Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 //
     31 // Abstract interface for objects solving linear systems of various
     32 // kinds.
     33 
     34 #ifndef CERES_INTERNAL_LINEAR_SOLVER_H_
     35 #define CERES_INTERNAL_LINEAR_SOLVER_H_
     36 
     37 #include <cstddef>
     38 #include <map>
     39 #include <string>
     40 #include <vector>
     41 #include "ceres/block_sparse_matrix.h"
     42 #include "ceres/casts.h"
     43 #include "ceres/compressed_row_sparse_matrix.h"
     44 #include "ceres/dense_sparse_matrix.h"
     45 #include "ceres/execution_summary.h"
     46 #include "ceres/triplet_sparse_matrix.h"
     47 #include "ceres/types.h"
     48 #include "glog/logging.h"
     49 
     50 namespace ceres {
     51 namespace internal {
     52 
     53 enum LinearSolverTerminationType {
     54   // Termination criterion was met.
     55   LINEAR_SOLVER_SUCCESS,
     56 
     57   // Solver ran for max_num_iterations and terminated before the
     58   // termination tolerance could be satisfied.
     59   LINEAR_SOLVER_NO_CONVERGENCE,
     60 
     61   // Solver was terminated due to numerical problems, generally due to
     62   // the linear system being poorly conditioned.
     63   LINEAR_SOLVER_FAILURE,
     64 
     65   // Solver failed with a fatal error that cannot be recovered from,
     66   // e.g. CHOLMOD ran out of memory when computing the symbolic or
     67   // numeric factorization or an underlying library was called with
     68   // the wrong arguments.
     69   LINEAR_SOLVER_FATAL_ERROR
     70 };
     71 
     72 
     73 class LinearOperator;
     74 
     75 // Abstract base class for objects that implement algorithms for
     76 // solving linear systems
     77 //
     78 //   Ax = b
     79 //
     80 // It is expected that a single instance of a LinearSolver object
     81 // maybe used multiple times for solving multiple linear systems with
     82 // the same sparsity structure. This allows them to cache and reuse
     83 // information across solves. This means that calling Solve on the
     84 // same LinearSolver instance with two different linear systems will
     85 // result in undefined behaviour.
     86 //
     87 // Subclasses of LinearSolver use two structs to configure themselves.
     88 // The Options struct configures the LinearSolver object for its
     89 // lifetime. The PerSolveOptions struct is used to specify options for
     90 // a particular Solve call.
     91 class LinearSolver {
     92  public:
     93   struct Options {
     94     Options()
     95         : type(SPARSE_NORMAL_CHOLESKY),
     96           preconditioner_type(JACOBI),
     97           visibility_clustering_type(CANONICAL_VIEWS),
     98           dense_linear_algebra_library_type(EIGEN),
     99           sparse_linear_algebra_library_type(SUITE_SPARSE),
    100           use_postordering(false),
    101           dynamic_sparsity(false),
    102           min_num_iterations(1),
    103           max_num_iterations(1),
    104           num_threads(1),
    105           residual_reset_period(10),
    106           row_block_size(Eigen::Dynamic),
    107           e_block_size(Eigen::Dynamic),
    108           f_block_size(Eigen::Dynamic) {
    109     }
    110 
    111     LinearSolverType type;
    112     PreconditionerType preconditioner_type;
    113     VisibilityClusteringType visibility_clustering_type;
    114     DenseLinearAlgebraLibraryType dense_linear_algebra_library_type;
    115     SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type;
    116 
    117     // See solver.h for information about this flag.
    118     bool use_postordering;
    119     bool dynamic_sparsity;
    120 
    121     // Number of internal iterations that the solver uses. This
    122     // parameter only makes sense for iterative solvers like CG.
    123     int min_num_iterations;
    124     int max_num_iterations;
    125 
    126     // If possible, how many threads can the solver use.
    127     int num_threads;
    128 
    129     // Hints about the order in which the parameter blocks should be
    130     // eliminated by the linear solver.
    131     //
    132     // For example if elimination_groups is a vector of size k, then
    133     // the linear solver is informed that it should eliminate the
    134     // parameter blocks 0 ... elimination_groups[0] - 1 first, and
    135     // then elimination_groups[0] ... elimination_groups[1] - 1 and so
    136     // on. Within each elimination group, the linear solver is free to
    137     // choose how the parameter blocks are ordered. Different linear
    138     // solvers have differing requirements on elimination_groups.
    139     //
    140     // The most common use is for Schur type solvers, where there
    141     // should be at least two elimination groups and the first
    142     // elimination group must form an independent set in the normal
    143     // equations. The first elimination group corresponds to the
    144     // num_eliminate_blocks in the Schur type solvers.
    145     vector<int> elimination_groups;
    146 
    147     // Iterative solvers, e.g. Preconditioned Conjugate Gradients
    148     // maintain a cheap estimate of the residual which may become
    149     // inaccurate over time. Thus for non-zero values of this
    150     // parameter, the solver can be told to recalculate the value of
    151     // the residual using a |b - Ax| evaluation.
    152     int residual_reset_period;
    153 
    154     // If the block sizes in a BlockSparseMatrix are fixed, then in
    155     // some cases the Schur complement based solvers can detect and
    156     // specialize on them.
    157     //
    158     // It is expected that these parameters are set programmatically
    159     // rather than manually.
    160     //
    161     // Please see schur_complement_solver.h and schur_eliminator.h for
    162     // more details.
    163     int row_block_size;
    164     int e_block_size;
    165     int f_block_size;
    166   };
    167 
    168   // Options for the Solve method.
    169   struct PerSolveOptions {
    170     PerSolveOptions()
    171         : D(NULL),
    172           preconditioner(NULL),
    173           r_tolerance(0.0),
    174           q_tolerance(0.0) {
    175     }
    176 
    177     // This option only makes sense for unsymmetric linear solvers
    178     // that can solve rectangular linear systems.
    179     //
    180     // Given a matrix A, an optional diagonal matrix D as a vector,
    181     // and a vector b, the linear solver will solve for
    182     //
    183     //   | A | x = | b |
    184     //   | D |     | 0 |
    185     //
    186     // If D is null, then it is treated as zero, and the solver returns
    187     // the solution to
    188     //
    189     //   A x = b
    190     //
    191     // In either case, x is the vector that solves the following
    192     // optimization problem.
    193     //
    194     //   arg min_x ||Ax - b||^2 + ||Dx||^2
    195     //
    196     // Here A is a matrix of size m x n, with full column rank. If A
    197     // does not have full column rank, the results returned by the
    198     // solver cannot be relied on. D, if it is not null is an array of
    199     // size n.  b is an array of size m and x is an array of size n.
    200     double * D;
    201 
    202     // This option only makes sense for iterative solvers.
    203     //
    204     // In general the performance of an iterative linear solver
    205     // depends on the condition number of the matrix A. For example
    206     // the convergence rate of the conjugate gradients algorithm
    207     // is proportional to the square root of the condition number.
    208     //
    209     // One particularly useful technique for improving the
    210     // conditioning of a linear system is to precondition it. In its
    211     // simplest form a preconditioner is a matrix M such that instead
    212     // of solving Ax = b, we solve the linear system AM^{-1} y = b
    213     // instead, where M is such that the condition number k(AM^{-1})
    214     // is smaller than the conditioner k(A). Given the solution to
    215     // this system, x = M^{-1} y. The iterative solver takes care of
    216     // the mechanics of solving the preconditioned system and
    217     // returning the corrected solution x. The user only needs to
    218     // supply a linear operator.
    219     //
    220     // A null preconditioner is equivalent to an identity matrix being
    221     // used a preconditioner.
    222     LinearOperator* preconditioner;
    223 
    224 
    225     // The following tolerance related options only makes sense for
    226     // iterative solvers. Direct solvers ignore them.
    227 
    228     // Solver terminates when
    229     //
    230     //   |Ax - b| <= r_tolerance * |b|.
    231     //
    232     // This is the most commonly used termination criterion for
    233     // iterative solvers.
    234     double r_tolerance;
    235 
    236     // For PSD matrices A, let
    237     //
    238     //   Q(x) = x'Ax - 2b'x
    239     //
    240     // be the cost of the quadratic function defined by A and b. Then,
    241     // the solver terminates at iteration i if
    242     //
    243     //   i * (Q(x_i) - Q(x_i-1)) / Q(x_i) < q_tolerance.
    244     //
    245     // This termination criterion is more useful when using CG to
    246     // solve the Newton step. This particular convergence test comes
    247     // from Stephen Nash's work on truncated Newton
    248     // methods. References:
    249     //
    250     //   1. Stephen G. Nash & Ariela Sofer, Assessing A Search
    251     //      Direction Within A Truncated Newton Method, Operation
    252     //      Research Letters 9(1990) 219-221.
    253     //
    254     //   2. Stephen G. Nash, A Survey of Truncated Newton Methods,
    255     //      Journal of Computational and Applied Mathematics,
    256     //      124(1-2), 45-59, 2000.
    257     //
    258     double q_tolerance;
    259   };
    260 
    261   // Summary of a call to the Solve method. We should move away from
    262   // the true/false method for determining solver success. We should
    263   // let the summary object do the talking.
    264   struct Summary {
    265     Summary()
    266         : residual_norm(0.0),
    267           num_iterations(-1),
    268           termination_type(LINEAR_SOLVER_FAILURE) {
    269     }
    270 
    271     double residual_norm;
    272     int num_iterations;
    273     LinearSolverTerminationType termination_type;
    274     string message;
    275   };
    276 
    277   // If the optimization problem is such that there are no remaining
    278   // e-blocks, a Schur type linear solver cannot be used. If the
    279   // linear solver is of Schur type, this function implements a policy
    280   // to select an alternate nearest linear solver to the one selected
    281   // by the user. The input linear_solver_type is returned otherwise.
    282   static LinearSolverType LinearSolverForZeroEBlocks(
    283       LinearSolverType linear_solver_type);
    284 
    285   virtual ~LinearSolver();
    286 
    287   // Solve Ax = b.
    288   virtual Summary Solve(LinearOperator* A,
    289                         const double* b,
    290                         const PerSolveOptions& per_solve_options,
    291                         double* x) = 0;
    292 
    293   // The following two methods return copies instead of references so
    294   // that the base class implementation does not have to worry about
    295   // life time issues. Further, these calls are not expected to be
    296   // frequent or performance sensitive.
    297   virtual map<string, int> CallStatistics() const {
    298     return map<string, int>();
    299   }
    300 
    301   virtual map<string, double> TimeStatistics() const {
    302     return map<string, double>();
    303   }
    304 
    305   // Factory
    306   static LinearSolver* Create(const Options& options);
    307 };
    308 
    309 // This templated subclass of LinearSolver serves as a base class for
    310 // other linear solvers that depend on the particular matrix layout of
    311 // the underlying linear operator. For example some linear solvers
    312 // need low level access to the TripletSparseMatrix implementing the
    313 // LinearOperator interface. This class hides those implementation
    314 // details behind a private virtual method, and has the Solve method
    315 // perform the necessary upcasting.
    316 template <typename MatrixType>
    317 class TypedLinearSolver : public LinearSolver {
    318  public:
    319   virtual ~TypedLinearSolver() {}
    320   virtual LinearSolver::Summary Solve(
    321       LinearOperator* A,
    322       const double* b,
    323       const LinearSolver::PerSolveOptions& per_solve_options,
    324       double* x) {
    325     ScopedExecutionTimer total_time("LinearSolver::Solve", &execution_summary_);
    326     CHECK_NOTNULL(A);
    327     CHECK_NOTNULL(b);
    328     CHECK_NOTNULL(x);
    329     return SolveImpl(down_cast<MatrixType*>(A), b, per_solve_options, x);
    330   }
    331 
    332   virtual map<string, int> CallStatistics() const {
    333     return execution_summary_.calls();
    334   }
    335 
    336   virtual map<string, double> TimeStatistics() const {
    337     return execution_summary_.times();
    338   }
    339 
    340  private:
    341   virtual LinearSolver::Summary SolveImpl(
    342       MatrixType* A,
    343       const double* b,
    344       const LinearSolver::PerSolveOptions& per_solve_options,
    345       double* x) = 0;
    346 
    347   ExecutionSummary execution_summary_;
    348 };
    349 
    350 // Linear solvers that depend on acccess to the low level structure of
    351 // a SparseMatrix.
    352 typedef TypedLinearSolver<BlockSparseMatrix>         BlockSparseMatrixSolver;          // NOLINT
    353 typedef TypedLinearSolver<CompressedRowSparseMatrix> CompressedRowSparseMatrixSolver;  // NOLINT
    354 typedef TypedLinearSolver<DenseSparseMatrix>         DenseSparseMatrixSolver;          // NOLINT
    355 typedef TypedLinearSolver<TripletSparseMatrix>       TripletSparseMatrixSolver;        // NOLINT
    356 
    357 }  // namespace internal
    358 }  // namespace ceres
    359 
    360 #endif  // CERES_INTERNAL_LINEAR_SOLVER_H_
    361