Home | History | Annotate | Download | only in courgette
      1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "courgette/encoded_program.h"
      6 
      7 #include <algorithm>
      8 #include <map>
      9 #include <string>
     10 #include <vector>
     11 
     12 #include "base/environment.h"
     13 #include "base/logging.h"
     14 #include "base/memory/scoped_ptr.h"
     15 #include "base/strings/string_util.h"
     16 #include "base/strings/utf_string_conversions.h"
     17 #include "courgette/courgette.h"
     18 #include "courgette/disassembler_elf_32_arm.h"
     19 #include "courgette/streams.h"
     20 #include "courgette/types_elf.h"
     21 
     22 namespace courgette {
     23 
     24 // Stream indexes.
     25 const int kStreamMisc    = 0;
     26 const int kStreamOps     = 1;
     27 const int kStreamBytes   = 2;
     28 const int kStreamAbs32Indexes = 3;
     29 const int kStreamRel32Indexes = 4;
     30 const int kStreamAbs32Addresses = 5;
     31 const int kStreamRel32Addresses = 6;
     32 const int kStreamCopyCounts = 7;
     33 const int kStreamOriginAddresses = kStreamMisc;
     34 
     35 const int kStreamLimit = 9;
     36 
     37 // Constructor is here rather than in the header.  Although the constructor
     38 // appears to do nothing it is fact quite large because of the implicit calls to
     39 // field constructors.  Ditto for the destructor.
     40 EncodedProgram::EncodedProgram() : image_base_(0) {}
     41 EncodedProgram::~EncodedProgram() {}
     42 
     43 // Serializes a vector of integral values using Varint32 coding.
     44 template<typename V>
     45 CheckBool WriteVector(const V& items, SinkStream* buffer) {
     46   size_t count = items.size();
     47   bool ok = buffer->WriteSizeVarint32(count);
     48   for (size_t i = 0; ok && i < count;  ++i) {
     49     COMPILE_ASSERT(sizeof(items[0]) <= sizeof(uint32),  // NOLINT
     50                    T_must_fit_in_uint32);
     51     ok = buffer->WriteSizeVarint32(items[i]);
     52   }
     53   return ok;
     54 }
     55 
     56 template<typename V>
     57 bool ReadVector(V* items, SourceStream* buffer) {
     58   uint32 count;
     59   if (!buffer->ReadVarint32(&count))
     60     return false;
     61 
     62   items->clear();
     63 
     64   bool ok = items->reserve(count);
     65   for (size_t i = 0;  ok && i < count;  ++i) {
     66     uint32 item;
     67     ok = buffer->ReadVarint32(&item);
     68     if (ok)
     69       ok = items->push_back(static_cast<typename V::value_type>(item));
     70   }
     71 
     72   return ok;
     73 }
     74 
     75 // Serializes a vector, using delta coding followed by Varint32 coding.
     76 template<typename V>
     77 CheckBool WriteU32Delta(const V& set, SinkStream* buffer) {
     78   size_t count = set.size();
     79   bool ok = buffer->WriteSizeVarint32(count);
     80   uint32 prev = 0;
     81   for (size_t i = 0;  ok && i < count;  ++i) {
     82     uint32 current = set[i];
     83     uint32 delta = current - prev;
     84     ok = buffer->WriteVarint32(delta);
     85     prev = current;
     86   }
     87   return ok;
     88 }
     89 
     90 template <typename V>
     91 static CheckBool ReadU32Delta(V* set, SourceStream* buffer) {
     92   uint32 count;
     93 
     94   if (!buffer->ReadVarint32(&count))
     95     return false;
     96 
     97   set->clear();
     98   bool ok = set->reserve(count);
     99   uint32 prev = 0;
    100 
    101   for (size_t i = 0; ok && i < count;  ++i) {
    102     uint32 delta;
    103     ok = buffer->ReadVarint32(&delta);
    104     if (ok) {
    105       uint32 current = prev + delta;
    106       ok = set->push_back(current);
    107       prev = current;
    108     }
    109   }
    110 
    111   return ok;
    112 }
    113 
    114 // Write a vector as the byte representation of the contents.
    115 //
    116 // (This only really makes sense for a type T that has sizeof(T)==1, otherwise
    117 // serialized representation is not endian-agnostic.  But it is useful to keep
    118 // the possibility of a greater size for experiments comparing Varint32 encoding
    119 // of a vector of larger integrals vs a plain form.)
    120 //
    121 template<typename V>
    122 CheckBool WriteVectorU8(const V& items, SinkStream* buffer) {
    123   size_t count = items.size();
    124   bool ok = buffer->WriteSizeVarint32(count);
    125   if (count != 0 && ok) {
    126     size_t byte_count = count * sizeof(typename V::value_type);
    127     ok = buffer->Write(static_cast<const void*>(&items[0]), byte_count);
    128   }
    129   return ok;
    130 }
    131 
    132 template<typename V>
    133 bool ReadVectorU8(V* items, SourceStream* buffer) {
    134   uint32 count;
    135   if (!buffer->ReadVarint32(&count))
    136     return false;
    137 
    138   items->clear();
    139   bool ok = items->resize(count, 0);
    140   if (ok && count != 0) {
    141     size_t byte_count = count * sizeof(typename V::value_type);
    142     return buffer->Read(static_cast<void*>(&((*items)[0])), byte_count);
    143   }
    144   return ok;
    145 }
    146 
    147 ////////////////////////////////////////////////////////////////////////////////
    148 
    149 CheckBool EncodedProgram::DefineRel32Label(int index, RVA value) {
    150   return DefineLabelCommon(&rel32_rva_, index, value);
    151 }
    152 
    153 CheckBool EncodedProgram::DefineAbs32Label(int index, RVA value) {
    154   return DefineLabelCommon(&abs32_rva_, index, value);
    155 }
    156 
    157 static const RVA kUnassignedRVA = static_cast<RVA>(-1);
    158 
    159 CheckBool EncodedProgram::DefineLabelCommon(RvaVector* rvas,
    160                                             int index,
    161                                             RVA rva) {
    162   bool ok = true;
    163   if (static_cast<int>(rvas->size()) <= index)
    164     ok = rvas->resize(index + 1, kUnassignedRVA);
    165 
    166   if (ok) {
    167     DCHECK_EQ((*rvas)[index], kUnassignedRVA)
    168         << "DefineLabel double assigned " << index;
    169     (*rvas)[index] = rva;
    170   }
    171 
    172   return ok;
    173 }
    174 
    175 void EncodedProgram::EndLabels() {
    176   FinishLabelsCommon(&abs32_rva_);
    177   FinishLabelsCommon(&rel32_rva_);
    178 }
    179 
    180 void EncodedProgram::FinishLabelsCommon(RvaVector* rvas) {
    181   // Replace all unassigned slots with the value at the previous index so they
    182   // delta-encode to zero.  (There might be better values than zero.  The way to
    183   // get that is have the higher level assembly program assign the unassigned
    184   // slots.)
    185   RVA previous = 0;
    186   size_t size = rvas->size();
    187   for (size_t i = 0;  i < size;  ++i) {
    188     if ((*rvas)[i] == kUnassignedRVA)
    189       (*rvas)[i] = previous;
    190     else
    191       previous = (*rvas)[i];
    192   }
    193 }
    194 
    195 CheckBool EncodedProgram::AddOrigin(RVA origin) {
    196   return ops_.push_back(ORIGIN) && origins_.push_back(origin);
    197 }
    198 
    199 CheckBool EncodedProgram::AddCopy(uint32 count, const void* bytes) {
    200   const uint8* source = static_cast<const uint8*>(bytes);
    201 
    202   bool ok = true;
    203 
    204   // Fold adjacent COPY instructions into one.  This nearly halves the size of
    205   // an EncodedProgram with only COPY1 instructions since there are approx plain
    206   // 16 bytes per reloc.  This has a working-set benefit during decompression.
    207   // For compression of files with large differences this makes a small (4%)
    208   // improvement in size.  For files with small differences this degrades the
    209   // compressed size by 1.3%
    210   if (!ops_.empty()) {
    211     if (ops_.back() == COPY1) {
    212       ops_.back() = COPY;
    213       ok = copy_counts_.push_back(1);
    214     }
    215     if (ok && ops_.back() == COPY) {
    216       copy_counts_.back() += count;
    217       for (uint32 i = 0; ok && i < count; ++i) {
    218         ok = copy_bytes_.push_back(source[i]);
    219       }
    220       return ok;
    221     }
    222   }
    223 
    224   if (ok) {
    225     if (count == 1) {
    226       ok = ops_.push_back(COPY1) && copy_bytes_.push_back(source[0]);
    227     } else {
    228       ok = ops_.push_back(COPY) && copy_counts_.push_back(count);
    229       for (uint32 i = 0; ok && i < count; ++i) {
    230         ok = copy_bytes_.push_back(source[i]);
    231       }
    232     }
    233   }
    234 
    235   return ok;
    236 }
    237 
    238 CheckBool EncodedProgram::AddAbs32(int label_index) {
    239   return ops_.push_back(ABS32) && abs32_ix_.push_back(label_index);
    240 }
    241 
    242 CheckBool EncodedProgram::AddRel32(int label_index) {
    243   return ops_.push_back(REL32) && rel32_ix_.push_back(label_index);
    244 }
    245 
    246 CheckBool EncodedProgram::AddRel32ARM(uint16 op, int label_index) {
    247   return ops_.push_back(static_cast<OP>(op)) &&
    248       rel32_ix_.push_back(label_index);
    249 }
    250 
    251 CheckBool EncodedProgram::AddPeMakeRelocs(ExecutableType kind) {
    252   if (kind == EXE_WIN_32_X86)
    253     return ops_.push_back(MAKE_PE_RELOCATION_TABLE);
    254   return ops_.push_back(MAKE_PE64_RELOCATION_TABLE);
    255 }
    256 
    257 CheckBool EncodedProgram::AddElfMakeRelocs() {
    258   return ops_.push_back(MAKE_ELF_RELOCATION_TABLE);
    259 }
    260 
    261 CheckBool EncodedProgram::AddElfARMMakeRelocs() {
    262   return ops_.push_back(MAKE_ELF_ARM_RELOCATION_TABLE);
    263 }
    264 
    265 void EncodedProgram::DebuggingSummary() {
    266   VLOG(1) << "EncodedProgram Summary"
    267           << "\n  image base  " << image_base_
    268           << "\n  abs32 rvas  " << abs32_rva_.size()
    269           << "\n  rel32 rvas  " << rel32_rva_.size()
    270           << "\n  ops         " << ops_.size()
    271           << "\n  origins     " << origins_.size()
    272           << "\n  copy_counts " << copy_counts_.size()
    273           << "\n  copy_bytes  " << copy_bytes_.size()
    274           << "\n  abs32_ix    " << abs32_ix_.size()
    275           << "\n  rel32_ix    " << rel32_ix_.size();
    276 }
    277 
    278 ////////////////////////////////////////////////////////////////////////////////
    279 
    280 // For algorithm refinement purposes it is useful to write subsets of the file
    281 // format.  This gives us the ability to estimate the entropy of the
    282 // differential compression of the individual streams, which can provide
    283 // invaluable insights.  The default, of course, is to include all the streams.
    284 //
    285 enum FieldSelect {
    286   INCLUDE_ABS32_ADDRESSES = 0x0001,
    287   INCLUDE_REL32_ADDRESSES = 0x0002,
    288   INCLUDE_ABS32_INDEXES   = 0x0010,
    289   INCLUDE_REL32_INDEXES   = 0x0020,
    290   INCLUDE_OPS             = 0x0100,
    291   INCLUDE_BYTES           = 0x0200,
    292   INCLUDE_COPY_COUNTS     = 0x0400,
    293   INCLUDE_MISC            = 0x1000
    294 };
    295 
    296 static FieldSelect GetFieldSelect() {
    297 #if 1
    298   // TODO(sra): Use better configuration.
    299   scoped_ptr<base::Environment> env(base::Environment::Create());
    300   std::string s;
    301   env->GetVar("A_FIELDS", &s);
    302   if (!s.empty()) {
    303     return static_cast<FieldSelect>(
    304         wcstoul(base::ASCIIToWide(s).c_str(), 0, 0));
    305   }
    306 #endif
    307   return  static_cast<FieldSelect>(~0);
    308 }
    309 
    310 CheckBool EncodedProgram::WriteTo(SinkStreamSet* streams) {
    311   FieldSelect select = GetFieldSelect();
    312 
    313   // The order of fields must be consistent in WriteTo and ReadFrom, regardless
    314   // of the streams used.  The code can be configured with all kStreamXXX
    315   // constants the same.
    316   //
    317   // If we change the code to pipeline reading with assembly (to avoid temporary
    318   // storage vectors by consuming operands directly from the stream) then we
    319   // need to read the base address and the random access address tables first,
    320   // the rest can be interleaved.
    321 
    322   if (select & INCLUDE_MISC) {
    323     // TODO(sra): write 64 bits.
    324     if (!streams->stream(kStreamMisc)->WriteVarint32(
    325             static_cast<uint32>(image_base_))) {
    326       return false;
    327     }
    328   }
    329 
    330   bool success = true;
    331 
    332   if (select & INCLUDE_ABS32_ADDRESSES) {
    333     success &= WriteU32Delta(abs32_rva_,
    334                              streams->stream(kStreamAbs32Addresses));
    335   }
    336 
    337   if (select & INCLUDE_REL32_ADDRESSES) {
    338     success &= WriteU32Delta(rel32_rva_,
    339                              streams->stream(kStreamRel32Addresses));
    340   }
    341 
    342   if (select & INCLUDE_MISC)
    343     success &= WriteVector(origins_, streams->stream(kStreamOriginAddresses));
    344 
    345   if (select & INCLUDE_OPS) {
    346     // 5 for length.
    347     success &= streams->stream(kStreamOps)->Reserve(ops_.size() + 5);
    348     success &= WriteVector(ops_, streams->stream(kStreamOps));
    349   }
    350 
    351   if (select & INCLUDE_COPY_COUNTS)
    352     success &= WriteVector(copy_counts_, streams->stream(kStreamCopyCounts));
    353 
    354   if (select & INCLUDE_BYTES)
    355     success &= WriteVectorU8(copy_bytes_, streams->stream(kStreamBytes));
    356 
    357   if (select & INCLUDE_ABS32_INDEXES)
    358     success &= WriteVector(abs32_ix_, streams->stream(kStreamAbs32Indexes));
    359 
    360   if (select & INCLUDE_REL32_INDEXES)
    361     success &= WriteVector(rel32_ix_, streams->stream(kStreamRel32Indexes));
    362 
    363   return success;
    364 }
    365 
    366 bool EncodedProgram::ReadFrom(SourceStreamSet* streams) {
    367   // TODO(sra): read 64 bits.
    368   uint32 temp;
    369   if (!streams->stream(kStreamMisc)->ReadVarint32(&temp))
    370     return false;
    371   image_base_ = temp;
    372 
    373   if (!ReadU32Delta(&abs32_rva_, streams->stream(kStreamAbs32Addresses)))
    374     return false;
    375   if (!ReadU32Delta(&rel32_rva_, streams->stream(kStreamRel32Addresses)))
    376     return false;
    377   if (!ReadVector(&origins_, streams->stream(kStreamOriginAddresses)))
    378     return false;
    379   if (!ReadVector(&ops_, streams->stream(kStreamOps)))
    380     return false;
    381   if (!ReadVector(&copy_counts_, streams->stream(kStreamCopyCounts)))
    382     return false;
    383   if (!ReadVectorU8(&copy_bytes_, streams->stream(kStreamBytes)))
    384     return false;
    385   if (!ReadVector(&abs32_ix_, streams->stream(kStreamAbs32Indexes)))
    386     return false;
    387   if (!ReadVector(&rel32_ix_, streams->stream(kStreamRel32Indexes)))
    388     return false;
    389 
    390   // Check that streams have been completely consumed.
    391   for (int i = 0;  i < kStreamLimit;  ++i) {
    392     if (streams->stream(i)->Remaining() > 0)
    393       return false;
    394   }
    395 
    396   return true;
    397 }
    398 
    399 // Safe, non-throwing version of std::vector::at().  Returns 'true' for success,
    400 // 'false' for out-of-bounds index error.
    401 template<typename V, typename T>
    402 bool VectorAt(const V& v, size_t index, T* output) {
    403   if (index >= v.size())
    404     return false;
    405   *output = v[index];
    406   return true;
    407 }
    408 
    409 CheckBool EncodedProgram::EvaluateRel32ARM(OP op,
    410                                            size_t& ix_rel32_ix,
    411                                            RVA& current_rva,
    412                                            SinkStream* output) {
    413   switch (op & 0x0000F000) {
    414     case REL32ARM8: {
    415       uint32 index;
    416       if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
    417         return false;
    418       ++ix_rel32_ix;
    419       RVA rva;
    420       if (!VectorAt(rel32_rva_, index, &rva))
    421         return false;
    422       uint32 decompressed_op;
    423       if (!DisassemblerElf32ARM::Decompress(ARM_OFF8,
    424                                             static_cast<uint16>(op),
    425                                             static_cast<uint32>(rva -
    426                                                                 current_rva),
    427                                             &decompressed_op)) {
    428         return false;
    429       }
    430       uint16 op16 = decompressed_op;
    431       if (!output->Write(&op16, 2))
    432         return false;
    433       current_rva += 2;
    434       break;
    435     }
    436     case REL32ARM11: {
    437       uint32 index;
    438       if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
    439         return false;
    440       ++ix_rel32_ix;
    441       RVA rva;
    442       if (!VectorAt(rel32_rva_, index, &rva))
    443         return false;
    444       uint32 decompressed_op;
    445       if (!DisassemblerElf32ARM::Decompress(ARM_OFF11, (uint16) op,
    446                                             (uint32) (rva - current_rva),
    447                                             &decompressed_op)) {
    448         return false;
    449       }
    450       uint16 op16 = decompressed_op;
    451       if (!output->Write(&op16, 2))
    452         return false;
    453       current_rva += 2;
    454       break;
    455     }
    456     case REL32ARM24: {
    457       uint32 index;
    458       if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
    459         return false;
    460       ++ix_rel32_ix;
    461       RVA rva;
    462       if (!VectorAt(rel32_rva_, index, &rva))
    463         return false;
    464       uint32 decompressed_op;
    465       if (!DisassemblerElf32ARM::Decompress(ARM_OFF24, (uint16) op,
    466                                             (uint32) (rva - current_rva),
    467                                             &decompressed_op)) {
    468         return false;
    469       }
    470       if (!output->Write(&decompressed_op, 4))
    471         return false;
    472       current_rva += 4;
    473       break;
    474     }
    475     case REL32ARM25: {
    476       uint32 index;
    477       if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
    478         return false;
    479       ++ix_rel32_ix;
    480       RVA rva;
    481       if (!VectorAt(rel32_rva_, index, &rva))
    482         return false;
    483       uint32 decompressed_op;
    484       if (!DisassemblerElf32ARM::Decompress(ARM_OFF25, (uint16) op,
    485                                             (uint32) (rva - current_rva),
    486                                             &decompressed_op)) {
    487         return false;
    488       }
    489       uint32 words = (decompressed_op << 16) | (decompressed_op >> 16);
    490       if (!output->Write(&words, 4))
    491         return false;
    492       current_rva += 4;
    493       break;
    494     }
    495     case REL32ARM21: {
    496       uint32 index;
    497       if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
    498         return false;
    499       ++ix_rel32_ix;
    500       RVA rva;
    501       if (!VectorAt(rel32_rva_, index, &rva))
    502         return false;
    503       uint32 decompressed_op;
    504       if (!DisassemblerElf32ARM::Decompress(ARM_OFF21, (uint16) op,
    505                                             (uint32) (rva - current_rva),
    506                                             &decompressed_op)) {
    507         return false;
    508       }
    509       uint32 words = (decompressed_op << 16) | (decompressed_op >> 16);
    510       if (!output->Write(&words, 4))
    511         return false;
    512       current_rva += 4;
    513       break;
    514     }
    515     default:
    516       return false;
    517   }
    518 
    519   return true;
    520 }
    521 
    522 CheckBool EncodedProgram::AssembleTo(SinkStream* final_buffer) {
    523   // For the most part, the assembly process walks the various tables.
    524   // ix_mumble is the index into the mumble table.
    525   size_t ix_origins = 0;
    526   size_t ix_copy_counts = 0;
    527   size_t ix_copy_bytes = 0;
    528   size_t ix_abs32_ix = 0;
    529   size_t ix_rel32_ix = 0;
    530 
    531   RVA current_rva = 0;
    532 
    533   bool pending_pe_relocation_table = false;
    534   uint8 pending_pe_relocation_table_type = 0x03;  // IMAGE_REL_BASED_HIGHLOW
    535   Elf32_Word pending_elf_relocation_table_type = 0;
    536   SinkStream bytes_following_relocation_table;
    537 
    538   SinkStream* output = final_buffer;
    539 
    540   for (size_t ix_ops = 0;  ix_ops < ops_.size();  ++ix_ops) {
    541     OP op = ops_[ix_ops];
    542 
    543     switch (op) {
    544       default:
    545         if (!EvaluateRel32ARM(op, ix_rel32_ix, current_rva, output))
    546           return false;
    547         break;
    548 
    549       case ORIGIN: {
    550         RVA section_rva;
    551         if (!VectorAt(origins_, ix_origins, &section_rva))
    552           return false;
    553         ++ix_origins;
    554         current_rva = section_rva;
    555         break;
    556       }
    557 
    558       case COPY: {
    559         uint32 count;
    560         if (!VectorAt(copy_counts_, ix_copy_counts, &count))
    561           return false;
    562         ++ix_copy_counts;
    563         for (uint32 i = 0;  i < count;  ++i) {
    564           uint8 b;
    565           if (!VectorAt(copy_bytes_, ix_copy_bytes, &b))
    566             return false;
    567           ++ix_copy_bytes;
    568           if (!output->Write(&b, 1))
    569             return false;
    570         }
    571         current_rva += count;
    572         break;
    573       }
    574 
    575       case COPY1: {
    576         uint8 b;
    577         if (!VectorAt(copy_bytes_, ix_copy_bytes, &b))
    578           return false;
    579         ++ix_copy_bytes;
    580         if (!output->Write(&b, 1))
    581           return false;
    582         current_rva += 1;
    583         break;
    584       }
    585 
    586       case REL32: {
    587         uint32 index;
    588         if (!VectorAt(rel32_ix_, ix_rel32_ix, &index))
    589           return false;
    590         ++ix_rel32_ix;
    591         RVA rva;
    592         if (!VectorAt(rel32_rva_, index, &rva))
    593           return false;
    594         uint32 offset = (rva - (current_rva + 4));
    595         if (!output->Write(&offset, 4))
    596           return false;
    597         current_rva += 4;
    598         break;
    599       }
    600 
    601       case ABS32: {
    602         uint32 index;
    603         if (!VectorAt(abs32_ix_, ix_abs32_ix, &index))
    604           return false;
    605         ++ix_abs32_ix;
    606         RVA rva;
    607         if (!VectorAt(abs32_rva_, index, &rva))
    608           return false;
    609         uint32 abs32 = static_cast<uint32>(rva + image_base_);
    610         if (!abs32_relocs_.push_back(current_rva) || !output->Write(&abs32, 4))
    611           return false;
    612         current_rva += 4;
    613         break;
    614       }
    615 
    616       case MAKE_PE_RELOCATION_TABLE: {
    617         // We can see the base relocation anywhere, but we only have the
    618         // information to generate it at the very end.  So we divert the bytes
    619         // we are generating to a temporary stream.
    620         if (pending_pe_relocation_table)
    621           return false;  // Can't have two base relocation tables.
    622 
    623         pending_pe_relocation_table = true;
    624         output = &bytes_following_relocation_table;
    625         break;
    626         // There is a potential problem *if* the instruction stream contains
    627         // some REL32 relocations following the base relocation and in the same
    628         // section.  We don't know the size of the table, so 'current_rva' will
    629         // be wrong, causing REL32 offsets to be miscalculated.  This never
    630         // happens; the base relocation table is usually in a section of its
    631         // own, a data-only section, and following everything else in the
    632         // executable except some padding zero bytes.  We could fix this by
    633         // emitting an ORIGIN after the MAKE_BASE_RELOCATION_TABLE.
    634       }
    635 
    636       case MAKE_PE64_RELOCATION_TABLE: {
    637         if (pending_pe_relocation_table)
    638           return false;  // Can't have two base relocation tables.
    639 
    640         pending_pe_relocation_table = true;
    641         pending_pe_relocation_table_type = 0x0A;  // IMAGE_REL_BASED_DIR64
    642         output = &bytes_following_relocation_table;
    643         break;
    644       }
    645 
    646       case MAKE_ELF_ARM_RELOCATION_TABLE: {
    647         // We can see the base relocation anywhere, but we only have the
    648         // information to generate it at the very end.  So we divert the bytes
    649         // we are generating to a temporary stream.
    650         if (pending_elf_relocation_table_type)
    651           return false;  // Can't have two base relocation tables.
    652 
    653         pending_elf_relocation_table_type = R_ARM_RELATIVE;
    654         output = &bytes_following_relocation_table;
    655         break;
    656       }
    657 
    658       case MAKE_ELF_RELOCATION_TABLE: {
    659         // We can see the base relocation anywhere, but we only have the
    660         // information to generate it at the very end.  So we divert the bytes
    661         // we are generating to a temporary stream.
    662         if (pending_elf_relocation_table_type)
    663           return false;  // Can't have two base relocation tables.
    664 
    665         pending_elf_relocation_table_type = R_386_RELATIVE;
    666         output = &bytes_following_relocation_table;
    667         break;
    668       }
    669     }
    670   }
    671 
    672   if (pending_pe_relocation_table) {
    673     if (!GeneratePeRelocations(final_buffer,
    674                                pending_pe_relocation_table_type) ||
    675         !final_buffer->Append(&bytes_following_relocation_table))
    676       return false;
    677   }
    678 
    679   if (pending_elf_relocation_table_type) {
    680     if (!GenerateElfRelocations(pending_elf_relocation_table_type,
    681                                 final_buffer) ||
    682         !final_buffer->Append(&bytes_following_relocation_table))
    683       return false;
    684   }
    685 
    686   // Final verification check: did we consume all lists?
    687   if (ix_copy_counts != copy_counts_.size())
    688     return false;
    689   if (ix_copy_bytes != copy_bytes_.size())
    690     return false;
    691   if (ix_abs32_ix != abs32_ix_.size())
    692     return false;
    693   if (ix_rel32_ix != rel32_ix_.size())
    694     return false;
    695 
    696   return true;
    697 }
    698 
    699 // RelocBlock has the layout of a block of relocations in the base relocation
    700 // table file format.
    701 //
    702 struct RelocBlockPOD {
    703   uint32 page_rva;
    704   uint32 block_size;
    705   uint16 relocs[4096];  // Allow up to one relocation per byte of a 4k page.
    706 };
    707 
    708 COMPILE_ASSERT(offsetof(RelocBlockPOD, relocs) == 8, reloc_block_header_size);
    709 
    710 class RelocBlock {
    711  public:
    712   RelocBlock() {
    713     pod.page_rva = 0xFFFFFFFF;
    714     pod.block_size = 8;
    715   }
    716 
    717   void Add(uint16 item) {
    718     pod.relocs[(pod.block_size-8)/2] = item;
    719     pod.block_size += 2;
    720   }
    721 
    722   CheckBool Flush(SinkStream* buffer) WARN_UNUSED_RESULT {
    723     bool ok = true;
    724     if (pod.block_size != 8) {
    725       if (pod.block_size % 4 != 0) {  // Pad to make size multiple of 4 bytes.
    726         Add(0);
    727       }
    728       ok = buffer->Write(&pod, pod.block_size);
    729       pod.block_size = 8;
    730     }
    731     return ok;
    732   }
    733   RelocBlockPOD pod;
    734 };
    735 
    736 CheckBool EncodedProgram::GeneratePeRelocations(SinkStream* buffer,
    737                                                 uint8 type) {
    738   std::sort(abs32_relocs_.begin(), abs32_relocs_.end());
    739 
    740   RelocBlock block;
    741 
    742   bool ok = true;
    743   for (size_t i = 0;  ok && i < abs32_relocs_.size();  ++i) {
    744     uint32 rva = abs32_relocs_[i];
    745     uint32 page_rva = rva & ~0xFFF;
    746     if (page_rva != block.pod.page_rva) {
    747       ok &= block.Flush(buffer);
    748       block.pod.page_rva = page_rva;
    749     }
    750     if (ok)
    751       block.Add(((static_cast<uint16>(type)) << 12 ) | (rva & 0xFFF));
    752   }
    753   ok &= block.Flush(buffer);
    754   return ok;
    755 }
    756 
    757 CheckBool EncodedProgram::GenerateElfRelocations(Elf32_Word r_info,
    758                                                  SinkStream* buffer) {
    759   std::sort(abs32_relocs_.begin(), abs32_relocs_.end());
    760 
    761   Elf32_Rel relocation_block;
    762 
    763   relocation_block.r_info = r_info;
    764 
    765   bool ok = true;
    766   for (size_t i = 0;  ok && i < abs32_relocs_.size();  ++i) {
    767     relocation_block.r_offset = abs32_relocs_[i];
    768     ok = buffer->Write(&relocation_block, sizeof(Elf32_Rel));
    769   }
    770 
    771   return ok;
    772 }
    773 ////////////////////////////////////////////////////////////////////////////////
    774 
    775 Status WriteEncodedProgram(EncodedProgram* encoded, SinkStreamSet* sink) {
    776   if (!encoded->WriteTo(sink))
    777     return C_STREAM_ERROR;
    778   return C_OK;
    779 }
    780 
    781 Status ReadEncodedProgram(SourceStreamSet* streams, EncodedProgram** output) {
    782   EncodedProgram* encoded = new EncodedProgram();
    783   if (encoded->ReadFrom(streams)) {
    784     *output = encoded;
    785     return C_OK;
    786   }
    787   delete encoded;
    788   return C_DESERIALIZATION_FAILED;
    789 }
    790 
    791 Status Assemble(EncodedProgram* encoded, SinkStream* buffer) {
    792   bool assembled = encoded->AssembleTo(buffer);
    793   if (assembled)
    794     return C_OK;
    795   return C_ASSEMBLY_FAILED;
    796 }
    797 
    798 void DeleteEncodedProgram(EncodedProgram* encoded) {
    799   delete encoded;
    800 }
    801 
    802 }  // end namespace
    803