Home | History | Annotate | Download | only in Sema
      1 //===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file provides Sema routines for C++ exception specification testing.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/AST/ASTMutationListener.h"
     16 #include "clang/AST/CXXInheritance.h"
     17 #include "clang/AST/Expr.h"
     18 #include "clang/AST/ExprCXX.h"
     19 #include "clang/AST/TypeLoc.h"
     20 #include "clang/Basic/Diagnostic.h"
     21 #include "clang/Basic/SourceManager.h"
     22 #include "llvm/ADT/SmallPtrSet.h"
     23 #include "llvm/ADT/SmallString.h"
     24 
     25 namespace clang {
     26 
     27 static const FunctionProtoType *GetUnderlyingFunction(QualType T)
     28 {
     29   if (const PointerType *PtrTy = T->getAs<PointerType>())
     30     T = PtrTy->getPointeeType();
     31   else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
     32     T = RefTy->getPointeeType();
     33   else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
     34     T = MPTy->getPointeeType();
     35   return T->getAs<FunctionProtoType>();
     36 }
     37 
     38 /// CheckSpecifiedExceptionType - Check if the given type is valid in an
     39 /// exception specification. Incomplete types, or pointers to incomplete types
     40 /// other than void are not allowed.
     41 ///
     42 /// \param[in,out] T  The exception type. This will be decayed to a pointer type
     43 ///                   when the input is an array or a function type.
     44 bool Sema::CheckSpecifiedExceptionType(QualType &T, const SourceRange &Range) {
     45   // C++11 [except.spec]p2:
     46   //   A type cv T, "array of T", or "function returning T" denoted
     47   //   in an exception-specification is adjusted to type T, "pointer to T", or
     48   //   "pointer to function returning T", respectively.
     49   //
     50   // We also apply this rule in C++98.
     51   if (T->isArrayType())
     52     T = Context.getArrayDecayedType(T);
     53   else if (T->isFunctionType())
     54     T = Context.getPointerType(T);
     55 
     56   int Kind = 0;
     57   QualType PointeeT = T;
     58   if (const PointerType *PT = T->getAs<PointerType>()) {
     59     PointeeT = PT->getPointeeType();
     60     Kind = 1;
     61 
     62     // cv void* is explicitly permitted, despite being a pointer to an
     63     // incomplete type.
     64     if (PointeeT->isVoidType())
     65       return false;
     66   } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
     67     PointeeT = RT->getPointeeType();
     68     Kind = 2;
     69 
     70     if (RT->isRValueReferenceType()) {
     71       // C++11 [except.spec]p2:
     72       //   A type denoted in an exception-specification shall not denote [...]
     73       //   an rvalue reference type.
     74       Diag(Range.getBegin(), diag::err_rref_in_exception_spec)
     75         << T << Range;
     76       return true;
     77     }
     78   }
     79 
     80   // C++11 [except.spec]p2:
     81   //   A type denoted in an exception-specification shall not denote an
     82   //   incomplete type other than a class currently being defined [...].
     83   //   A type denoted in an exception-specification shall not denote a
     84   //   pointer or reference to an incomplete type, other than (cv) void* or a
     85   //   pointer or reference to a class currently being defined.
     86   if (!(PointeeT->isRecordType() &&
     87         PointeeT->getAs<RecordType>()->isBeingDefined()) &&
     88       RequireCompleteType(Range.getBegin(), PointeeT,
     89                           diag::err_incomplete_in_exception_spec, Kind, Range))
     90     return true;
     91 
     92   return false;
     93 }
     94 
     95 /// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
     96 /// to member to a function with an exception specification. This means that
     97 /// it is invalid to add another level of indirection.
     98 bool Sema::CheckDistantExceptionSpec(QualType T) {
     99   if (const PointerType *PT = T->getAs<PointerType>())
    100     T = PT->getPointeeType();
    101   else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
    102     T = PT->getPointeeType();
    103   else
    104     return false;
    105 
    106   const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
    107   if (!FnT)
    108     return false;
    109 
    110   return FnT->hasExceptionSpec();
    111 }
    112 
    113 const FunctionProtoType *
    114 Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) {
    115   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
    116     return FPT;
    117 
    118   FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl();
    119   const FunctionProtoType *SourceFPT =
    120       SourceDecl->getType()->castAs<FunctionProtoType>();
    121 
    122   // If the exception specification has already been resolved, just return it.
    123   if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType()))
    124     return SourceFPT;
    125 
    126   // Compute or instantiate the exception specification now.
    127   if (SourceFPT->getExceptionSpecType() == EST_Unevaluated)
    128     EvaluateImplicitExceptionSpec(Loc, cast<CXXMethodDecl>(SourceDecl));
    129   else
    130     InstantiateExceptionSpec(Loc, SourceDecl);
    131 
    132   return SourceDecl->getType()->castAs<FunctionProtoType>();
    133 }
    134 
    135 void Sema::UpdateExceptionSpec(FunctionDecl *FD,
    136                                const FunctionProtoType::ExtProtoInfo &EPI) {
    137   const FunctionProtoType *Proto = FD->getType()->castAs<FunctionProtoType>();
    138 
    139   // Overwrite the exception spec and rebuild the function type.
    140   FunctionProtoType::ExtProtoInfo NewEPI = Proto->getExtProtoInfo();
    141   NewEPI.ExceptionSpecType = EPI.ExceptionSpecType;
    142   NewEPI.NumExceptions = EPI.NumExceptions;
    143   NewEPI.Exceptions = EPI.Exceptions;
    144   NewEPI.NoexceptExpr = EPI.NoexceptExpr;
    145   FD->setType(Context.getFunctionType(Proto->getReturnType(),
    146                                       Proto->getParamTypes(), NewEPI));
    147 
    148   // If we've fully resolved the exception specification, notify listeners.
    149   if (!isUnresolvedExceptionSpec(EPI.ExceptionSpecType))
    150     if (auto *Listener = getASTMutationListener())
    151       Listener->ResolvedExceptionSpec(FD);
    152 }
    153 
    154 /// Determine whether a function has an implicitly-generated exception
    155 /// specification.
    156 static bool hasImplicitExceptionSpec(FunctionDecl *Decl) {
    157   if (!isa<CXXDestructorDecl>(Decl) &&
    158       Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete &&
    159       Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
    160     return false;
    161 
    162   // For a function that the user didn't declare:
    163   //  - if this is a destructor, its exception specification is implicit.
    164   //  - if this is 'operator delete' or 'operator delete[]', the exception
    165   //    specification is as-if an explicit exception specification was given
    166   //    (per [basic.stc.dynamic]p2).
    167   if (!Decl->getTypeSourceInfo())
    168     return isa<CXXDestructorDecl>(Decl);
    169 
    170   const FunctionProtoType *Ty =
    171     Decl->getTypeSourceInfo()->getType()->getAs<FunctionProtoType>();
    172   return !Ty->hasExceptionSpec();
    173 }
    174 
    175 bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) {
    176   OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator();
    177   bool IsOperatorNew = OO == OO_New || OO == OO_Array_New;
    178   bool MissingExceptionSpecification = false;
    179   bool MissingEmptyExceptionSpecification = false;
    180 
    181   unsigned DiagID = diag::err_mismatched_exception_spec;
    182   bool ReturnValueOnError = true;
    183   if (getLangOpts().MicrosoftExt) {
    184     DiagID = diag::warn_mismatched_exception_spec;
    185     ReturnValueOnError = false;
    186   }
    187 
    188   // Check the types as written: they must match before any exception
    189   // specification adjustment is applied.
    190   if (!CheckEquivalentExceptionSpec(
    191         PDiag(DiagID), PDiag(diag::note_previous_declaration),
    192         Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
    193         New->getType()->getAs<FunctionProtoType>(), New->getLocation(),
    194         &MissingExceptionSpecification, &MissingEmptyExceptionSpecification,
    195         /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) {
    196     // C++11 [except.spec]p4 [DR1492]:
    197     //   If a declaration of a function has an implicit
    198     //   exception-specification, other declarations of the function shall
    199     //   not specify an exception-specification.
    200     if (getLangOpts().CPlusPlus11 &&
    201         hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) {
    202       Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch)
    203         << hasImplicitExceptionSpec(Old);
    204       if (!Old->getLocation().isInvalid())
    205         Diag(Old->getLocation(), diag::note_previous_declaration);
    206     }
    207     return false;
    208   }
    209 
    210   // The failure was something other than an missing exception
    211   // specification; return an error, except in MS mode where this is a warning.
    212   if (!MissingExceptionSpecification)
    213     return ReturnValueOnError;
    214 
    215   const FunctionProtoType *NewProto =
    216     New->getType()->castAs<FunctionProtoType>();
    217 
    218   // The new function declaration is only missing an empty exception
    219   // specification "throw()". If the throw() specification came from a
    220   // function in a system header that has C linkage, just add an empty
    221   // exception specification to the "new" declaration. This is an
    222   // egregious workaround for glibc, which adds throw() specifications
    223   // to many libc functions as an optimization. Unfortunately, that
    224   // optimization isn't permitted by the C++ standard, so we're forced
    225   // to work around it here.
    226   if (MissingEmptyExceptionSpecification && NewProto &&
    227       (Old->getLocation().isInvalid() ||
    228        Context.getSourceManager().isInSystemHeader(Old->getLocation())) &&
    229       Old->isExternC()) {
    230     FunctionProtoType::ExtProtoInfo EPI = NewProto->getExtProtoInfo();
    231     EPI.ExceptionSpecType = EST_DynamicNone;
    232     QualType NewType = Context.getFunctionType(NewProto->getReturnType(),
    233                                                NewProto->getParamTypes(), EPI);
    234     New->setType(NewType);
    235     return false;
    236   }
    237 
    238   const FunctionProtoType *OldProto =
    239     Old->getType()->castAs<FunctionProtoType>();
    240 
    241   FunctionProtoType::ExtProtoInfo EPI = NewProto->getExtProtoInfo();
    242   EPI.ExceptionSpecType = OldProto->getExceptionSpecType();
    243   if (EPI.ExceptionSpecType == EST_Dynamic) {
    244     EPI.NumExceptions = OldProto->getNumExceptions();
    245     EPI.Exceptions = OldProto->exception_begin();
    246   } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
    247     // FIXME: We can't just take the expression from the old prototype. It
    248     // likely contains references to the old prototype's parameters.
    249   }
    250 
    251   // Update the type of the function with the appropriate exception
    252   // specification.
    253   QualType NewType = Context.getFunctionType(NewProto->getReturnType(),
    254                                              NewProto->getParamTypes(), EPI);
    255   New->setType(NewType);
    256 
    257   // Warn about the lack of exception specification.
    258   SmallString<128> ExceptionSpecString;
    259   llvm::raw_svector_ostream OS(ExceptionSpecString);
    260   switch (OldProto->getExceptionSpecType()) {
    261   case EST_DynamicNone:
    262     OS << "throw()";
    263     break;
    264 
    265   case EST_Dynamic: {
    266     OS << "throw(";
    267     bool OnFirstException = true;
    268     for (const auto &E : OldProto->exceptions()) {
    269       if (OnFirstException)
    270         OnFirstException = false;
    271       else
    272         OS << ", ";
    273 
    274       OS << E.getAsString(getPrintingPolicy());
    275     }
    276     OS << ")";
    277     break;
    278   }
    279 
    280   case EST_BasicNoexcept:
    281     OS << "noexcept";
    282     break;
    283 
    284   case EST_ComputedNoexcept:
    285     OS << "noexcept(";
    286     assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr");
    287     OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy());
    288     OS << ")";
    289     break;
    290 
    291   default:
    292     llvm_unreachable("This spec type is compatible with none.");
    293   }
    294   OS.flush();
    295 
    296   SourceLocation FixItLoc;
    297   if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) {
    298     TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens();
    299     if (FunctionTypeLoc FTLoc = TL.getAs<FunctionTypeLoc>())
    300       FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd());
    301   }
    302 
    303   if (FixItLoc.isInvalid())
    304     Diag(New->getLocation(), diag::warn_missing_exception_specification)
    305       << New << OS.str();
    306   else {
    307     // FIXME: This will get more complicated with C++0x
    308     // late-specified return types.
    309     Diag(New->getLocation(), diag::warn_missing_exception_specification)
    310       << New << OS.str()
    311       << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str());
    312   }
    313 
    314   if (!Old->getLocation().isInvalid())
    315     Diag(Old->getLocation(), diag::note_previous_declaration);
    316 
    317   return false;
    318 }
    319 
    320 /// CheckEquivalentExceptionSpec - Check if the two types have equivalent
    321 /// exception specifications. Exception specifications are equivalent if
    322 /// they allow exactly the same set of exception types. It does not matter how
    323 /// that is achieved. See C++ [except.spec]p2.
    324 bool Sema::CheckEquivalentExceptionSpec(
    325     const FunctionProtoType *Old, SourceLocation OldLoc,
    326     const FunctionProtoType *New, SourceLocation NewLoc) {
    327   unsigned DiagID = diag::err_mismatched_exception_spec;
    328   if (getLangOpts().MicrosoftExt)
    329     DiagID = diag::warn_mismatched_exception_spec;
    330   bool Result = CheckEquivalentExceptionSpec(PDiag(DiagID),
    331       PDiag(diag::note_previous_declaration), Old, OldLoc, New, NewLoc);
    332 
    333   // In Microsoft mode, mismatching exception specifications just cause a warning.
    334   if (getLangOpts().MicrosoftExt)
    335     return false;
    336   return Result;
    337 }
    338 
    339 /// CheckEquivalentExceptionSpec - Check if the two types have compatible
    340 /// exception specifications. See C++ [except.spec]p3.
    341 ///
    342 /// \return \c false if the exception specifications match, \c true if there is
    343 /// a problem. If \c true is returned, either a diagnostic has already been
    344 /// produced or \c *MissingExceptionSpecification is set to \c true.
    345 bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
    346                                         const PartialDiagnostic & NoteID,
    347                                         const FunctionProtoType *Old,
    348                                         SourceLocation OldLoc,
    349                                         const FunctionProtoType *New,
    350                                         SourceLocation NewLoc,
    351                                         bool *MissingExceptionSpecification,
    352                                         bool*MissingEmptyExceptionSpecification,
    353                                         bool AllowNoexceptAllMatchWithNoSpec,
    354                                         bool IsOperatorNew) {
    355   // Just completely ignore this under -fno-exceptions.
    356   if (!getLangOpts().CXXExceptions)
    357     return false;
    358 
    359   if (MissingExceptionSpecification)
    360     *MissingExceptionSpecification = false;
    361 
    362   if (MissingEmptyExceptionSpecification)
    363     *MissingEmptyExceptionSpecification = false;
    364 
    365   Old = ResolveExceptionSpec(NewLoc, Old);
    366   if (!Old)
    367     return false;
    368   New = ResolveExceptionSpec(NewLoc, New);
    369   if (!New)
    370     return false;
    371 
    372   // C++0x [except.spec]p3: Two exception-specifications are compatible if:
    373   //   - both are non-throwing, regardless of their form,
    374   //   - both have the form noexcept(constant-expression) and the constant-
    375   //     expressions are equivalent,
    376   //   - both are dynamic-exception-specifications that have the same set of
    377   //     adjusted types.
    378   //
    379   // C++0x [except.spec]p12: An exception-specifcation is non-throwing if it is
    380   //   of the form throw(), noexcept, or noexcept(constant-expression) where the
    381   //   constant-expression yields true.
    382   //
    383   // C++0x [except.spec]p4: If any declaration of a function has an exception-
    384   //   specifier that is not a noexcept-specification allowing all exceptions,
    385   //   all declarations [...] of that function shall have a compatible
    386   //   exception-specification.
    387   //
    388   // That last point basically means that noexcept(false) matches no spec.
    389   // It's considered when AllowNoexceptAllMatchWithNoSpec is true.
    390 
    391   ExceptionSpecificationType OldEST = Old->getExceptionSpecType();
    392   ExceptionSpecificationType NewEST = New->getExceptionSpecType();
    393 
    394   assert(!isUnresolvedExceptionSpec(OldEST) &&
    395          !isUnresolvedExceptionSpec(NewEST) &&
    396          "Shouldn't see unknown exception specifications here");
    397 
    398   // Shortcut the case where both have no spec.
    399   if (OldEST == EST_None && NewEST == EST_None)
    400     return false;
    401 
    402   FunctionProtoType::NoexceptResult OldNR = Old->getNoexceptSpec(Context);
    403   FunctionProtoType::NoexceptResult NewNR = New->getNoexceptSpec(Context);
    404   if (OldNR == FunctionProtoType::NR_BadNoexcept ||
    405       NewNR == FunctionProtoType::NR_BadNoexcept)
    406     return false;
    407 
    408   // Dependent noexcept specifiers are compatible with each other, but nothing
    409   // else.
    410   // One noexcept is compatible with another if the argument is the same
    411   if (OldNR == NewNR &&
    412       OldNR != FunctionProtoType::NR_NoNoexcept &&
    413       NewNR != FunctionProtoType::NR_NoNoexcept)
    414     return false;
    415   if (OldNR != NewNR &&
    416       OldNR != FunctionProtoType::NR_NoNoexcept &&
    417       NewNR != FunctionProtoType::NR_NoNoexcept) {
    418     Diag(NewLoc, DiagID);
    419     if (NoteID.getDiagID() != 0)
    420       Diag(OldLoc, NoteID);
    421     return true;
    422   }
    423 
    424   // The MS extension throw(...) is compatible with itself.
    425   if (OldEST == EST_MSAny && NewEST == EST_MSAny)
    426     return false;
    427 
    428   // It's also compatible with no spec.
    429   if ((OldEST == EST_None && NewEST == EST_MSAny) ||
    430       (OldEST == EST_MSAny && NewEST == EST_None))
    431     return false;
    432 
    433   // It's also compatible with noexcept(false).
    434   if (OldEST == EST_MSAny && NewNR == FunctionProtoType::NR_Throw)
    435     return false;
    436   if (NewEST == EST_MSAny && OldNR == FunctionProtoType::NR_Throw)
    437     return false;
    438 
    439   // As described above, noexcept(false) matches no spec only for functions.
    440   if (AllowNoexceptAllMatchWithNoSpec) {
    441     if (OldEST == EST_None && NewNR == FunctionProtoType::NR_Throw)
    442       return false;
    443     if (NewEST == EST_None && OldNR == FunctionProtoType::NR_Throw)
    444       return false;
    445   }
    446 
    447   // Any non-throwing specifications are compatible.
    448   bool OldNonThrowing = OldNR == FunctionProtoType::NR_Nothrow ||
    449                         OldEST == EST_DynamicNone;
    450   bool NewNonThrowing = NewNR == FunctionProtoType::NR_Nothrow ||
    451                         NewEST == EST_DynamicNone;
    452   if (OldNonThrowing && NewNonThrowing)
    453     return false;
    454 
    455   // As a special compatibility feature, under C++0x we accept no spec and
    456   // throw(std::bad_alloc) as equivalent for operator new and operator new[].
    457   // This is because the implicit declaration changed, but old code would break.
    458   if (getLangOpts().CPlusPlus11 && IsOperatorNew) {
    459     const FunctionProtoType *WithExceptions = nullptr;
    460     if (OldEST == EST_None && NewEST == EST_Dynamic)
    461       WithExceptions = New;
    462     else if (OldEST == EST_Dynamic && NewEST == EST_None)
    463       WithExceptions = Old;
    464     if (WithExceptions && WithExceptions->getNumExceptions() == 1) {
    465       // One has no spec, the other throw(something). If that something is
    466       // std::bad_alloc, all conditions are met.
    467       QualType Exception = *WithExceptions->exception_begin();
    468       if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) {
    469         IdentifierInfo* Name = ExRecord->getIdentifier();
    470         if (Name && Name->getName() == "bad_alloc") {
    471           // It's called bad_alloc, but is it in std?
    472           if (ExRecord->isInStdNamespace()) {
    473             return false;
    474           }
    475         }
    476       }
    477     }
    478   }
    479 
    480   // At this point, the only remaining valid case is two matching dynamic
    481   // specifications. We return here unless both specifications are dynamic.
    482   if (OldEST != EST_Dynamic || NewEST != EST_Dynamic) {
    483     if (MissingExceptionSpecification && Old->hasExceptionSpec() &&
    484         !New->hasExceptionSpec()) {
    485       // The old type has an exception specification of some sort, but
    486       // the new type does not.
    487       *MissingExceptionSpecification = true;
    488 
    489       if (MissingEmptyExceptionSpecification && OldNonThrowing) {
    490         // The old type has a throw() or noexcept(true) exception specification
    491         // and the new type has no exception specification, and the caller asked
    492         // to handle this itself.
    493         *MissingEmptyExceptionSpecification = true;
    494       }
    495 
    496       return true;
    497     }
    498 
    499     Diag(NewLoc, DiagID);
    500     if (NoteID.getDiagID() != 0)
    501       Diag(OldLoc, NoteID);
    502     return true;
    503   }
    504 
    505   assert(OldEST == EST_Dynamic && NewEST == EST_Dynamic &&
    506       "Exception compatibility logic error: non-dynamic spec slipped through.");
    507 
    508   bool Success = true;
    509   // Both have a dynamic exception spec. Collect the first set, then compare
    510   // to the second.
    511   llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes;
    512   for (const auto &I : Old->exceptions())
    513     OldTypes.insert(Context.getCanonicalType(I).getUnqualifiedType());
    514 
    515   for (const auto &I : New->exceptions()) {
    516     CanQualType TypePtr = Context.getCanonicalType(I).getUnqualifiedType();
    517     if(OldTypes.count(TypePtr))
    518       NewTypes.insert(TypePtr);
    519     else
    520       Success = false;
    521   }
    522 
    523   Success = Success && OldTypes.size() == NewTypes.size();
    524 
    525   if (Success) {
    526     return false;
    527   }
    528   Diag(NewLoc, DiagID);
    529   if (NoteID.getDiagID() != 0)
    530     Diag(OldLoc, NoteID);
    531   return true;
    532 }
    533 
    534 /// CheckExceptionSpecSubset - Check whether the second function type's
    535 /// exception specification is a subset (or equivalent) of the first function
    536 /// type. This is used by override and pointer assignment checks.
    537 bool Sema::CheckExceptionSpecSubset(
    538     const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
    539     const FunctionProtoType *Superset, SourceLocation SuperLoc,
    540     const FunctionProtoType *Subset, SourceLocation SubLoc) {
    541 
    542   // Just auto-succeed under -fno-exceptions.
    543   if (!getLangOpts().CXXExceptions)
    544     return false;
    545 
    546   // FIXME: As usual, we could be more specific in our error messages, but
    547   // that better waits until we've got types with source locations.
    548 
    549   if (!SubLoc.isValid())
    550     SubLoc = SuperLoc;
    551 
    552   // Resolve the exception specifications, if needed.
    553   Superset = ResolveExceptionSpec(SuperLoc, Superset);
    554   if (!Superset)
    555     return false;
    556   Subset = ResolveExceptionSpec(SubLoc, Subset);
    557   if (!Subset)
    558     return false;
    559 
    560   ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType();
    561 
    562   // If superset contains everything, we're done.
    563   if (SuperEST == EST_None || SuperEST == EST_MSAny)
    564     return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
    565 
    566   // If there are dependent noexcept specs, assume everything is fine. Unlike
    567   // with the equivalency check, this is safe in this case, because we don't
    568   // want to merge declarations. Checks after instantiation will catch any
    569   // omissions we make here.
    570   // We also shortcut checking if a noexcept expression was bad.
    571 
    572   FunctionProtoType::NoexceptResult SuperNR =Superset->getNoexceptSpec(Context);
    573   if (SuperNR == FunctionProtoType::NR_BadNoexcept ||
    574       SuperNR == FunctionProtoType::NR_Dependent)
    575     return false;
    576 
    577   // Another case of the superset containing everything.
    578   if (SuperNR == FunctionProtoType::NR_Throw)
    579     return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
    580 
    581   ExceptionSpecificationType SubEST = Subset->getExceptionSpecType();
    582 
    583   assert(!isUnresolvedExceptionSpec(SuperEST) &&
    584          !isUnresolvedExceptionSpec(SubEST) &&
    585          "Shouldn't see unknown exception specifications here");
    586 
    587   // It does not. If the subset contains everything, we've failed.
    588   if (SubEST == EST_None || SubEST == EST_MSAny) {
    589     Diag(SubLoc, DiagID);
    590     if (NoteID.getDiagID() != 0)
    591       Diag(SuperLoc, NoteID);
    592     return true;
    593   }
    594 
    595   FunctionProtoType::NoexceptResult SubNR = Subset->getNoexceptSpec(Context);
    596   if (SubNR == FunctionProtoType::NR_BadNoexcept ||
    597       SubNR == FunctionProtoType::NR_Dependent)
    598     return false;
    599 
    600   // Another case of the subset containing everything.
    601   if (SubNR == FunctionProtoType::NR_Throw) {
    602     Diag(SubLoc, DiagID);
    603     if (NoteID.getDiagID() != 0)
    604       Diag(SuperLoc, NoteID);
    605     return true;
    606   }
    607 
    608   // If the subset contains nothing, we're done.
    609   if (SubEST == EST_DynamicNone || SubNR == FunctionProtoType::NR_Nothrow)
    610     return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
    611 
    612   // Otherwise, if the superset contains nothing, we've failed.
    613   if (SuperEST == EST_DynamicNone || SuperNR == FunctionProtoType::NR_Nothrow) {
    614     Diag(SubLoc, DiagID);
    615     if (NoteID.getDiagID() != 0)
    616       Diag(SuperLoc, NoteID);
    617     return true;
    618   }
    619 
    620   assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic &&
    621          "Exception spec subset: non-dynamic case slipped through.");
    622 
    623   // Neither contains everything or nothing. Do a proper comparison.
    624   for (const auto &SubI : Subset->exceptions()) {
    625     // Take one type from the subset.
    626     QualType CanonicalSubT = Context.getCanonicalType(SubI);
    627     // Unwrap pointers and references so that we can do checks within a class
    628     // hierarchy. Don't unwrap member pointers; they don't have hierarchy
    629     // conversions on the pointee.
    630     bool SubIsPointer = false;
    631     if (const ReferenceType *RefTy = CanonicalSubT->getAs<ReferenceType>())
    632       CanonicalSubT = RefTy->getPointeeType();
    633     if (const PointerType *PtrTy = CanonicalSubT->getAs<PointerType>()) {
    634       CanonicalSubT = PtrTy->getPointeeType();
    635       SubIsPointer = true;
    636     }
    637     bool SubIsClass = CanonicalSubT->isRecordType();
    638     CanonicalSubT = CanonicalSubT.getLocalUnqualifiedType();
    639 
    640     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
    641                        /*DetectVirtual=*/false);
    642 
    643     bool Contained = false;
    644     // Make sure it's in the superset.
    645     for (const auto &SuperI : Superset->exceptions()) {
    646       QualType CanonicalSuperT = Context.getCanonicalType(SuperI);
    647       // SubT must be SuperT or derived from it, or pointer or reference to
    648       // such types.
    649       if (const ReferenceType *RefTy = CanonicalSuperT->getAs<ReferenceType>())
    650         CanonicalSuperT = RefTy->getPointeeType();
    651       if (SubIsPointer) {
    652         if (const PointerType *PtrTy = CanonicalSuperT->getAs<PointerType>())
    653           CanonicalSuperT = PtrTy->getPointeeType();
    654         else {
    655           continue;
    656         }
    657       }
    658       CanonicalSuperT = CanonicalSuperT.getLocalUnqualifiedType();
    659       // If the types are the same, move on to the next type in the subset.
    660       if (CanonicalSubT == CanonicalSuperT) {
    661         Contained = true;
    662         break;
    663       }
    664 
    665       // Otherwise we need to check the inheritance.
    666       if (!SubIsClass || !CanonicalSuperT->isRecordType())
    667         continue;
    668 
    669       Paths.clear();
    670       if (!IsDerivedFrom(CanonicalSubT, CanonicalSuperT, Paths))
    671         continue;
    672 
    673       if (Paths.isAmbiguous(Context.getCanonicalType(CanonicalSuperT)))
    674         continue;
    675 
    676       // Do this check from a context without privileges.
    677       switch (CheckBaseClassAccess(SourceLocation(),
    678                                    CanonicalSuperT, CanonicalSubT,
    679                                    Paths.front(),
    680                                    /*Diagnostic*/ 0,
    681                                    /*ForceCheck*/ true,
    682                                    /*ForceUnprivileged*/ true)) {
    683       case AR_accessible: break;
    684       case AR_inaccessible: continue;
    685       case AR_dependent:
    686         llvm_unreachable("access check dependent for unprivileged context");
    687       case AR_delayed:
    688         llvm_unreachable("access check delayed in non-declaration");
    689       }
    690 
    691       Contained = true;
    692       break;
    693     }
    694     if (!Contained) {
    695       Diag(SubLoc, DiagID);
    696       if (NoteID.getDiagID() != 0)
    697         Diag(SuperLoc, NoteID);
    698       return true;
    699     }
    700   }
    701   // We've run half the gauntlet.
    702   return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
    703 }
    704 
    705 static bool CheckSpecForTypesEquivalent(Sema &S,
    706     const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
    707     QualType Target, SourceLocation TargetLoc,
    708     QualType Source, SourceLocation SourceLoc)
    709 {
    710   const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
    711   if (!TFunc)
    712     return false;
    713   const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
    714   if (!SFunc)
    715     return false;
    716 
    717   return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
    718                                         SFunc, SourceLoc);
    719 }
    720 
    721 /// CheckParamExceptionSpec - Check if the parameter and return types of the
    722 /// two functions have equivalent exception specs. This is part of the
    723 /// assignment and override compatibility check. We do not check the parameters
    724 /// of parameter function pointers recursively, as no sane programmer would
    725 /// even be able to write such a function type.
    726 bool Sema::CheckParamExceptionSpec(const PartialDiagnostic & NoteID,
    727     const FunctionProtoType *Target, SourceLocation TargetLoc,
    728     const FunctionProtoType *Source, SourceLocation SourceLoc)
    729 {
    730   if (CheckSpecForTypesEquivalent(
    731           *this, PDiag(diag::err_deep_exception_specs_differ) << 0, PDiag(),
    732           Target->getReturnType(), TargetLoc, Source->getReturnType(),
    733           SourceLoc))
    734     return true;
    735 
    736   // We shouldn't even be testing this unless the arguments are otherwise
    737   // compatible.
    738   assert(Target->getNumParams() == Source->getNumParams() &&
    739          "Functions have different argument counts.");
    740   for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) {
    741     if (CheckSpecForTypesEquivalent(
    742             *this, PDiag(diag::err_deep_exception_specs_differ) << 1, PDiag(),
    743             Target->getParamType(i), TargetLoc, Source->getParamType(i),
    744             SourceLoc))
    745       return true;
    746   }
    747   return false;
    748 }
    749 
    750 bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType)
    751 {
    752   // First we check for applicability.
    753   // Target type must be a function, function pointer or function reference.
    754   const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
    755   if (!ToFunc)
    756     return false;
    757 
    758   // SourceType must be a function or function pointer.
    759   const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
    760   if (!FromFunc)
    761     return false;
    762 
    763   // Now we've got the correct types on both sides, check their compatibility.
    764   // This means that the source of the conversion can only throw a subset of
    765   // the exceptions of the target, and any exception specs on arguments or
    766   // return types must be equivalent.
    767   return CheckExceptionSpecSubset(PDiag(diag::err_incompatible_exception_specs),
    768                                   PDiag(), ToFunc,
    769                                   From->getSourceRange().getBegin(),
    770                                   FromFunc, SourceLocation());
    771 }
    772 
    773 bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
    774                                                 const CXXMethodDecl *Old) {
    775   if (getLangOpts().CPlusPlus11 && isa<CXXDestructorDecl>(New)) {
    776     // Don't check uninstantiated template destructors at all. We can only
    777     // synthesize correct specs after the template is instantiated.
    778     if (New->getParent()->isDependentType())
    779       return false;
    780     if (New->getParent()->isBeingDefined()) {
    781       // The destructor might be updated once the definition is finished. So
    782       // remember it and check later.
    783       DelayedDestructorExceptionSpecChecks.push_back(std::make_pair(
    784         cast<CXXDestructorDecl>(New), cast<CXXDestructorDecl>(Old)));
    785       return false;
    786     }
    787   }
    788   unsigned DiagID = diag::err_override_exception_spec;
    789   if (getLangOpts().MicrosoftExt)
    790     DiagID = diag::warn_override_exception_spec;
    791   return CheckExceptionSpecSubset(PDiag(DiagID),
    792                                   PDiag(diag::note_overridden_virtual_function),
    793                                   Old->getType()->getAs<FunctionProtoType>(),
    794                                   Old->getLocation(),
    795                                   New->getType()->getAs<FunctionProtoType>(),
    796                                   New->getLocation());
    797 }
    798 
    799 static CanThrowResult canSubExprsThrow(Sema &S, const Expr *CE) {
    800   Expr *E = const_cast<Expr*>(CE);
    801   CanThrowResult R = CT_Cannot;
    802   for (Expr::child_range I = E->children(); I && R != CT_Can; ++I)
    803     R = mergeCanThrow(R, S.canThrow(cast<Expr>(*I)));
    804   return R;
    805 }
    806 
    807 static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D) {
    808   assert(D && "Expected decl");
    809 
    810   // See if we can get a function type from the decl somehow.
    811   const ValueDecl *VD = dyn_cast<ValueDecl>(D);
    812   if (!VD) // If we have no clue what we're calling, assume the worst.
    813     return CT_Can;
    814 
    815   // As an extension, we assume that __attribute__((nothrow)) functions don't
    816   // throw.
    817   if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
    818     return CT_Cannot;
    819 
    820   QualType T = VD->getType();
    821   const FunctionProtoType *FT;
    822   if ((FT = T->getAs<FunctionProtoType>())) {
    823   } else if (const PointerType *PT = T->getAs<PointerType>())
    824     FT = PT->getPointeeType()->getAs<FunctionProtoType>();
    825   else if (const ReferenceType *RT = T->getAs<ReferenceType>())
    826     FT = RT->getPointeeType()->getAs<FunctionProtoType>();
    827   else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
    828     FT = MT->getPointeeType()->getAs<FunctionProtoType>();
    829   else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
    830     FT = BT->getPointeeType()->getAs<FunctionProtoType>();
    831 
    832   if (!FT)
    833     return CT_Can;
    834 
    835   FT = S.ResolveExceptionSpec(E->getLocStart(), FT);
    836   if (!FT)
    837     return CT_Can;
    838 
    839   return FT->isNothrow(S.Context) ? CT_Cannot : CT_Can;
    840 }
    841 
    842 static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) {
    843   if (DC->isTypeDependent())
    844     return CT_Dependent;
    845 
    846   if (!DC->getTypeAsWritten()->isReferenceType())
    847     return CT_Cannot;
    848 
    849   if (DC->getSubExpr()->isTypeDependent())
    850     return CT_Dependent;
    851 
    852   return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot;
    853 }
    854 
    855 static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) {
    856   if (DC->isTypeOperand())
    857     return CT_Cannot;
    858 
    859   Expr *Op = DC->getExprOperand();
    860   if (Op->isTypeDependent())
    861     return CT_Dependent;
    862 
    863   const RecordType *RT = Op->getType()->getAs<RecordType>();
    864   if (!RT)
    865     return CT_Cannot;
    866 
    867   if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
    868     return CT_Cannot;
    869 
    870   if (Op->Classify(S.Context).isPRValue())
    871     return CT_Cannot;
    872 
    873   return CT_Can;
    874 }
    875 
    876 CanThrowResult Sema::canThrow(const Expr *E) {
    877   // C++ [expr.unary.noexcept]p3:
    878   //   [Can throw] if in a potentially-evaluated context the expression would
    879   //   contain:
    880   switch (E->getStmtClass()) {
    881   case Expr::CXXThrowExprClass:
    882     //   - a potentially evaluated throw-expression
    883     return CT_Can;
    884 
    885   case Expr::CXXDynamicCastExprClass: {
    886     //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
    887     //     where T is a reference type, that requires a run-time check
    888     CanThrowResult CT = canDynamicCastThrow(cast<CXXDynamicCastExpr>(E));
    889     if (CT == CT_Can)
    890       return CT;
    891     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
    892   }
    893 
    894   case Expr::CXXTypeidExprClass:
    895     //   - a potentially evaluated typeid expression applied to a glvalue
    896     //     expression whose type is a polymorphic class type
    897     return canTypeidThrow(*this, cast<CXXTypeidExpr>(E));
    898 
    899     //   - a potentially evaluated call to a function, member function, function
    900     //     pointer, or member function pointer that does not have a non-throwing
    901     //     exception-specification
    902   case Expr::CallExprClass:
    903   case Expr::CXXMemberCallExprClass:
    904   case Expr::CXXOperatorCallExprClass:
    905   case Expr::UserDefinedLiteralClass: {
    906     const CallExpr *CE = cast<CallExpr>(E);
    907     CanThrowResult CT;
    908     if (E->isTypeDependent())
    909       CT = CT_Dependent;
    910     else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
    911       CT = CT_Cannot;
    912     else if (CE->getCalleeDecl())
    913       CT = canCalleeThrow(*this, E, CE->getCalleeDecl());
    914     else
    915       CT = CT_Can;
    916     if (CT == CT_Can)
    917       return CT;
    918     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
    919   }
    920 
    921   case Expr::CXXConstructExprClass:
    922   case Expr::CXXTemporaryObjectExprClass: {
    923     CanThrowResult CT = canCalleeThrow(*this, E,
    924         cast<CXXConstructExpr>(E)->getConstructor());
    925     if (CT == CT_Can)
    926       return CT;
    927     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
    928   }
    929 
    930   case Expr::LambdaExprClass: {
    931     const LambdaExpr *Lambda = cast<LambdaExpr>(E);
    932     CanThrowResult CT = CT_Cannot;
    933     for (LambdaExpr::capture_init_iterator Cap = Lambda->capture_init_begin(),
    934                                         CapEnd = Lambda->capture_init_end();
    935          Cap != CapEnd; ++Cap)
    936       CT = mergeCanThrow(CT, canThrow(*Cap));
    937     return CT;
    938   }
    939 
    940   case Expr::CXXNewExprClass: {
    941     CanThrowResult CT;
    942     if (E->isTypeDependent())
    943       CT = CT_Dependent;
    944     else
    945       CT = canCalleeThrow(*this, E, cast<CXXNewExpr>(E)->getOperatorNew());
    946     if (CT == CT_Can)
    947       return CT;
    948     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
    949   }
    950 
    951   case Expr::CXXDeleteExprClass: {
    952     CanThrowResult CT;
    953     QualType DTy = cast<CXXDeleteExpr>(E)->getDestroyedType();
    954     if (DTy.isNull() || DTy->isDependentType()) {
    955       CT = CT_Dependent;
    956     } else {
    957       CT = canCalleeThrow(*this, E,
    958                           cast<CXXDeleteExpr>(E)->getOperatorDelete());
    959       if (const RecordType *RT = DTy->getAs<RecordType>()) {
    960         const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    961         const CXXDestructorDecl *DD = RD->getDestructor();
    962         if (DD)
    963           CT = mergeCanThrow(CT, canCalleeThrow(*this, E, DD));
    964       }
    965       if (CT == CT_Can)
    966         return CT;
    967     }
    968     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
    969   }
    970 
    971   case Expr::CXXBindTemporaryExprClass: {
    972     // The bound temporary has to be destroyed again, which might throw.
    973     CanThrowResult CT = canCalleeThrow(*this, E,
    974       cast<CXXBindTemporaryExpr>(E)->getTemporary()->getDestructor());
    975     if (CT == CT_Can)
    976       return CT;
    977     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
    978   }
    979 
    980     // ObjC message sends are like function calls, but never have exception
    981     // specs.
    982   case Expr::ObjCMessageExprClass:
    983   case Expr::ObjCPropertyRefExprClass:
    984   case Expr::ObjCSubscriptRefExprClass:
    985     return CT_Can;
    986 
    987     // All the ObjC literals that are implemented as calls are
    988     // potentially throwing unless we decide to close off that
    989     // possibility.
    990   case Expr::ObjCArrayLiteralClass:
    991   case Expr::ObjCDictionaryLiteralClass:
    992   case Expr::ObjCBoxedExprClass:
    993     return CT_Can;
    994 
    995     // Many other things have subexpressions, so we have to test those.
    996     // Some are simple:
    997   case Expr::ConditionalOperatorClass:
    998   case Expr::CompoundLiteralExprClass:
    999   case Expr::CXXConstCastExprClass:
   1000   case Expr::CXXReinterpretCastExprClass:
   1001   case Expr::CXXStdInitializerListExprClass:
   1002   case Expr::DesignatedInitExprClass:
   1003   case Expr::ExprWithCleanupsClass:
   1004   case Expr::ExtVectorElementExprClass:
   1005   case Expr::InitListExprClass:
   1006   case Expr::MemberExprClass:
   1007   case Expr::ObjCIsaExprClass:
   1008   case Expr::ObjCIvarRefExprClass:
   1009   case Expr::ParenExprClass:
   1010   case Expr::ParenListExprClass:
   1011   case Expr::ShuffleVectorExprClass:
   1012   case Expr::ConvertVectorExprClass:
   1013   case Expr::VAArgExprClass:
   1014     return canSubExprsThrow(*this, E);
   1015 
   1016     // Some might be dependent for other reasons.
   1017   case Expr::ArraySubscriptExprClass:
   1018   case Expr::BinaryOperatorClass:
   1019   case Expr::CompoundAssignOperatorClass:
   1020   case Expr::CStyleCastExprClass:
   1021   case Expr::CXXStaticCastExprClass:
   1022   case Expr::CXXFunctionalCastExprClass:
   1023   case Expr::ImplicitCastExprClass:
   1024   case Expr::MaterializeTemporaryExprClass:
   1025   case Expr::UnaryOperatorClass: {
   1026     CanThrowResult CT = E->isTypeDependent() ? CT_Dependent : CT_Cannot;
   1027     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
   1028   }
   1029 
   1030     // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
   1031   case Expr::StmtExprClass:
   1032     return CT_Can;
   1033 
   1034   case Expr::CXXDefaultArgExprClass:
   1035     return canThrow(cast<CXXDefaultArgExpr>(E)->getExpr());
   1036 
   1037   case Expr::CXXDefaultInitExprClass:
   1038     return canThrow(cast<CXXDefaultInitExpr>(E)->getExpr());
   1039 
   1040   case Expr::ChooseExprClass:
   1041     if (E->isTypeDependent() || E->isValueDependent())
   1042       return CT_Dependent;
   1043     return canThrow(cast<ChooseExpr>(E)->getChosenSubExpr());
   1044 
   1045   case Expr::GenericSelectionExprClass:
   1046     if (cast<GenericSelectionExpr>(E)->isResultDependent())
   1047       return CT_Dependent;
   1048     return canThrow(cast<GenericSelectionExpr>(E)->getResultExpr());
   1049 
   1050     // Some expressions are always dependent.
   1051   case Expr::CXXDependentScopeMemberExprClass:
   1052   case Expr::CXXUnresolvedConstructExprClass:
   1053   case Expr::DependentScopeDeclRefExprClass:
   1054     return CT_Dependent;
   1055 
   1056   case Expr::AsTypeExprClass:
   1057   case Expr::BinaryConditionalOperatorClass:
   1058   case Expr::BlockExprClass:
   1059   case Expr::CUDAKernelCallExprClass:
   1060   case Expr::DeclRefExprClass:
   1061   case Expr::ObjCBridgedCastExprClass:
   1062   case Expr::ObjCIndirectCopyRestoreExprClass:
   1063   case Expr::ObjCProtocolExprClass:
   1064   case Expr::ObjCSelectorExprClass:
   1065   case Expr::OffsetOfExprClass:
   1066   case Expr::PackExpansionExprClass:
   1067   case Expr::PseudoObjectExprClass:
   1068   case Expr::SubstNonTypeTemplateParmExprClass:
   1069   case Expr::SubstNonTypeTemplateParmPackExprClass:
   1070   case Expr::FunctionParmPackExprClass:
   1071   case Expr::UnaryExprOrTypeTraitExprClass:
   1072   case Expr::UnresolvedLookupExprClass:
   1073   case Expr::UnresolvedMemberExprClass:
   1074     // FIXME: Can any of the above throw?  If so, when?
   1075     return CT_Cannot;
   1076 
   1077   case Expr::AddrLabelExprClass:
   1078   case Expr::ArrayTypeTraitExprClass:
   1079   case Expr::AtomicExprClass:
   1080   case Expr::TypeTraitExprClass:
   1081   case Expr::CXXBoolLiteralExprClass:
   1082   case Expr::CXXNoexceptExprClass:
   1083   case Expr::CXXNullPtrLiteralExprClass:
   1084   case Expr::CXXPseudoDestructorExprClass:
   1085   case Expr::CXXScalarValueInitExprClass:
   1086   case Expr::CXXThisExprClass:
   1087   case Expr::CXXUuidofExprClass:
   1088   case Expr::CharacterLiteralClass:
   1089   case Expr::ExpressionTraitExprClass:
   1090   case Expr::FloatingLiteralClass:
   1091   case Expr::GNUNullExprClass:
   1092   case Expr::ImaginaryLiteralClass:
   1093   case Expr::ImplicitValueInitExprClass:
   1094   case Expr::IntegerLiteralClass:
   1095   case Expr::ObjCEncodeExprClass:
   1096   case Expr::ObjCStringLiteralClass:
   1097   case Expr::ObjCBoolLiteralExprClass:
   1098   case Expr::OpaqueValueExprClass:
   1099   case Expr::PredefinedExprClass:
   1100   case Expr::SizeOfPackExprClass:
   1101   case Expr::StringLiteralClass:
   1102     // These expressions can never throw.
   1103     return CT_Cannot;
   1104 
   1105   case Expr::MSPropertyRefExprClass:
   1106     llvm_unreachable("Invalid class for expression");
   1107 
   1108 #define STMT(CLASS, PARENT) case Expr::CLASS##Class:
   1109 #define STMT_RANGE(Base, First, Last)
   1110 #define LAST_STMT_RANGE(BASE, FIRST, LAST)
   1111 #define EXPR(CLASS, PARENT)
   1112 #define ABSTRACT_STMT(STMT)
   1113 #include "clang/AST/StmtNodes.inc"
   1114   case Expr::NoStmtClass:
   1115     llvm_unreachable("Invalid class for expression");
   1116   }
   1117   llvm_unreachable("Bogus StmtClass");
   1118 }
   1119 
   1120 } // end namespace clang
   1121