
    781   int flags; /* bitmask of BN_FLG_* values */
    782 };
    783 
    784 struct bn_mont_ctx_st {
    785   BIGNUM RR; /* used to convert to montgomery form */
    786   BIGNUM N;  /* The modulus */
    787   BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1
    788               * (Ni is only stored for bignum algorithm) */
    789   BN_ULONG n0[2]; /* least significant word(s) of Ni;
    790                      (type changed with 0.9.9, was "BN_ULONG n0;" before) */
    791   int flags;
    792   int ri;    /* number of bits in R */
    793 };
    794 
    795 OPENSSL_EXPORT unsigned BN_num_bits_word(BN_ULONG l);
    796 
    797 #define BN_FLG_MALLOCED 0x01
    798 #define BN_FLG_STATIC_DATA 0x02
    799 /* avoid leaking exponent information through timing, BN_mod_exp_mont() will
    800  * call BN_mod_exp_mont_consttime, BN_div() will call BN_div_no_branch,
    801  * BN_mod_inverse() will call BN_mod_inverse_no_branch. */
    802 #define BN_FLG_CONSTTIME 0x04
    803 
    804 
    805 #if defined(__cplusplus)
    806 }  /* extern C */
    807 #endif
    808 
    809 #define BN_F_BN_bn2hex 100
    810 #define BN_F_BN_new 101
    811 #define BN_F_BN_exp 102
    812 #define BN_F_mod_exp_recp 103
    813 #define BN_F_BN_mod_sqrt 104
    814 #define BN_F_BN_rand 105
    815 #define BN_F_BN_rand_range 106
    816 #define BN_F_bn_wexpand 107
    817 #define BN_F_BN_mod_exp_mont 108
    818 #define BN_F_BN_mod_exp2_mont 109
    819 #define BN_F_BN_CTX_get 110
    820 #define BN_F_BN_mod_inverse 111
    821 #define BN_F_BN_bn2dec 112
    822 #define BN_F_BN_div 113
    823 #define BN_F_BN_div_recp 114
    824 #define BN_F_BN_mod_exp_mont_consttime 115
    825 #define BN_F_BN_mod_exp_mont_word 116
    826 #define BN_F_BN_CTX_start 117
    827 #define BN_F_BN_usub 118
    828 #define BN_F_BN_mod_lshift_quick 119
    829 #define BN_F_BN_CTX_new 120
    830 #define BN_F_BN_mod_inverse_no_branch 121
    831 #define BN_F_BN_generate_dsa_nonce 122
    832 #define BN_F_BN_generate_prime_ex 123
    833 #define BN_F_BN_sqrt 124
    834 #define BN_R_NOT_A_SQUARE 100
    835 #define BN_R_TOO_MANY_ITERATIONS 101
    836 #define BN_R_INPUT_NOT_REDUCED 102
    837 #define BN_R_TOO_MANY_TEMPORARY_VARIABLES 103
    838 #define BN_R_NO_INVERSE 104
    839 #define BN_R_NOT_INITIALIZED 105
    840 #define BN_R_DIV_BY_ZERO 106
    841 #define BN_R_CALLED_WITH_EVEN_MODULUS 107
    842 #define BN_R_EXPAND_ON_STATIC_BIGNUM_DATA 108
    843 #define BN_R_BAD_RECIPROCAL 109
    844 #define BN_R_P_IS_NOT_PRIME 110
    845 #define BN_R_INVALID_RANGE 111
    846 #define BN_R_ARG2_LT_ARG3 112
    847 #define BN_R_BIGNUM_TOO_LONG 113
    848 #define BN_R_PRIVATE_KEY_TOO_LARGE 114
    849 #define BN_R_BITS_TOO_SMALL 115
    850 #define BN_R_NEGATIVE_NUMBER 116
    851 
    852 #endif  /* OPENSSL_HEADER_BN_H */
    853