Home | History | Annotate | Download | only in core
      1 /*
      2  * QEMU DMA emulation
      3  *
      4  * Copyright (c) 2003-2004 Vassili Karpov (malc)
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a copy
      7  * of this software and associated documentation files (the "Software"), to deal
      8  * in the Software without restriction, including without limitation the rights
      9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     10  * copies of the Software, and to permit persons to whom the Software is
     11  * furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice shall be included in
     14  * all copies or substantial portions of the Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
     19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     22  * THE SOFTWARE.
     23  */
     24 #include "cpu.h"
     25 #include "exec/cpu-common.h"
     26 #include "hw/hw.h"
     27 #include "hw/isa/isa.h"
     28 
     29 /* #define DEBUG_DMA */
     30 
     31 #define dolog(...) fprintf (stderr, "dma: " __VA_ARGS__)
     32 #ifdef DEBUG_DMA
     33 #define linfo(...) fprintf (stderr, "dma: " __VA_ARGS__)
     34 #define ldebug(...) fprintf (stderr, "dma: " __VA_ARGS__)
     35 #else
     36 #define linfo(...)
     37 #define ldebug(...)
     38 #endif
     39 
     40 struct dma_regs {
     41     int now[2];
     42     uint16_t base[2];
     43     uint8_t mode;
     44     uint8_t page;
     45     uint8_t pageh;
     46     uint8_t dack;
     47     uint8_t eop;
     48     DMA_transfer_handler transfer_handler;
     49     void *opaque;
     50 };
     51 
     52 #define ADDR 0
     53 #define COUNT 1
     54 
     55 static struct dma_cont {
     56     uint8_t status;
     57     uint8_t command;
     58     uint8_t mask;
     59     uint8_t flip_flop;
     60     int dshift;
     61     struct dma_regs regs[4];
     62 } dma_controllers[2];
     63 
     64 enum {
     65     CMD_MEMORY_TO_MEMORY = 0x01,
     66     CMD_FIXED_ADDRESS    = 0x02,
     67     CMD_BLOCK_CONTROLLER = 0x04,
     68     CMD_COMPRESSED_TIME  = 0x08,
     69     CMD_CYCLIC_PRIORITY  = 0x10,
     70     CMD_EXTENDED_WRITE   = 0x20,
     71     CMD_LOW_DREQ         = 0x40,
     72     CMD_LOW_DACK         = 0x80,
     73     CMD_NOT_SUPPORTED    = CMD_MEMORY_TO_MEMORY | CMD_FIXED_ADDRESS
     74     | CMD_COMPRESSED_TIME | CMD_CYCLIC_PRIORITY | CMD_EXTENDED_WRITE
     75     | CMD_LOW_DREQ | CMD_LOW_DACK
     76 
     77 };
     78 
     79 static void DMA_run (void);
     80 
     81 static int channels[8] = {-1, 2, 3, 1, -1, -1, -1, 0};
     82 
     83 static void write_page (void *opaque, uint32_t nport, uint32_t data)
     84 {
     85     struct dma_cont *d = opaque;
     86     int ichan;
     87 
     88     ichan = channels[nport & 7];
     89     if (-1 == ichan) {
     90         dolog ("invalid channel %#x %#x\n", nport, data);
     91         return;
     92     }
     93     d->regs[ichan].page = data;
     94 }
     95 
     96 static void write_pageh (void *opaque, uint32_t nport, uint32_t data)
     97 {
     98     struct dma_cont *d = opaque;
     99     int ichan;
    100 
    101     ichan = channels[nport & 7];
    102     if (-1 == ichan) {
    103         dolog ("invalid channel %#x %#x\n", nport, data);
    104         return;
    105     }
    106     d->regs[ichan].pageh = data;
    107 }
    108 
    109 static uint32_t read_page (void *opaque, uint32_t nport)
    110 {
    111     struct dma_cont *d = opaque;
    112     int ichan;
    113 
    114     ichan = channels[nport & 7];
    115     if (-1 == ichan) {
    116         dolog ("invalid channel read %#x\n", nport);
    117         return 0;
    118     }
    119     return d->regs[ichan].page;
    120 }
    121 
    122 static uint32_t read_pageh (void *opaque, uint32_t nport)
    123 {
    124     struct dma_cont *d = opaque;
    125     int ichan;
    126 
    127     ichan = channels[nport & 7];
    128     if (-1 == ichan) {
    129         dolog ("invalid channel read %#x\n", nport);
    130         return 0;
    131     }
    132     return d->regs[ichan].pageh;
    133 }
    134 
    135 static inline void init_chan (struct dma_cont *d, int ichan)
    136 {
    137     struct dma_regs *r;
    138 
    139     r = d->regs + ichan;
    140     r->now[ADDR] = r->base[ADDR] << d->dshift;
    141     r->now[COUNT] = 0;
    142 }
    143 
    144 static inline int getff (struct dma_cont *d)
    145 {
    146     int ff;
    147 
    148     ff = d->flip_flop;
    149     d->flip_flop = !ff;
    150     return ff;
    151 }
    152 
    153 static uint32_t read_chan (void *opaque, uint32_t nport)
    154 {
    155     struct dma_cont *d = opaque;
    156     int ichan, nreg, iport, ff, val, dir;
    157     struct dma_regs *r;
    158 
    159     iport = (nport >> d->dshift) & 0x0f;
    160     ichan = iport >> 1;
    161     nreg = iport & 1;
    162     r = d->regs + ichan;
    163 
    164     dir = ((r->mode >> 5) & 1) ? -1 : 1;
    165     ff = getff (d);
    166     if (nreg)
    167         val = (r->base[COUNT] << d->dshift) - r->now[COUNT];
    168     else
    169         val = r->now[ADDR] + r->now[COUNT] * dir;
    170 
    171     ldebug ("read_chan %#x -> %d\n", iport, val);
    172     return (val >> (d->dshift + (ff << 3))) & 0xff;
    173 }
    174 
    175 static void write_chan (void *opaque, uint32_t nport, uint32_t data)
    176 {
    177     struct dma_cont *d = opaque;
    178     int iport, ichan, nreg;
    179     struct dma_regs *r;
    180 
    181     iport = (nport >> d->dshift) & 0x0f;
    182     ichan = iport >> 1;
    183     nreg = iport & 1;
    184     r = d->regs + ichan;
    185     if (getff (d)) {
    186         r->base[nreg] = (r->base[nreg] & 0xff) | ((data << 8) & 0xff00);
    187         init_chan (d, ichan);
    188     } else {
    189         r->base[nreg] = (r->base[nreg] & 0xff00) | (data & 0xff);
    190     }
    191 }
    192 
    193 static void write_cont (void *opaque, uint32_t nport, uint32_t data)
    194 {
    195     struct dma_cont *d = opaque;
    196     int iport, ichan = 0;
    197 
    198     iport = (nport >> d->dshift) & 0x0f;
    199     switch (iport) {
    200     case 0x08:                  /* command */
    201         if ((data != 0) && (data & CMD_NOT_SUPPORTED)) {
    202             dolog ("command %#x not supported\n", data);
    203             return;
    204         }
    205         d->command = data;
    206         break;
    207 
    208     case 0x09:
    209         ichan = data & 3;
    210         if (data & 4) {
    211             d->status |= 1 << (ichan + 4);
    212         }
    213         else {
    214             d->status &= ~(1 << (ichan + 4));
    215         }
    216         d->status &= ~(1 << ichan);
    217         DMA_run();
    218         break;
    219 
    220     case 0x0a:                  /* single mask */
    221         if (data & 4)
    222             d->mask |= 1 << (data & 3);
    223         else
    224             d->mask &= ~(1 << (data & 3));
    225         DMA_run();
    226         break;
    227 
    228     case 0x0b:                  /* mode */
    229         {
    230             ichan = data & 3;
    231 #ifdef DEBUG_DMA
    232             {
    233                 int op, ai, dir, opmode;
    234                 op = (data >> 2) & 3;
    235                 ai = (data >> 4) & 1;
    236                 dir = (data >> 5) & 1;
    237                 opmode = (data >> 6) & 3;
    238 
    239                 linfo ("ichan %d, op %d, ai %d, dir %d, opmode %d\n",
    240                        ichan, op, ai, dir, opmode);
    241             }
    242 #endif
    243             d->regs[ichan].mode = data;
    244             break;
    245         }
    246 
    247     case 0x0c:                  /* clear flip flop */
    248         d->flip_flop = 0;
    249         break;
    250 
    251     case 0x0d:                  /* reset */
    252         d->flip_flop = 0;
    253         d->mask = ~0;
    254         d->status = 0;
    255         d->command = 0;
    256         break;
    257 
    258     case 0x0e:                  /* clear mask for all channels */
    259         d->mask = 0;
    260         DMA_run();
    261         break;
    262 
    263     case 0x0f:                  /* write mask for all channels */
    264         d->mask = data;
    265         DMA_run();
    266         break;
    267 
    268     default:
    269         dolog ("unknown iport %#x\n", iport);
    270         break;
    271     }
    272 
    273 #ifdef DEBUG_DMA
    274     if (0xc != iport) {
    275         linfo ("write_cont: nport %#06x, ichan % 2d, val %#06x\n",
    276                nport, ichan, data);
    277     }
    278 #endif
    279 }
    280 
    281 static uint32_t read_cont (void *opaque, uint32_t nport)
    282 {
    283     struct dma_cont *d = opaque;
    284     int iport, val;
    285 
    286     iport = (nport >> d->dshift) & 0x0f;
    287     switch (iport) {
    288     case 0x08:                  /* status */
    289         val = d->status;
    290         d->status &= 0xf0;
    291         break;
    292     case 0x0f:                  /* mask */
    293         val = d->mask;
    294         break;
    295     default:
    296         val = 0;
    297         break;
    298     }
    299 
    300     ldebug ("read_cont: nport %#06x, iport %#04x val %#x\n", nport, iport, val);
    301     return val;
    302 }
    303 
    304 int DMA_get_channel_mode (int nchan)
    305 {
    306     return dma_controllers[nchan > 3].regs[nchan & 3].mode;
    307 }
    308 
    309 void DMA_hold_DREQ (int nchan)
    310 {
    311     int ncont, ichan;
    312 
    313     ncont = nchan > 3;
    314     ichan = nchan & 3;
    315     linfo ("held cont=%d chan=%d\n", ncont, ichan);
    316     dma_controllers[ncont].status |= 1 << (ichan + 4);
    317     DMA_run();
    318 }
    319 
    320 void DMA_release_DREQ (int nchan)
    321 {
    322     int ncont, ichan;
    323 
    324     ncont = nchan > 3;
    325     ichan = nchan & 3;
    326     linfo ("released cont=%d chan=%d\n", ncont, ichan);
    327     dma_controllers[ncont].status &= ~(1 << (ichan + 4));
    328     DMA_run();
    329 }
    330 
    331 static void channel_run (int ncont, int ichan)
    332 {
    333     int n;
    334     struct dma_regs *r = &dma_controllers[ncont].regs[ichan];
    335 #ifdef DEBUG_DMA
    336     int dir, opmode;
    337 
    338     dir = (r->mode >> 5) & 1;
    339     opmode = (r->mode >> 6) & 3;
    340 
    341     if (dir) {
    342         dolog ("DMA in address decrement mode\n");
    343     }
    344     if (opmode != 1) {
    345         dolog ("DMA not in single mode select %#x\n", opmode);
    346     }
    347 #endif
    348 
    349     r = dma_controllers[ncont].regs + ichan;
    350     if (r->transfer_handler) {
    351         n = r->transfer_handler (r->opaque, ichan + (ncont << 2),
    352                                  r->now[COUNT], (r->base[COUNT] + 1) << ncont);
    353         r->now[COUNT] = n;
    354     }
    355     ldebug ("dma_pos %d size %d\n", n, (r->base[COUNT] + 1) << ncont);
    356 }
    357 
    358 static QEMUBH *dma_bh;
    359 
    360 static void DMA_run (void)
    361 {
    362     struct dma_cont *d;
    363     int icont, ichan;
    364     int rearm = 0;
    365 
    366     d = dma_controllers;
    367 
    368     for (icont = 0; icont < 2; icont++, d++) {
    369         for (ichan = 0; ichan < 4; ichan++) {
    370             int mask;
    371 
    372             mask = 1 << ichan;
    373 
    374             if ((0 == (d->mask & mask)) && (0 != (d->status & (mask << 4)))) {
    375                 channel_run (icont, ichan);
    376                 rearm = 1;
    377             }
    378         }
    379     }
    380 
    381     if (rearm)
    382         qemu_bh_schedule_idle(dma_bh);
    383 }
    384 
    385 static void DMA_run_bh(void *unused)
    386 {
    387     DMA_run();
    388 }
    389 
    390 void DMA_register_channel (int nchan,
    391                            DMA_transfer_handler transfer_handler,
    392                            void *opaque)
    393 {
    394     struct dma_regs *r;
    395     int ichan, ncont;
    396 
    397     ncont = nchan > 3;
    398     ichan = nchan & 3;
    399 
    400     r = dma_controllers[ncont].regs + ichan;
    401     r->transfer_handler = transfer_handler;
    402     r->opaque = opaque;
    403 }
    404 
    405 int DMA_read_memory (int nchan, void *buf, int pos, int len)
    406 {
    407     struct dma_regs *r = &dma_controllers[nchan > 3].regs[nchan & 3];
    408     hwaddr addr = ((r->pageh & 0x7f) << 24) | (r->page << 16) | r->now[ADDR];
    409 
    410     if (r->mode & 0x20) {
    411         int i;
    412         uint8_t *p = buf;
    413 
    414         cpu_physical_memory_read (addr - pos - len, buf, len);
    415         /* What about 16bit transfers? */
    416         for (i = 0; i < len >> 1; i++) {
    417             uint8_t b = p[len - i - 1];
    418             p[i] = b;
    419         }
    420     }
    421     else
    422         cpu_physical_memory_read (addr + pos, buf, len);
    423 
    424     return len;
    425 }
    426 
    427 int DMA_write_memory (int nchan, void *buf, int pos, int len)
    428 {
    429     struct dma_regs *r = &dma_controllers[nchan > 3].regs[nchan & 3];
    430     hwaddr addr = ((r->pageh & 0x7f) << 24) | (r->page << 16) | r->now[ADDR];
    431 
    432     if (r->mode & 0x20) {
    433         int i;
    434         uint8_t *p = buf;
    435 
    436         cpu_physical_memory_write (addr - pos - len, buf, len);
    437         /* What about 16bit transfers? */
    438         for (i = 0; i < len; i++) {
    439             uint8_t b = p[len - i - 1];
    440             p[i] = b;
    441         }
    442     }
    443     else
    444         cpu_physical_memory_write (addr + pos, buf, len);
    445 
    446     return len;
    447 }
    448 
    449 /* request the emulator to transfer a new DMA memory block ASAP */
    450 void DMA_schedule(int nchan)
    451 {
    452     CPUState *cpu = current_cpu;
    453     if (cpu)
    454         cpu_exit(cpu);
    455 }
    456 
    457 static void dma_reset(void *opaque)
    458 {
    459     struct dma_cont *d = opaque;
    460     write_cont (d, (0x0d << d->dshift), 0);
    461 }
    462 
    463 static int dma_phony_handler (void *opaque, int nchan, int dma_pos, int dma_len)
    464 {
    465     dolog ("unregistered DMA channel used nchan=%d dma_pos=%d dma_len=%d\n",
    466            nchan, dma_pos, dma_len);
    467     return dma_pos;
    468 }
    469 
    470 /* dshift = 0: 8 bit DMA, 1 = 16 bit DMA */
    471 static void dma_init2(struct dma_cont *d, int base, int dshift,
    472                       int page_base, int pageh_base)
    473 {
    474     static const int page_port_list[] = { 0x1, 0x2, 0x3, 0x7 };
    475     int i;
    476 
    477     d->dshift = dshift;
    478     for (i = 0; i < 8; i++) {
    479         register_ioport_write (base + (i << dshift), 1, 1, write_chan, d);
    480         register_ioport_read (base + (i << dshift), 1, 1, read_chan, d);
    481     }
    482     for (i = 0; i < ARRAY_SIZE (page_port_list); i++) {
    483         register_ioport_write (page_base + page_port_list[i], 1, 1,
    484                                write_page, d);
    485         register_ioport_read (page_base + page_port_list[i], 1, 1,
    486                               read_page, d);
    487         if (pageh_base >= 0) {
    488             register_ioport_write (pageh_base + page_port_list[i], 1, 1,
    489                                    write_pageh, d);
    490             register_ioport_read (pageh_base + page_port_list[i], 1, 1,
    491                                   read_pageh, d);
    492         }
    493     }
    494     for (i = 0; i < 8; i++) {
    495         register_ioport_write (base + ((i + 8) << dshift), 1, 1,
    496                                write_cont, d);
    497         register_ioport_read (base + ((i + 8) << dshift), 1, 1,
    498                               read_cont, d);
    499     }
    500     qemu_register_reset(dma_reset, 0, d);
    501     dma_reset(d);
    502     for (i = 0; i < ARRAY_SIZE (d->regs); ++i) {
    503         d->regs[i].transfer_handler = dma_phony_handler;
    504     }
    505 }
    506 
    507 static void dma_save (QEMUFile *f, void *opaque)
    508 {
    509     struct dma_cont *d = opaque;
    510     int i;
    511 
    512     /* qemu_put_8s (f, &d->status); */
    513     qemu_put_8s (f, &d->command);
    514     qemu_put_8s (f, &d->mask);
    515     qemu_put_8s (f, &d->flip_flop);
    516     qemu_put_be32 (f, d->dshift);
    517 
    518     for (i = 0; i < 4; ++i) {
    519         struct dma_regs *r = &d->regs[i];
    520         qemu_put_be32 (f, r->now[0]);
    521         qemu_put_be32 (f, r->now[1]);
    522         qemu_put_be16s (f, &r->base[0]);
    523         qemu_put_be16s (f, &r->base[1]);
    524         qemu_put_8s (f, &r->mode);
    525         qemu_put_8s (f, &r->page);
    526         qemu_put_8s (f, &r->pageh);
    527         qemu_put_8s (f, &r->dack);
    528         qemu_put_8s (f, &r->eop);
    529     }
    530 }
    531 
    532 static int dma_load (QEMUFile *f, void *opaque, int version_id)
    533 {
    534     struct dma_cont *d = opaque;
    535     int i;
    536 
    537     if (version_id != 1)
    538         return -EINVAL;
    539 
    540     /* qemu_get_8s (f, &d->status); */
    541     qemu_get_8s (f, &d->command);
    542     qemu_get_8s (f, &d->mask);
    543     qemu_get_8s (f, &d->flip_flop);
    544     d->dshift=qemu_get_be32 (f);
    545 
    546     for (i = 0; i < 4; ++i) {
    547         struct dma_regs *r = &d->regs[i];
    548         r->now[0]=qemu_get_be32 (f);
    549         r->now[1]=qemu_get_be32 (f);
    550         qemu_get_be16s (f, &r->base[0]);
    551         qemu_get_be16s (f, &r->base[1]);
    552         qemu_get_8s (f, &r->mode);
    553         qemu_get_8s (f, &r->page);
    554         qemu_get_8s (f, &r->pageh);
    555         qemu_get_8s (f, &r->dack);
    556         qemu_get_8s (f, &r->eop);
    557     }
    558 
    559     DMA_run();
    560 
    561     return 0;
    562 }
    563 
    564 void DMA_init (int high_page_enable)
    565 {
    566     dma_init2(&dma_controllers[0], 0x00, 0, 0x80,
    567               high_page_enable ? 0x480 : -1);
    568     dma_init2(&dma_controllers[1], 0xc0, 1, 0x88,
    569               high_page_enable ? 0x488 : -1);
    570     register_savevm(NULL,
    571                     "dma",
    572                     0,
    573                     1,
    574                     dma_save,
    575                     dma_load,
    576                     &dma_controllers[0]);
    577 
    578     register_savevm(NULL,
    579                     "dma",
    580                     1,
    581                     1,
    582                     dma_save,
    583                     dma_load,
    584                     &dma_controllers[1]);
    585 
    586     dma_bh = qemu_bh_new(DMA_run_bh, NULL);
    587 }
    588