Home | History | Annotate | Download | only in Sema
      1 //===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //===----------------------------------------------------------------------===/
      8 //
      9 //  This file implements C++ template argument deduction.
     10 //
     11 //===----------------------------------------------------------------------===/
     12 
     13 #include "clang/Sema/TemplateDeduction.h"
     14 #include "TreeTransform.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/ASTLambda.h"
     17 #include "clang/AST/DeclObjC.h"
     18 #include "clang/AST/DeclTemplate.h"
     19 #include "clang/AST/Expr.h"
     20 #include "clang/AST/ExprCXX.h"
     21 #include "clang/AST/StmtVisitor.h"
     22 #include "clang/Sema/DeclSpec.h"
     23 #include "clang/Sema/Sema.h"
     24 #include "clang/Sema/Template.h"
     25 #include "llvm/ADT/SmallBitVector.h"
     26 #include <algorithm>
     27 
     28 namespace clang {
     29   using namespace sema;
     30   /// \brief Various flags that control template argument deduction.
     31   ///
     32   /// These flags can be bitwise-OR'd together.
     33   enum TemplateDeductionFlags {
     34     /// \brief No template argument deduction flags, which indicates the
     35     /// strictest results for template argument deduction (as used for, e.g.,
     36     /// matching class template partial specializations).
     37     TDF_None = 0,
     38     /// \brief Within template argument deduction from a function call, we are
     39     /// matching with a parameter type for which the original parameter was
     40     /// a reference.
     41     TDF_ParamWithReferenceType = 0x1,
     42     /// \brief Within template argument deduction from a function call, we
     43     /// are matching in a case where we ignore cv-qualifiers.
     44     TDF_IgnoreQualifiers = 0x02,
     45     /// \brief Within template argument deduction from a function call,
     46     /// we are matching in a case where we can perform template argument
     47     /// deduction from a template-id of a derived class of the argument type.
     48     TDF_DerivedClass = 0x04,
     49     /// \brief Allow non-dependent types to differ, e.g., when performing
     50     /// template argument deduction from a function call where conversions
     51     /// may apply.
     52     TDF_SkipNonDependent = 0x08,
     53     /// \brief Whether we are performing template argument deduction for
     54     /// parameters and arguments in a top-level template argument
     55     TDF_TopLevelParameterTypeList = 0x10,
     56     /// \brief Within template argument deduction from overload resolution per
     57     /// C++ [over.over] allow matching function types that are compatible in
     58     /// terms of noreturn and default calling convention adjustments.
     59     TDF_InOverloadResolution = 0x20
     60   };
     61 }
     62 
     63 using namespace clang;
     64 
     65 /// \brief Compare two APSInts, extending and switching the sign as
     66 /// necessary to compare their values regardless of underlying type.
     67 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
     68   if (Y.getBitWidth() > X.getBitWidth())
     69     X = X.extend(Y.getBitWidth());
     70   else if (Y.getBitWidth() < X.getBitWidth())
     71     Y = Y.extend(X.getBitWidth());
     72 
     73   // If there is a signedness mismatch, correct it.
     74   if (X.isSigned() != Y.isSigned()) {
     75     // If the signed value is negative, then the values cannot be the same.
     76     if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
     77       return false;
     78 
     79     Y.setIsSigned(true);
     80     X.setIsSigned(true);
     81   }
     82 
     83   return X == Y;
     84 }
     85 
     86 static Sema::TemplateDeductionResult
     87 DeduceTemplateArguments(Sema &S,
     88                         TemplateParameterList *TemplateParams,
     89                         const TemplateArgument &Param,
     90                         TemplateArgument Arg,
     91                         TemplateDeductionInfo &Info,
     92                         SmallVectorImpl<DeducedTemplateArgument> &Deduced);
     93 
     94 /// \brief Whether template argument deduction for two reference parameters
     95 /// resulted in the argument type, parameter type, or neither type being more
     96 /// qualified than the other.
     97 enum DeductionQualifierComparison {
     98   NeitherMoreQualified = 0,
     99   ParamMoreQualified,
    100   ArgMoreQualified
    101 };
    102 
    103 /// \brief Stores the result of comparing two reference parameters while
    104 /// performing template argument deduction for partial ordering of function
    105 /// templates.
    106 struct RefParamPartialOrderingComparison {
    107   /// \brief Whether the parameter type is an rvalue reference type.
    108   bool ParamIsRvalueRef;
    109   /// \brief Whether the argument type is an rvalue reference type.
    110   bool ArgIsRvalueRef;
    111 
    112   /// \brief Whether the parameter or argument (or neither) is more qualified.
    113   DeductionQualifierComparison Qualifiers;
    114 };
    115 
    116 
    117 
    118 static Sema::TemplateDeductionResult
    119 DeduceTemplateArgumentsByTypeMatch(Sema &S,
    120                                    TemplateParameterList *TemplateParams,
    121                                    QualType Param,
    122                                    QualType Arg,
    123                                    TemplateDeductionInfo &Info,
    124                                    SmallVectorImpl<DeducedTemplateArgument> &
    125                                                       Deduced,
    126                                    unsigned TDF,
    127                                    bool PartialOrdering = false,
    128                             SmallVectorImpl<RefParamPartialOrderingComparison> *
    129                                                  RefParamComparisons = nullptr);
    130 
    131 static Sema::TemplateDeductionResult
    132 DeduceTemplateArguments(Sema &S,
    133                         TemplateParameterList *TemplateParams,
    134                         const TemplateArgument *Params, unsigned NumParams,
    135                         const TemplateArgument *Args, unsigned NumArgs,
    136                         TemplateDeductionInfo &Info,
    137                         SmallVectorImpl<DeducedTemplateArgument> &Deduced);
    138 
    139 /// \brief If the given expression is of a form that permits the deduction
    140 /// of a non-type template parameter, return the declaration of that
    141 /// non-type template parameter.
    142 static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
    143   // If we are within an alias template, the expression may have undergone
    144   // any number of parameter substitutions already.
    145   while (1) {
    146     if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
    147       E = IC->getSubExpr();
    148     else if (SubstNonTypeTemplateParmExpr *Subst =
    149                dyn_cast<SubstNonTypeTemplateParmExpr>(E))
    150       E = Subst->getReplacement();
    151     else
    152       break;
    153   }
    154 
    155   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
    156     return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
    157 
    158   return nullptr;
    159 }
    160 
    161 /// \brief Determine whether two declaration pointers refer to the same
    162 /// declaration.
    163 static bool isSameDeclaration(Decl *X, Decl *Y) {
    164   if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
    165     X = NX->getUnderlyingDecl();
    166   if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
    167     Y = NY->getUnderlyingDecl();
    168 
    169   return X->getCanonicalDecl() == Y->getCanonicalDecl();
    170 }
    171 
    172 /// \brief Verify that the given, deduced template arguments are compatible.
    173 ///
    174 /// \returns The deduced template argument, or a NULL template argument if
    175 /// the deduced template arguments were incompatible.
    176 static DeducedTemplateArgument
    177 checkDeducedTemplateArguments(ASTContext &Context,
    178                               const DeducedTemplateArgument &X,
    179                               const DeducedTemplateArgument &Y) {
    180   // We have no deduction for one or both of the arguments; they're compatible.
    181   if (X.isNull())
    182     return Y;
    183   if (Y.isNull())
    184     return X;
    185 
    186   switch (X.getKind()) {
    187   case TemplateArgument::Null:
    188     llvm_unreachable("Non-deduced template arguments handled above");
    189 
    190   case TemplateArgument::Type:
    191     // If two template type arguments have the same type, they're compatible.
    192     if (Y.getKind() == TemplateArgument::Type &&
    193         Context.hasSameType(X.getAsType(), Y.getAsType()))
    194       return X;
    195 
    196     return DeducedTemplateArgument();
    197 
    198   case TemplateArgument::Integral:
    199     // If we deduced a constant in one case and either a dependent expression or
    200     // declaration in another case, keep the integral constant.
    201     // If both are integral constants with the same value, keep that value.
    202     if (Y.getKind() == TemplateArgument::Expression ||
    203         Y.getKind() == TemplateArgument::Declaration ||
    204         (Y.getKind() == TemplateArgument::Integral &&
    205          hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
    206       return DeducedTemplateArgument(X,
    207                                      X.wasDeducedFromArrayBound() &&
    208                                      Y.wasDeducedFromArrayBound());
    209 
    210     // All other combinations are incompatible.
    211     return DeducedTemplateArgument();
    212 
    213   case TemplateArgument::Template:
    214     if (Y.getKind() == TemplateArgument::Template &&
    215         Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
    216       return X;
    217 
    218     // All other combinations are incompatible.
    219     return DeducedTemplateArgument();
    220 
    221   case TemplateArgument::TemplateExpansion:
    222     if (Y.getKind() == TemplateArgument::TemplateExpansion &&
    223         Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
    224                                     Y.getAsTemplateOrTemplatePattern()))
    225       return X;
    226 
    227     // All other combinations are incompatible.
    228     return DeducedTemplateArgument();
    229 
    230   case TemplateArgument::Expression:
    231     // If we deduced a dependent expression in one case and either an integral
    232     // constant or a declaration in another case, keep the integral constant
    233     // or declaration.
    234     if (Y.getKind() == TemplateArgument::Integral ||
    235         Y.getKind() == TemplateArgument::Declaration)
    236       return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
    237                                      Y.wasDeducedFromArrayBound());
    238 
    239     if (Y.getKind() == TemplateArgument::Expression) {
    240       // Compare the expressions for equality
    241       llvm::FoldingSetNodeID ID1, ID2;
    242       X.getAsExpr()->Profile(ID1, Context, true);
    243       Y.getAsExpr()->Profile(ID2, Context, true);
    244       if (ID1 == ID2)
    245         return X;
    246     }
    247 
    248     // All other combinations are incompatible.
    249     return DeducedTemplateArgument();
    250 
    251   case TemplateArgument::Declaration:
    252     // If we deduced a declaration and a dependent expression, keep the
    253     // declaration.
    254     if (Y.getKind() == TemplateArgument::Expression)
    255       return X;
    256 
    257     // If we deduced a declaration and an integral constant, keep the
    258     // integral constant.
    259     if (Y.getKind() == TemplateArgument::Integral)
    260       return Y;
    261 
    262     // If we deduced two declarations, make sure they they refer to the
    263     // same declaration.
    264     if (Y.getKind() == TemplateArgument::Declaration &&
    265         isSameDeclaration(X.getAsDecl(), Y.getAsDecl()) &&
    266         X.isDeclForReferenceParam() == Y.isDeclForReferenceParam())
    267       return X;
    268 
    269     // All other combinations are incompatible.
    270     return DeducedTemplateArgument();
    271 
    272   case TemplateArgument::NullPtr:
    273     // If we deduced a null pointer and a dependent expression, keep the
    274     // null pointer.
    275     if (Y.getKind() == TemplateArgument::Expression)
    276       return X;
    277 
    278     // If we deduced a null pointer and an integral constant, keep the
    279     // integral constant.
    280     if (Y.getKind() == TemplateArgument::Integral)
    281       return Y;
    282 
    283     // If we deduced two null pointers, make sure they have the same type.
    284     if (Y.getKind() == TemplateArgument::NullPtr &&
    285         Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()))
    286       return X;
    287 
    288     // All other combinations are incompatible.
    289     return DeducedTemplateArgument();
    290 
    291   case TemplateArgument::Pack:
    292     if (Y.getKind() != TemplateArgument::Pack ||
    293         X.pack_size() != Y.pack_size())
    294       return DeducedTemplateArgument();
    295 
    296     for (TemplateArgument::pack_iterator XA = X.pack_begin(),
    297                                       XAEnd = X.pack_end(),
    298                                          YA = Y.pack_begin();
    299          XA != XAEnd; ++XA, ++YA) {
    300       // FIXME: Do we need to merge the results together here?
    301       if (checkDeducedTemplateArguments(Context,
    302                     DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
    303                     DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
    304             .isNull())
    305         return DeducedTemplateArgument();
    306     }
    307 
    308     return X;
    309   }
    310 
    311   llvm_unreachable("Invalid TemplateArgument Kind!");
    312 }
    313 
    314 /// \brief Deduce the value of the given non-type template parameter
    315 /// from the given constant.
    316 static Sema::TemplateDeductionResult
    317 DeduceNonTypeTemplateArgument(Sema &S,
    318                               NonTypeTemplateParmDecl *NTTP,
    319                               llvm::APSInt Value, QualType ValueType,
    320                               bool DeducedFromArrayBound,
    321                               TemplateDeductionInfo &Info,
    322                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    323   assert(NTTP->getDepth() == 0 &&
    324          "Cannot deduce non-type template argument with depth > 0");
    325 
    326   DeducedTemplateArgument NewDeduced(S.Context, Value, ValueType,
    327                                      DeducedFromArrayBound);
    328   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    329                                                      Deduced[NTTP->getIndex()],
    330                                                                  NewDeduced);
    331   if (Result.isNull()) {
    332     Info.Param = NTTP;
    333     Info.FirstArg = Deduced[NTTP->getIndex()];
    334     Info.SecondArg = NewDeduced;
    335     return Sema::TDK_Inconsistent;
    336   }
    337 
    338   Deduced[NTTP->getIndex()] = Result;
    339   return Sema::TDK_Success;
    340 }
    341 
    342 /// \brief Deduce the value of the given non-type template parameter
    343 /// from the given type- or value-dependent expression.
    344 ///
    345 /// \returns true if deduction succeeded, false otherwise.
    346 static Sema::TemplateDeductionResult
    347 DeduceNonTypeTemplateArgument(Sema &S,
    348                               NonTypeTemplateParmDecl *NTTP,
    349                               Expr *Value,
    350                               TemplateDeductionInfo &Info,
    351                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    352   assert(NTTP->getDepth() == 0 &&
    353          "Cannot deduce non-type template argument with depth > 0");
    354   assert((Value->isTypeDependent() || Value->isValueDependent()) &&
    355          "Expression template argument must be type- or value-dependent.");
    356 
    357   DeducedTemplateArgument NewDeduced(Value);
    358   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    359                                                      Deduced[NTTP->getIndex()],
    360                                                                  NewDeduced);
    361 
    362   if (Result.isNull()) {
    363     Info.Param = NTTP;
    364     Info.FirstArg = Deduced[NTTP->getIndex()];
    365     Info.SecondArg = NewDeduced;
    366     return Sema::TDK_Inconsistent;
    367   }
    368 
    369   Deduced[NTTP->getIndex()] = Result;
    370   return Sema::TDK_Success;
    371 }
    372 
    373 /// \brief Deduce the value of the given non-type template parameter
    374 /// from the given declaration.
    375 ///
    376 /// \returns true if deduction succeeded, false otherwise.
    377 static Sema::TemplateDeductionResult
    378 DeduceNonTypeTemplateArgument(Sema &S,
    379                             NonTypeTemplateParmDecl *NTTP,
    380                             ValueDecl *D,
    381                             TemplateDeductionInfo &Info,
    382                             SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    383   assert(NTTP->getDepth() == 0 &&
    384          "Cannot deduce non-type template argument with depth > 0");
    385 
    386   D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
    387   TemplateArgument New(D, NTTP->getType()->isReferenceType());
    388   DeducedTemplateArgument NewDeduced(New);
    389   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    390                                                      Deduced[NTTP->getIndex()],
    391                                                                  NewDeduced);
    392   if (Result.isNull()) {
    393     Info.Param = NTTP;
    394     Info.FirstArg = Deduced[NTTP->getIndex()];
    395     Info.SecondArg = NewDeduced;
    396     return Sema::TDK_Inconsistent;
    397   }
    398 
    399   Deduced[NTTP->getIndex()] = Result;
    400   return Sema::TDK_Success;
    401 }
    402 
    403 static Sema::TemplateDeductionResult
    404 DeduceTemplateArguments(Sema &S,
    405                         TemplateParameterList *TemplateParams,
    406                         TemplateName Param,
    407                         TemplateName Arg,
    408                         TemplateDeductionInfo &Info,
    409                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    410   TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
    411   if (!ParamDecl) {
    412     // The parameter type is dependent and is not a template template parameter,
    413     // so there is nothing that we can deduce.
    414     return Sema::TDK_Success;
    415   }
    416 
    417   if (TemplateTemplateParmDecl *TempParam
    418         = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
    419     DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
    420     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    421                                                  Deduced[TempParam->getIndex()],
    422                                                                    NewDeduced);
    423     if (Result.isNull()) {
    424       Info.Param = TempParam;
    425       Info.FirstArg = Deduced[TempParam->getIndex()];
    426       Info.SecondArg = NewDeduced;
    427       return Sema::TDK_Inconsistent;
    428     }
    429 
    430     Deduced[TempParam->getIndex()] = Result;
    431     return Sema::TDK_Success;
    432   }
    433 
    434   // Verify that the two template names are equivalent.
    435   if (S.Context.hasSameTemplateName(Param, Arg))
    436     return Sema::TDK_Success;
    437 
    438   // Mismatch of non-dependent template parameter to argument.
    439   Info.FirstArg = TemplateArgument(Param);
    440   Info.SecondArg = TemplateArgument(Arg);
    441   return Sema::TDK_NonDeducedMismatch;
    442 }
    443 
    444 /// \brief Deduce the template arguments by comparing the template parameter
    445 /// type (which is a template-id) with the template argument type.
    446 ///
    447 /// \param S the Sema
    448 ///
    449 /// \param TemplateParams the template parameters that we are deducing
    450 ///
    451 /// \param Param the parameter type
    452 ///
    453 /// \param Arg the argument type
    454 ///
    455 /// \param Info information about the template argument deduction itself
    456 ///
    457 /// \param Deduced the deduced template arguments
    458 ///
    459 /// \returns the result of template argument deduction so far. Note that a
    460 /// "success" result means that template argument deduction has not yet failed,
    461 /// but it may still fail, later, for other reasons.
    462 static Sema::TemplateDeductionResult
    463 DeduceTemplateArguments(Sema &S,
    464                         TemplateParameterList *TemplateParams,
    465                         const TemplateSpecializationType *Param,
    466                         QualType Arg,
    467                         TemplateDeductionInfo &Info,
    468                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    469   assert(Arg.isCanonical() && "Argument type must be canonical");
    470 
    471   // Check whether the template argument is a dependent template-id.
    472   if (const TemplateSpecializationType *SpecArg
    473         = dyn_cast<TemplateSpecializationType>(Arg)) {
    474     // Perform template argument deduction for the template name.
    475     if (Sema::TemplateDeductionResult Result
    476           = DeduceTemplateArguments(S, TemplateParams,
    477                                     Param->getTemplateName(),
    478                                     SpecArg->getTemplateName(),
    479                                     Info, Deduced))
    480       return Result;
    481 
    482 
    483     // Perform template argument deduction on each template
    484     // argument. Ignore any missing/extra arguments, since they could be
    485     // filled in by default arguments.
    486     return DeduceTemplateArguments(S, TemplateParams,
    487                                    Param->getArgs(), Param->getNumArgs(),
    488                                    SpecArg->getArgs(), SpecArg->getNumArgs(),
    489                                    Info, Deduced);
    490   }
    491 
    492   // If the argument type is a class template specialization, we
    493   // perform template argument deduction using its template
    494   // arguments.
    495   const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
    496   if (!RecordArg) {
    497     Info.FirstArg = TemplateArgument(QualType(Param, 0));
    498     Info.SecondArg = TemplateArgument(Arg);
    499     return Sema::TDK_NonDeducedMismatch;
    500   }
    501 
    502   ClassTemplateSpecializationDecl *SpecArg
    503     = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
    504   if (!SpecArg) {
    505     Info.FirstArg = TemplateArgument(QualType(Param, 0));
    506     Info.SecondArg = TemplateArgument(Arg);
    507     return Sema::TDK_NonDeducedMismatch;
    508   }
    509 
    510   // Perform template argument deduction for the template name.
    511   if (Sema::TemplateDeductionResult Result
    512         = DeduceTemplateArguments(S,
    513                                   TemplateParams,
    514                                   Param->getTemplateName(),
    515                                TemplateName(SpecArg->getSpecializedTemplate()),
    516                                   Info, Deduced))
    517     return Result;
    518 
    519   // Perform template argument deduction for the template arguments.
    520   return DeduceTemplateArguments(S, TemplateParams,
    521                                  Param->getArgs(), Param->getNumArgs(),
    522                                  SpecArg->getTemplateArgs().data(),
    523                                  SpecArg->getTemplateArgs().size(),
    524                                  Info, Deduced);
    525 }
    526 
    527 /// \brief Determines whether the given type is an opaque type that
    528 /// might be more qualified when instantiated.
    529 static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
    530   switch (T->getTypeClass()) {
    531   case Type::TypeOfExpr:
    532   case Type::TypeOf:
    533   case Type::DependentName:
    534   case Type::Decltype:
    535   case Type::UnresolvedUsing:
    536   case Type::TemplateTypeParm:
    537     return true;
    538 
    539   case Type::ConstantArray:
    540   case Type::IncompleteArray:
    541   case Type::VariableArray:
    542   case Type::DependentSizedArray:
    543     return IsPossiblyOpaquelyQualifiedType(
    544                                       cast<ArrayType>(T)->getElementType());
    545 
    546   default:
    547     return false;
    548   }
    549 }
    550 
    551 /// \brief Retrieve the depth and index of a template parameter.
    552 static std::pair<unsigned, unsigned>
    553 getDepthAndIndex(NamedDecl *ND) {
    554   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
    555     return std::make_pair(TTP->getDepth(), TTP->getIndex());
    556 
    557   if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
    558     return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
    559 
    560   TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
    561   return std::make_pair(TTP->getDepth(), TTP->getIndex());
    562 }
    563 
    564 /// \brief Retrieve the depth and index of an unexpanded parameter pack.
    565 static std::pair<unsigned, unsigned>
    566 getDepthAndIndex(UnexpandedParameterPack UPP) {
    567   if (const TemplateTypeParmType *TTP
    568                           = UPP.first.dyn_cast<const TemplateTypeParmType *>())
    569     return std::make_pair(TTP->getDepth(), TTP->getIndex());
    570 
    571   return getDepthAndIndex(UPP.first.get<NamedDecl *>());
    572 }
    573 
    574 /// \brief Helper function to build a TemplateParameter when we don't
    575 /// know its type statically.
    576 static TemplateParameter makeTemplateParameter(Decl *D) {
    577   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
    578     return TemplateParameter(TTP);
    579   if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
    580     return TemplateParameter(NTTP);
    581 
    582   return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
    583 }
    584 
    585 /// A pack that we're currently deducing.
    586 struct clang::DeducedPack {
    587   DeducedPack(unsigned Index) : Index(Index), Outer(nullptr) {}
    588 
    589   // The index of the pack.
    590   unsigned Index;
    591 
    592   // The old value of the pack before we started deducing it.
    593   DeducedTemplateArgument Saved;
    594 
    595   // A deferred value of this pack from an inner deduction, that couldn't be
    596   // deduced because this deduction hadn't happened yet.
    597   DeducedTemplateArgument DeferredDeduction;
    598 
    599   // The new value of the pack.
    600   SmallVector<DeducedTemplateArgument, 4> New;
    601 
    602   // The outer deduction for this pack, if any.
    603   DeducedPack *Outer;
    604 };
    605 
    606 /// A scope in which we're performing pack deduction.
    607 class PackDeductionScope {
    608 public:
    609   PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
    610                      SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    611                      TemplateDeductionInfo &Info, TemplateArgument Pattern)
    612       : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
    613     // Compute the set of template parameter indices that correspond to
    614     // parameter packs expanded by the pack expansion.
    615     {
    616       llvm::SmallBitVector SawIndices(TemplateParams->size());
    617       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
    618       S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
    619       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
    620         unsigned Depth, Index;
    621         std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
    622         if (Depth == 0 && !SawIndices[Index]) {
    623           SawIndices[Index] = true;
    624 
    625           // Save the deduced template argument for the parameter pack expanded
    626           // by this pack expansion, then clear out the deduction.
    627           DeducedPack Pack(Index);
    628           Pack.Saved = Deduced[Index];
    629           Deduced[Index] = TemplateArgument();
    630 
    631           Packs.push_back(Pack);
    632         }
    633       }
    634     }
    635     assert(!Packs.empty() && "Pack expansion without unexpanded packs?");
    636 
    637     for (auto &Pack : Packs) {
    638       if (Info.PendingDeducedPacks.size() > Pack.Index)
    639         Pack.Outer = Info.PendingDeducedPacks[Pack.Index];
    640       else
    641         Info.PendingDeducedPacks.resize(Pack.Index + 1);
    642       Info.PendingDeducedPacks[Pack.Index] = &Pack;
    643 
    644       if (S.CurrentInstantiationScope) {
    645         // If the template argument pack was explicitly specified, add that to
    646         // the set of deduced arguments.
    647         const TemplateArgument *ExplicitArgs;
    648         unsigned NumExplicitArgs;
    649         NamedDecl *PartiallySubstitutedPack =
    650             S.CurrentInstantiationScope->getPartiallySubstitutedPack(
    651                 &ExplicitArgs, &NumExplicitArgs);
    652         if (PartiallySubstitutedPack &&
    653             getDepthAndIndex(PartiallySubstitutedPack).second == Pack.Index)
    654           Pack.New.append(ExplicitArgs, ExplicitArgs + NumExplicitArgs);
    655       }
    656     }
    657   }
    658 
    659   ~PackDeductionScope() {
    660     for (auto &Pack : Packs)
    661       Info.PendingDeducedPacks[Pack.Index] = Pack.Outer;
    662   }
    663 
    664   /// Move to deducing the next element in each pack that is being deduced.
    665   void nextPackElement() {
    666     // Capture the deduced template arguments for each parameter pack expanded
    667     // by this pack expansion, add them to the list of arguments we've deduced
    668     // for that pack, then clear out the deduced argument.
    669     for (auto &Pack : Packs) {
    670       DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index];
    671       if (!DeducedArg.isNull()) {
    672         Pack.New.push_back(DeducedArg);
    673         DeducedArg = DeducedTemplateArgument();
    674       }
    675     }
    676   }
    677 
    678   /// \brief Finish template argument deduction for a set of argument packs,
    679   /// producing the argument packs and checking for consistency with prior
    680   /// deductions.
    681   Sema::TemplateDeductionResult finish(bool HasAnyArguments) {
    682     // Build argument packs for each of the parameter packs expanded by this
    683     // pack expansion.
    684     for (auto &Pack : Packs) {
    685       // Put back the old value for this pack.
    686       Deduced[Pack.Index] = Pack.Saved;
    687 
    688       // Build or find a new value for this pack.
    689       DeducedTemplateArgument NewPack;
    690       if (HasAnyArguments && Pack.New.empty()) {
    691         if (Pack.DeferredDeduction.isNull()) {
    692           // We were not able to deduce anything for this parameter pack
    693           // (because it only appeared in non-deduced contexts), so just
    694           // restore the saved argument pack.
    695           continue;
    696         }
    697 
    698         NewPack = Pack.DeferredDeduction;
    699         Pack.DeferredDeduction = TemplateArgument();
    700       } else if (Pack.New.empty()) {
    701         // If we deduced an empty argument pack, create it now.
    702         NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
    703       } else {
    704         TemplateArgument *ArgumentPack =
    705             new (S.Context) TemplateArgument[Pack.New.size()];
    706         std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack);
    707         NewPack = DeducedTemplateArgument(
    708             TemplateArgument(ArgumentPack, Pack.New.size()),
    709             Pack.New[0].wasDeducedFromArrayBound());
    710       }
    711 
    712       // Pick where we're going to put the merged pack.
    713       DeducedTemplateArgument *Loc;
    714       if (Pack.Outer) {
    715         if (Pack.Outer->DeferredDeduction.isNull()) {
    716           // Defer checking this pack until we have a complete pack to compare
    717           // it against.
    718           Pack.Outer->DeferredDeduction = NewPack;
    719           continue;
    720         }
    721         Loc = &Pack.Outer->DeferredDeduction;
    722       } else {
    723         Loc = &Deduced[Pack.Index];
    724       }
    725 
    726       // Check the new pack matches any previous value.
    727       DeducedTemplateArgument OldPack = *Loc;
    728       DeducedTemplateArgument Result =
    729           checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
    730 
    731       // If we deferred a deduction of this pack, check that one now too.
    732       if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) {
    733         OldPack = Result;
    734         NewPack = Pack.DeferredDeduction;
    735         Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
    736       }
    737 
    738       if (Result.isNull()) {
    739         Info.Param =
    740             makeTemplateParameter(TemplateParams->getParam(Pack.Index));
    741         Info.FirstArg = OldPack;
    742         Info.SecondArg = NewPack;
    743         return Sema::TDK_Inconsistent;
    744       }
    745 
    746       *Loc = Result;
    747     }
    748 
    749     return Sema::TDK_Success;
    750   }
    751 
    752 private:
    753   Sema &S;
    754   TemplateParameterList *TemplateParams;
    755   SmallVectorImpl<DeducedTemplateArgument> &Deduced;
    756   TemplateDeductionInfo &Info;
    757 
    758   SmallVector<DeducedPack, 2> Packs;
    759 };
    760 
    761 /// \brief Deduce the template arguments by comparing the list of parameter
    762 /// types to the list of argument types, as in the parameter-type-lists of
    763 /// function types (C++ [temp.deduct.type]p10).
    764 ///
    765 /// \param S The semantic analysis object within which we are deducing
    766 ///
    767 /// \param TemplateParams The template parameters that we are deducing
    768 ///
    769 /// \param Params The list of parameter types
    770 ///
    771 /// \param NumParams The number of types in \c Params
    772 ///
    773 /// \param Args The list of argument types
    774 ///
    775 /// \param NumArgs The number of types in \c Args
    776 ///
    777 /// \param Info information about the template argument deduction itself
    778 ///
    779 /// \param Deduced the deduced template arguments
    780 ///
    781 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
    782 /// how template argument deduction is performed.
    783 ///
    784 /// \param PartialOrdering If true, we are performing template argument
    785 /// deduction for during partial ordering for a call
    786 /// (C++0x [temp.deduct.partial]).
    787 ///
    788 /// \param RefParamComparisons If we're performing template argument deduction
    789 /// in the context of partial ordering, the set of qualifier comparisons.
    790 ///
    791 /// \returns the result of template argument deduction so far. Note that a
    792 /// "success" result means that template argument deduction has not yet failed,
    793 /// but it may still fail, later, for other reasons.
    794 static Sema::TemplateDeductionResult
    795 DeduceTemplateArguments(Sema &S,
    796                         TemplateParameterList *TemplateParams,
    797                         const QualType *Params, unsigned NumParams,
    798                         const QualType *Args, unsigned NumArgs,
    799                         TemplateDeductionInfo &Info,
    800                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    801                         unsigned TDF,
    802                         bool PartialOrdering = false,
    803                         SmallVectorImpl<RefParamPartialOrderingComparison> *
    804                                                 RefParamComparisons = nullptr) {
    805   // Fast-path check to see if we have too many/too few arguments.
    806   if (NumParams != NumArgs &&
    807       !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
    808       !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
    809     return Sema::TDK_MiscellaneousDeductionFailure;
    810 
    811   // C++0x [temp.deduct.type]p10:
    812   //   Similarly, if P has a form that contains (T), then each parameter type
    813   //   Pi of the respective parameter-type- list of P is compared with the
    814   //   corresponding parameter type Ai of the corresponding parameter-type-list
    815   //   of A. [...]
    816   unsigned ArgIdx = 0, ParamIdx = 0;
    817   for (; ParamIdx != NumParams; ++ParamIdx) {
    818     // Check argument types.
    819     const PackExpansionType *Expansion
    820                                 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
    821     if (!Expansion) {
    822       // Simple case: compare the parameter and argument types at this point.
    823 
    824       // Make sure we have an argument.
    825       if (ArgIdx >= NumArgs)
    826         return Sema::TDK_MiscellaneousDeductionFailure;
    827 
    828       if (isa<PackExpansionType>(Args[ArgIdx])) {
    829         // C++0x [temp.deduct.type]p22:
    830         //   If the original function parameter associated with A is a function
    831         //   parameter pack and the function parameter associated with P is not
    832         //   a function parameter pack, then template argument deduction fails.
    833         return Sema::TDK_MiscellaneousDeductionFailure;
    834       }
    835 
    836       if (Sema::TemplateDeductionResult Result
    837             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
    838                                                  Params[ParamIdx], Args[ArgIdx],
    839                                                  Info, Deduced, TDF,
    840                                                  PartialOrdering,
    841                                                  RefParamComparisons))
    842         return Result;
    843 
    844       ++ArgIdx;
    845       continue;
    846     }
    847 
    848     // C++0x [temp.deduct.type]p5:
    849     //   The non-deduced contexts are:
    850     //     - A function parameter pack that does not occur at the end of the
    851     //       parameter-declaration-clause.
    852     if (ParamIdx + 1 < NumParams)
    853       return Sema::TDK_Success;
    854 
    855     // C++0x [temp.deduct.type]p10:
    856     //   If the parameter-declaration corresponding to Pi is a function
    857     //   parameter pack, then the type of its declarator- id is compared with
    858     //   each remaining parameter type in the parameter-type-list of A. Each
    859     //   comparison deduces template arguments for subsequent positions in the
    860     //   template parameter packs expanded by the function parameter pack.
    861 
    862     QualType Pattern = Expansion->getPattern();
    863     PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
    864 
    865     bool HasAnyArguments = false;
    866     for (; ArgIdx < NumArgs; ++ArgIdx) {
    867       HasAnyArguments = true;
    868 
    869       // Deduce template arguments from the pattern.
    870       if (Sema::TemplateDeductionResult Result
    871             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
    872                                                  Args[ArgIdx], Info, Deduced,
    873                                                  TDF, PartialOrdering,
    874                                                  RefParamComparisons))
    875         return Result;
    876 
    877       PackScope.nextPackElement();
    878     }
    879 
    880     // Build argument packs for each of the parameter packs expanded by this
    881     // pack expansion.
    882     if (auto Result = PackScope.finish(HasAnyArguments))
    883       return Result;
    884   }
    885 
    886   // Make sure we don't have any extra arguments.
    887   if (ArgIdx < NumArgs)
    888     return Sema::TDK_MiscellaneousDeductionFailure;
    889 
    890   return Sema::TDK_Success;
    891 }
    892 
    893 /// \brief Determine whether the parameter has qualifiers that are either
    894 /// inconsistent with or a superset of the argument's qualifiers.
    895 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
    896                                                   QualType ArgType) {
    897   Qualifiers ParamQs = ParamType.getQualifiers();
    898   Qualifiers ArgQs = ArgType.getQualifiers();
    899 
    900   if (ParamQs == ArgQs)
    901     return false;
    902 
    903   // Mismatched (but not missing) Objective-C GC attributes.
    904   if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
    905       ParamQs.hasObjCGCAttr())
    906     return true;
    907 
    908   // Mismatched (but not missing) address spaces.
    909   if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
    910       ParamQs.hasAddressSpace())
    911     return true;
    912 
    913   // Mismatched (but not missing) Objective-C lifetime qualifiers.
    914   if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
    915       ParamQs.hasObjCLifetime())
    916     return true;
    917 
    918   // CVR qualifier superset.
    919   return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
    920       ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
    921                                                 == ParamQs.getCVRQualifiers());
    922 }
    923 
    924 /// \brief Compare types for equality with respect to possibly compatible
    925 /// function types (noreturn adjustment, implicit calling conventions). If any
    926 /// of parameter and argument is not a function, just perform type comparison.
    927 ///
    928 /// \param Param the template parameter type.
    929 ///
    930 /// \param Arg the argument type.
    931 bool Sema::isSameOrCompatibleFunctionType(CanQualType Param,
    932                                           CanQualType Arg) {
    933   const FunctionType *ParamFunction = Param->getAs<FunctionType>(),
    934                      *ArgFunction   = Arg->getAs<FunctionType>();
    935 
    936   // Just compare if not functions.
    937   if (!ParamFunction || !ArgFunction)
    938     return Param == Arg;
    939 
    940   // Noreturn adjustment.
    941   QualType AdjustedParam;
    942   if (IsNoReturnConversion(Param, Arg, AdjustedParam))
    943     return Arg == Context.getCanonicalType(AdjustedParam);
    944 
    945   // FIXME: Compatible calling conventions.
    946 
    947   return Param == Arg;
    948 }
    949 
    950 /// \brief Deduce the template arguments by comparing the parameter type and
    951 /// the argument type (C++ [temp.deduct.type]).
    952 ///
    953 /// \param S the semantic analysis object within which we are deducing
    954 ///
    955 /// \param TemplateParams the template parameters that we are deducing
    956 ///
    957 /// \param ParamIn the parameter type
    958 ///
    959 /// \param ArgIn the argument type
    960 ///
    961 /// \param Info information about the template argument deduction itself
    962 ///
    963 /// \param Deduced the deduced template arguments
    964 ///
    965 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
    966 /// how template argument deduction is performed.
    967 ///
    968 /// \param PartialOrdering Whether we're performing template argument deduction
    969 /// in the context of partial ordering (C++0x [temp.deduct.partial]).
    970 ///
    971 /// \param RefParamComparisons If we're performing template argument deduction
    972 /// in the context of partial ordering, the set of qualifier comparisons.
    973 ///
    974 /// \returns the result of template argument deduction so far. Note that a
    975 /// "success" result means that template argument deduction has not yet failed,
    976 /// but it may still fail, later, for other reasons.
    977 static Sema::TemplateDeductionResult
    978 DeduceTemplateArgumentsByTypeMatch(Sema &S,
    979                                    TemplateParameterList *TemplateParams,
    980                                    QualType ParamIn, QualType ArgIn,
    981                                    TemplateDeductionInfo &Info,
    982                             SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    983                                    unsigned TDF,
    984                                    bool PartialOrdering,
    985                             SmallVectorImpl<RefParamPartialOrderingComparison> *
    986                                                           RefParamComparisons) {
    987   // We only want to look at the canonical types, since typedefs and
    988   // sugar are not part of template argument deduction.
    989   QualType Param = S.Context.getCanonicalType(ParamIn);
    990   QualType Arg = S.Context.getCanonicalType(ArgIn);
    991 
    992   // If the argument type is a pack expansion, look at its pattern.
    993   // This isn't explicitly called out
    994   if (const PackExpansionType *ArgExpansion
    995                                             = dyn_cast<PackExpansionType>(Arg))
    996     Arg = ArgExpansion->getPattern();
    997 
    998   if (PartialOrdering) {
    999     // C++0x [temp.deduct.partial]p5:
   1000     //   Before the partial ordering is done, certain transformations are
   1001     //   performed on the types used for partial ordering:
   1002     //     - If P is a reference type, P is replaced by the type referred to.
   1003     const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
   1004     if (ParamRef)
   1005       Param = ParamRef->getPointeeType();
   1006 
   1007     //     - If A is a reference type, A is replaced by the type referred to.
   1008     const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
   1009     if (ArgRef)
   1010       Arg = ArgRef->getPointeeType();
   1011 
   1012     if (RefParamComparisons && ParamRef && ArgRef) {
   1013       // C++0x [temp.deduct.partial]p6:
   1014       //   If both P and A were reference types (before being replaced with the
   1015       //   type referred to above), determine which of the two types (if any) is
   1016       //   more cv-qualified than the other; otherwise the types are considered
   1017       //   to be equally cv-qualified for partial ordering purposes. The result
   1018       //   of this determination will be used below.
   1019       //
   1020       // We save this information for later, using it only when deduction
   1021       // succeeds in both directions.
   1022       RefParamPartialOrderingComparison Comparison;
   1023       Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>();
   1024       Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>();
   1025       Comparison.Qualifiers = NeitherMoreQualified;
   1026 
   1027       Qualifiers ParamQuals = Param.getQualifiers();
   1028       Qualifiers ArgQuals = Arg.getQualifiers();
   1029       if (ParamQuals.isStrictSupersetOf(ArgQuals))
   1030         Comparison.Qualifiers = ParamMoreQualified;
   1031       else if (ArgQuals.isStrictSupersetOf(ParamQuals))
   1032         Comparison.Qualifiers = ArgMoreQualified;
   1033       else if (ArgQuals.getObjCLifetime() != ParamQuals.getObjCLifetime() &&
   1034                ArgQuals.withoutObjCLifetime()
   1035                  == ParamQuals.withoutObjCLifetime()) {
   1036         // Prefer binding to non-__unsafe_autoretained parameters.
   1037         if (ArgQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
   1038             ParamQuals.getObjCLifetime())
   1039           Comparison.Qualifiers = ParamMoreQualified;
   1040         else if (ParamQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
   1041                  ArgQuals.getObjCLifetime())
   1042           Comparison.Qualifiers = ArgMoreQualified;
   1043       }
   1044       RefParamComparisons->push_back(Comparison);
   1045     }
   1046 
   1047     // C++0x [temp.deduct.partial]p7:
   1048     //   Remove any top-level cv-qualifiers:
   1049     //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
   1050     //       version of P.
   1051     Param = Param.getUnqualifiedType();
   1052     //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
   1053     //       version of A.
   1054     Arg = Arg.getUnqualifiedType();
   1055   } else {
   1056     // C++0x [temp.deduct.call]p4 bullet 1:
   1057     //   - If the original P is a reference type, the deduced A (i.e., the type
   1058     //     referred to by the reference) can be more cv-qualified than the
   1059     //     transformed A.
   1060     if (TDF & TDF_ParamWithReferenceType) {
   1061       Qualifiers Quals;
   1062       QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
   1063       Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
   1064                              Arg.getCVRQualifiers());
   1065       Param = S.Context.getQualifiedType(UnqualParam, Quals);
   1066     }
   1067 
   1068     if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
   1069       // C++0x [temp.deduct.type]p10:
   1070       //   If P and A are function types that originated from deduction when
   1071       //   taking the address of a function template (14.8.2.2) or when deducing
   1072       //   template arguments from a function declaration (14.8.2.6) and Pi and
   1073       //   Ai are parameters of the top-level parameter-type-list of P and A,
   1074       //   respectively, Pi is adjusted if it is an rvalue reference to a
   1075       //   cv-unqualified template parameter and Ai is an lvalue reference, in
   1076       //   which case the type of Pi is changed to be the template parameter
   1077       //   type (i.e., T&& is changed to simply T). [ Note: As a result, when
   1078       //   Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
   1079       //   deduced as X&. - end note ]
   1080       TDF &= ~TDF_TopLevelParameterTypeList;
   1081 
   1082       if (const RValueReferenceType *ParamRef
   1083                                         = Param->getAs<RValueReferenceType>()) {
   1084         if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
   1085             !ParamRef->getPointeeType().getQualifiers())
   1086           if (Arg->isLValueReferenceType())
   1087             Param = ParamRef->getPointeeType();
   1088       }
   1089     }
   1090   }
   1091 
   1092   // C++ [temp.deduct.type]p9:
   1093   //   A template type argument T, a template template argument TT or a
   1094   //   template non-type argument i can be deduced if P and A have one of
   1095   //   the following forms:
   1096   //
   1097   //     T
   1098   //     cv-list T
   1099   if (const TemplateTypeParmType *TemplateTypeParm
   1100         = Param->getAs<TemplateTypeParmType>()) {
   1101     // Just skip any attempts to deduce from a placeholder type.
   1102     if (Arg->isPlaceholderType())
   1103       return Sema::TDK_Success;
   1104 
   1105     unsigned Index = TemplateTypeParm->getIndex();
   1106     bool RecanonicalizeArg = false;
   1107 
   1108     // If the argument type is an array type, move the qualifiers up to the
   1109     // top level, so they can be matched with the qualifiers on the parameter.
   1110     if (isa<ArrayType>(Arg)) {
   1111       Qualifiers Quals;
   1112       Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
   1113       if (Quals) {
   1114         Arg = S.Context.getQualifiedType(Arg, Quals);
   1115         RecanonicalizeArg = true;
   1116       }
   1117     }
   1118 
   1119     // The argument type can not be less qualified than the parameter
   1120     // type.
   1121     if (!(TDF & TDF_IgnoreQualifiers) &&
   1122         hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
   1123       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
   1124       Info.FirstArg = TemplateArgument(Param);
   1125       Info.SecondArg = TemplateArgument(Arg);
   1126       return Sema::TDK_Underqualified;
   1127     }
   1128 
   1129     assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
   1130     assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
   1131     QualType DeducedType = Arg;
   1132 
   1133     // Remove any qualifiers on the parameter from the deduced type.
   1134     // We checked the qualifiers for consistency above.
   1135     Qualifiers DeducedQs = DeducedType.getQualifiers();
   1136     Qualifiers ParamQs = Param.getQualifiers();
   1137     DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
   1138     if (ParamQs.hasObjCGCAttr())
   1139       DeducedQs.removeObjCGCAttr();
   1140     if (ParamQs.hasAddressSpace())
   1141       DeducedQs.removeAddressSpace();
   1142     if (ParamQs.hasObjCLifetime())
   1143       DeducedQs.removeObjCLifetime();
   1144 
   1145     // Objective-C ARC:
   1146     //   If template deduction would produce a lifetime qualifier on a type
   1147     //   that is not a lifetime type, template argument deduction fails.
   1148     if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
   1149         !DeducedType->isDependentType()) {
   1150       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
   1151       Info.FirstArg = TemplateArgument(Param);
   1152       Info.SecondArg = TemplateArgument(Arg);
   1153       return Sema::TDK_Underqualified;
   1154     }
   1155 
   1156     // Objective-C ARC:
   1157     //   If template deduction would produce an argument type with lifetime type
   1158     //   but no lifetime qualifier, the __strong lifetime qualifier is inferred.
   1159     if (S.getLangOpts().ObjCAutoRefCount &&
   1160         DeducedType->isObjCLifetimeType() &&
   1161         !DeducedQs.hasObjCLifetime())
   1162       DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
   1163 
   1164     DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
   1165                                              DeducedQs);
   1166 
   1167     if (RecanonicalizeArg)
   1168       DeducedType = S.Context.getCanonicalType(DeducedType);
   1169 
   1170     DeducedTemplateArgument NewDeduced(DeducedType);
   1171     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
   1172                                                                  Deduced[Index],
   1173                                                                    NewDeduced);
   1174     if (Result.isNull()) {
   1175       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
   1176       Info.FirstArg = Deduced[Index];
   1177       Info.SecondArg = NewDeduced;
   1178       return Sema::TDK_Inconsistent;
   1179     }
   1180 
   1181     Deduced[Index] = Result;
   1182     return Sema::TDK_Success;
   1183   }
   1184 
   1185   // Set up the template argument deduction information for a failure.
   1186   Info.FirstArg = TemplateArgument(ParamIn);
   1187   Info.SecondArg = TemplateArgument(ArgIn);
   1188 
   1189   // If the parameter is an already-substituted template parameter
   1190   // pack, do nothing: we don't know which of its arguments to look
   1191   // at, so we have to wait until all of the parameter packs in this
   1192   // expansion have arguments.
   1193   if (isa<SubstTemplateTypeParmPackType>(Param))
   1194     return Sema::TDK_Success;
   1195 
   1196   // Check the cv-qualifiers on the parameter and argument types.
   1197   CanQualType CanParam = S.Context.getCanonicalType(Param);
   1198   CanQualType CanArg = S.Context.getCanonicalType(Arg);
   1199   if (!(TDF & TDF_IgnoreQualifiers)) {
   1200     if (TDF & TDF_ParamWithReferenceType) {
   1201       if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
   1202         return Sema::TDK_NonDeducedMismatch;
   1203     } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
   1204       if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
   1205         return Sema::TDK_NonDeducedMismatch;
   1206     }
   1207 
   1208     // If the parameter type is not dependent, there is nothing to deduce.
   1209     if (!Param->isDependentType()) {
   1210       if (!(TDF & TDF_SkipNonDependent)) {
   1211         bool NonDeduced = (TDF & TDF_InOverloadResolution)?
   1212                           !S.isSameOrCompatibleFunctionType(CanParam, CanArg) :
   1213                           Param != Arg;
   1214         if (NonDeduced) {
   1215           return Sema::TDK_NonDeducedMismatch;
   1216         }
   1217       }
   1218       return Sema::TDK_Success;
   1219     }
   1220   } else if (!Param->isDependentType()) {
   1221     CanQualType ParamUnqualType = CanParam.getUnqualifiedType(),
   1222                 ArgUnqualType = CanArg.getUnqualifiedType();
   1223     bool Success = (TDF & TDF_InOverloadResolution)?
   1224                    S.isSameOrCompatibleFunctionType(ParamUnqualType,
   1225                                                     ArgUnqualType) :
   1226                    ParamUnqualType == ArgUnqualType;
   1227     if (Success)
   1228       return Sema::TDK_Success;
   1229   }
   1230 
   1231   switch (Param->getTypeClass()) {
   1232     // Non-canonical types cannot appear here.
   1233 #define NON_CANONICAL_TYPE(Class, Base) \
   1234   case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
   1235 #define TYPE(Class, Base)
   1236 #include "clang/AST/TypeNodes.def"
   1237 
   1238     case Type::TemplateTypeParm:
   1239     case Type::SubstTemplateTypeParmPack:
   1240       llvm_unreachable("Type nodes handled above");
   1241 
   1242     // These types cannot be dependent, so simply check whether the types are
   1243     // the same.
   1244     case Type::Builtin:
   1245     case Type::VariableArray:
   1246     case Type::Vector:
   1247     case Type::FunctionNoProto:
   1248     case Type::Record:
   1249     case Type::Enum:
   1250     case Type::ObjCObject:
   1251     case Type::ObjCInterface:
   1252     case Type::ObjCObjectPointer: {
   1253       if (TDF & TDF_SkipNonDependent)
   1254         return Sema::TDK_Success;
   1255 
   1256       if (TDF & TDF_IgnoreQualifiers) {
   1257         Param = Param.getUnqualifiedType();
   1258         Arg = Arg.getUnqualifiedType();
   1259       }
   1260 
   1261       return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
   1262     }
   1263 
   1264     //     _Complex T   [placeholder extension]
   1265     case Type::Complex:
   1266       if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
   1267         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1268                                     cast<ComplexType>(Param)->getElementType(),
   1269                                     ComplexArg->getElementType(),
   1270                                     Info, Deduced, TDF);
   1271 
   1272       return Sema::TDK_NonDeducedMismatch;
   1273 
   1274     //     _Atomic T   [extension]
   1275     case Type::Atomic:
   1276       if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
   1277         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1278                                        cast<AtomicType>(Param)->getValueType(),
   1279                                        AtomicArg->getValueType(),
   1280                                        Info, Deduced, TDF);
   1281 
   1282       return Sema::TDK_NonDeducedMismatch;
   1283 
   1284     //     T *
   1285     case Type::Pointer: {
   1286       QualType PointeeType;
   1287       if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
   1288         PointeeType = PointerArg->getPointeeType();
   1289       } else if (const ObjCObjectPointerType *PointerArg
   1290                    = Arg->getAs<ObjCObjectPointerType>()) {
   1291         PointeeType = PointerArg->getPointeeType();
   1292       } else {
   1293         return Sema::TDK_NonDeducedMismatch;
   1294       }
   1295 
   1296       unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
   1297       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1298                                      cast<PointerType>(Param)->getPointeeType(),
   1299                                      PointeeType,
   1300                                      Info, Deduced, SubTDF);
   1301     }
   1302 
   1303     //     T &
   1304     case Type::LValueReference: {
   1305       const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
   1306       if (!ReferenceArg)
   1307         return Sema::TDK_NonDeducedMismatch;
   1308 
   1309       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1310                            cast<LValueReferenceType>(Param)->getPointeeType(),
   1311                            ReferenceArg->getPointeeType(), Info, Deduced, 0);
   1312     }
   1313 
   1314     //     T && [C++0x]
   1315     case Type::RValueReference: {
   1316       const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
   1317       if (!ReferenceArg)
   1318         return Sema::TDK_NonDeducedMismatch;
   1319 
   1320       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1321                              cast<RValueReferenceType>(Param)->getPointeeType(),
   1322                              ReferenceArg->getPointeeType(),
   1323                              Info, Deduced, 0);
   1324     }
   1325 
   1326     //     T [] (implied, but not stated explicitly)
   1327     case Type::IncompleteArray: {
   1328       const IncompleteArrayType *IncompleteArrayArg =
   1329         S.Context.getAsIncompleteArrayType(Arg);
   1330       if (!IncompleteArrayArg)
   1331         return Sema::TDK_NonDeducedMismatch;
   1332 
   1333       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
   1334       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1335                     S.Context.getAsIncompleteArrayType(Param)->getElementType(),
   1336                     IncompleteArrayArg->getElementType(),
   1337                     Info, Deduced, SubTDF);
   1338     }
   1339 
   1340     //     T [integer-constant]
   1341     case Type::ConstantArray: {
   1342       const ConstantArrayType *ConstantArrayArg =
   1343         S.Context.getAsConstantArrayType(Arg);
   1344       if (!ConstantArrayArg)
   1345         return Sema::TDK_NonDeducedMismatch;
   1346 
   1347       const ConstantArrayType *ConstantArrayParm =
   1348         S.Context.getAsConstantArrayType(Param);
   1349       if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
   1350         return Sema::TDK_NonDeducedMismatch;
   1351 
   1352       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
   1353       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1354                                            ConstantArrayParm->getElementType(),
   1355                                            ConstantArrayArg->getElementType(),
   1356                                            Info, Deduced, SubTDF);
   1357     }
   1358 
   1359     //     type [i]
   1360     case Type::DependentSizedArray: {
   1361       const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
   1362       if (!ArrayArg)
   1363         return Sema::TDK_NonDeducedMismatch;
   1364 
   1365       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
   1366 
   1367       // Check the element type of the arrays
   1368       const DependentSizedArrayType *DependentArrayParm
   1369         = S.Context.getAsDependentSizedArrayType(Param);
   1370       if (Sema::TemplateDeductionResult Result
   1371             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1372                                           DependentArrayParm->getElementType(),
   1373                                           ArrayArg->getElementType(),
   1374                                           Info, Deduced, SubTDF))
   1375         return Result;
   1376 
   1377       // Determine the array bound is something we can deduce.
   1378       NonTypeTemplateParmDecl *NTTP
   1379         = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
   1380       if (!NTTP)
   1381         return Sema::TDK_Success;
   1382 
   1383       // We can perform template argument deduction for the given non-type
   1384       // template parameter.
   1385       assert(NTTP->getDepth() == 0 &&
   1386              "Cannot deduce non-type template argument at depth > 0");
   1387       if (const ConstantArrayType *ConstantArrayArg
   1388             = dyn_cast<ConstantArrayType>(ArrayArg)) {
   1389         llvm::APSInt Size(ConstantArrayArg->getSize());
   1390         return DeduceNonTypeTemplateArgument(S, NTTP, Size,
   1391                                              S.Context.getSizeType(),
   1392                                              /*ArrayBound=*/true,
   1393                                              Info, Deduced);
   1394       }
   1395       if (const DependentSizedArrayType *DependentArrayArg
   1396             = dyn_cast<DependentSizedArrayType>(ArrayArg))
   1397         if (DependentArrayArg->getSizeExpr())
   1398           return DeduceNonTypeTemplateArgument(S, NTTP,
   1399                                                DependentArrayArg->getSizeExpr(),
   1400                                                Info, Deduced);
   1401 
   1402       // Incomplete type does not match a dependently-sized array type
   1403       return Sema::TDK_NonDeducedMismatch;
   1404     }
   1405 
   1406     //     type(*)(T)
   1407     //     T(*)()
   1408     //     T(*)(T)
   1409     case Type::FunctionProto: {
   1410       unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
   1411       const FunctionProtoType *FunctionProtoArg =
   1412         dyn_cast<FunctionProtoType>(Arg);
   1413       if (!FunctionProtoArg)
   1414         return Sema::TDK_NonDeducedMismatch;
   1415 
   1416       const FunctionProtoType *FunctionProtoParam =
   1417         cast<FunctionProtoType>(Param);
   1418 
   1419       if (FunctionProtoParam->getTypeQuals()
   1420             != FunctionProtoArg->getTypeQuals() ||
   1421           FunctionProtoParam->getRefQualifier()
   1422             != FunctionProtoArg->getRefQualifier() ||
   1423           FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
   1424         return Sema::TDK_NonDeducedMismatch;
   1425 
   1426       // Check return types.
   1427       if (Sema::TemplateDeductionResult Result =
   1428               DeduceTemplateArgumentsByTypeMatch(
   1429                   S, TemplateParams, FunctionProtoParam->getReturnType(),
   1430                   FunctionProtoArg->getReturnType(), Info, Deduced, 0))
   1431         return Result;
   1432 
   1433       return DeduceTemplateArguments(
   1434           S, TemplateParams, FunctionProtoParam->param_type_begin(),
   1435           FunctionProtoParam->getNumParams(),
   1436           FunctionProtoArg->param_type_begin(),
   1437           FunctionProtoArg->getNumParams(), Info, Deduced, SubTDF);
   1438     }
   1439 
   1440     case Type::InjectedClassName: {
   1441       // Treat a template's injected-class-name as if the template
   1442       // specialization type had been used.
   1443       Param = cast<InjectedClassNameType>(Param)
   1444         ->getInjectedSpecializationType();
   1445       assert(isa<TemplateSpecializationType>(Param) &&
   1446              "injected class name is not a template specialization type");
   1447       // fall through
   1448     }
   1449 
   1450     //     template-name<T> (where template-name refers to a class template)
   1451     //     template-name<i>
   1452     //     TT<T>
   1453     //     TT<i>
   1454     //     TT<>
   1455     case Type::TemplateSpecialization: {
   1456       const TemplateSpecializationType *SpecParam
   1457         = cast<TemplateSpecializationType>(Param);
   1458 
   1459       // Try to deduce template arguments from the template-id.
   1460       Sema::TemplateDeductionResult Result
   1461         = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
   1462                                   Info, Deduced);
   1463 
   1464       if (Result && (TDF & TDF_DerivedClass)) {
   1465         // C++ [temp.deduct.call]p3b3:
   1466         //   If P is a class, and P has the form template-id, then A can be a
   1467         //   derived class of the deduced A. Likewise, if P is a pointer to a
   1468         //   class of the form template-id, A can be a pointer to a derived
   1469         //   class pointed to by the deduced A.
   1470         //
   1471         // More importantly:
   1472         //   These alternatives are considered only if type deduction would
   1473         //   otherwise fail.
   1474         if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
   1475           // We cannot inspect base classes as part of deduction when the type
   1476           // is incomplete, so either instantiate any templates necessary to
   1477           // complete the type, or skip over it if it cannot be completed.
   1478           if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
   1479             return Result;
   1480 
   1481           // Use data recursion to crawl through the list of base classes.
   1482           // Visited contains the set of nodes we have already visited, while
   1483           // ToVisit is our stack of records that we still need to visit.
   1484           llvm::SmallPtrSet<const RecordType *, 8> Visited;
   1485           SmallVector<const RecordType *, 8> ToVisit;
   1486           ToVisit.push_back(RecordT);
   1487           bool Successful = false;
   1488           SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
   1489                                                               Deduced.end());
   1490           while (!ToVisit.empty()) {
   1491             // Retrieve the next class in the inheritance hierarchy.
   1492             const RecordType *NextT = ToVisit.pop_back_val();
   1493 
   1494             // If we have already seen this type, skip it.
   1495             if (!Visited.insert(NextT))
   1496               continue;
   1497 
   1498             // If this is a base class, try to perform template argument
   1499             // deduction from it.
   1500             if (NextT != RecordT) {
   1501               TemplateDeductionInfo BaseInfo(Info.getLocation());
   1502               Sema::TemplateDeductionResult BaseResult
   1503                 = DeduceTemplateArguments(S, TemplateParams, SpecParam,
   1504                                           QualType(NextT, 0), BaseInfo,
   1505                                           Deduced);
   1506 
   1507               // If template argument deduction for this base was successful,
   1508               // note that we had some success. Otherwise, ignore any deductions
   1509               // from this base class.
   1510               if (BaseResult == Sema::TDK_Success) {
   1511                 Successful = true;
   1512                 DeducedOrig.clear();
   1513                 DeducedOrig.append(Deduced.begin(), Deduced.end());
   1514                 Info.Param = BaseInfo.Param;
   1515                 Info.FirstArg = BaseInfo.FirstArg;
   1516                 Info.SecondArg = BaseInfo.SecondArg;
   1517               }
   1518               else
   1519                 Deduced = DeducedOrig;
   1520             }
   1521 
   1522             // Visit base classes
   1523             CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
   1524             for (const auto &Base : Next->bases()) {
   1525               assert(Base.getType()->isRecordType() &&
   1526                      "Base class that isn't a record?");
   1527               ToVisit.push_back(Base.getType()->getAs<RecordType>());
   1528             }
   1529           }
   1530 
   1531           if (Successful)
   1532             return Sema::TDK_Success;
   1533         }
   1534 
   1535       }
   1536 
   1537       return Result;
   1538     }
   1539 
   1540     //     T type::*
   1541     //     T T::*
   1542     //     T (type::*)()
   1543     //     type (T::*)()
   1544     //     type (type::*)(T)
   1545     //     type (T::*)(T)
   1546     //     T (type::*)(T)
   1547     //     T (T::*)()
   1548     //     T (T::*)(T)
   1549     case Type::MemberPointer: {
   1550       const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
   1551       const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
   1552       if (!MemPtrArg)
   1553         return Sema::TDK_NonDeducedMismatch;
   1554 
   1555       if (Sema::TemplateDeductionResult Result
   1556             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1557                                                  MemPtrParam->getPointeeType(),
   1558                                                  MemPtrArg->getPointeeType(),
   1559                                                  Info, Deduced,
   1560                                                  TDF & TDF_IgnoreQualifiers))
   1561         return Result;
   1562 
   1563       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1564                                            QualType(MemPtrParam->getClass(), 0),
   1565                                            QualType(MemPtrArg->getClass(), 0),
   1566                                            Info, Deduced,
   1567                                            TDF & TDF_IgnoreQualifiers);
   1568     }
   1569 
   1570     //     (clang extension)
   1571     //
   1572     //     type(^)(T)
   1573     //     T(^)()
   1574     //     T(^)(T)
   1575     case Type::BlockPointer: {
   1576       const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
   1577       const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
   1578 
   1579       if (!BlockPtrArg)
   1580         return Sema::TDK_NonDeducedMismatch;
   1581 
   1582       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1583                                                 BlockPtrParam->getPointeeType(),
   1584                                                 BlockPtrArg->getPointeeType(),
   1585                                                 Info, Deduced, 0);
   1586     }
   1587 
   1588     //     (clang extension)
   1589     //
   1590     //     T __attribute__(((ext_vector_type(<integral constant>))))
   1591     case Type::ExtVector: {
   1592       const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
   1593       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
   1594         // Make sure that the vectors have the same number of elements.
   1595         if (VectorParam->getNumElements() != VectorArg->getNumElements())
   1596           return Sema::TDK_NonDeducedMismatch;
   1597 
   1598         // Perform deduction on the element types.
   1599         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1600                                                   VectorParam->getElementType(),
   1601                                                   VectorArg->getElementType(),
   1602                                                   Info, Deduced, TDF);
   1603       }
   1604 
   1605       if (const DependentSizedExtVectorType *VectorArg
   1606                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
   1607         // We can't check the number of elements, since the argument has a
   1608         // dependent number of elements. This can only occur during partial
   1609         // ordering.
   1610 
   1611         // Perform deduction on the element types.
   1612         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1613                                                   VectorParam->getElementType(),
   1614                                                   VectorArg->getElementType(),
   1615                                                   Info, Deduced, TDF);
   1616       }
   1617 
   1618       return Sema::TDK_NonDeducedMismatch;
   1619     }
   1620 
   1621     //     (clang extension)
   1622     //
   1623     //     T __attribute__(((ext_vector_type(N))))
   1624     case Type::DependentSizedExtVector: {
   1625       const DependentSizedExtVectorType *VectorParam
   1626         = cast<DependentSizedExtVectorType>(Param);
   1627 
   1628       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
   1629         // Perform deduction on the element types.
   1630         if (Sema::TemplateDeductionResult Result
   1631               = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1632                                                   VectorParam->getElementType(),
   1633                                                    VectorArg->getElementType(),
   1634                                                    Info, Deduced, TDF))
   1635           return Result;
   1636 
   1637         // Perform deduction on the vector size, if we can.
   1638         NonTypeTemplateParmDecl *NTTP
   1639           = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
   1640         if (!NTTP)
   1641           return Sema::TDK_Success;
   1642 
   1643         llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
   1644         ArgSize = VectorArg->getNumElements();
   1645         return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
   1646                                              false, Info, Deduced);
   1647       }
   1648 
   1649       if (const DependentSizedExtVectorType *VectorArg
   1650                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
   1651         // Perform deduction on the element types.
   1652         if (Sema::TemplateDeductionResult Result
   1653             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1654                                                  VectorParam->getElementType(),
   1655                                                  VectorArg->getElementType(),
   1656                                                  Info, Deduced, TDF))
   1657           return Result;
   1658 
   1659         // Perform deduction on the vector size, if we can.
   1660         NonTypeTemplateParmDecl *NTTP
   1661           = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
   1662         if (!NTTP)
   1663           return Sema::TDK_Success;
   1664 
   1665         return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
   1666                                              Info, Deduced);
   1667       }
   1668 
   1669       return Sema::TDK_NonDeducedMismatch;
   1670     }
   1671 
   1672     case Type::TypeOfExpr:
   1673     case Type::TypeOf:
   1674     case Type::DependentName:
   1675     case Type::UnresolvedUsing:
   1676     case Type::Decltype:
   1677     case Type::UnaryTransform:
   1678     case Type::Auto:
   1679     case Type::DependentTemplateSpecialization:
   1680     case Type::PackExpansion:
   1681       // No template argument deduction for these types
   1682       return Sema::TDK_Success;
   1683   }
   1684 
   1685   llvm_unreachable("Invalid Type Class!");
   1686 }
   1687 
   1688 static Sema::TemplateDeductionResult
   1689 DeduceTemplateArguments(Sema &S,
   1690                         TemplateParameterList *TemplateParams,
   1691                         const TemplateArgument &Param,
   1692                         TemplateArgument Arg,
   1693                         TemplateDeductionInfo &Info,
   1694                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
   1695   // If the template argument is a pack expansion, perform template argument
   1696   // deduction against the pattern of that expansion. This only occurs during
   1697   // partial ordering.
   1698   if (Arg.isPackExpansion())
   1699     Arg = Arg.getPackExpansionPattern();
   1700 
   1701   switch (Param.getKind()) {
   1702   case TemplateArgument::Null:
   1703     llvm_unreachable("Null template argument in parameter list");
   1704 
   1705   case TemplateArgument::Type:
   1706     if (Arg.getKind() == TemplateArgument::Type)
   1707       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1708                                                 Param.getAsType(),
   1709                                                 Arg.getAsType(),
   1710                                                 Info, Deduced, 0);
   1711     Info.FirstArg = Param;
   1712     Info.SecondArg = Arg;
   1713     return Sema::TDK_NonDeducedMismatch;
   1714 
   1715   case TemplateArgument::Template:
   1716     if (Arg.getKind() == TemplateArgument::Template)
   1717       return DeduceTemplateArguments(S, TemplateParams,
   1718                                      Param.getAsTemplate(),
   1719                                      Arg.getAsTemplate(), Info, Deduced);
   1720     Info.FirstArg = Param;
   1721     Info.SecondArg = Arg;
   1722     return Sema::TDK_NonDeducedMismatch;
   1723 
   1724   case TemplateArgument::TemplateExpansion:
   1725     llvm_unreachable("caller should handle pack expansions");
   1726 
   1727   case TemplateArgument::Declaration:
   1728     if (Arg.getKind() == TemplateArgument::Declaration &&
   1729         isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()) &&
   1730         Param.isDeclForReferenceParam() == Arg.isDeclForReferenceParam())
   1731       return Sema::TDK_Success;
   1732 
   1733     Info.FirstArg = Param;
   1734     Info.SecondArg = Arg;
   1735     return Sema::TDK_NonDeducedMismatch;
   1736 
   1737   case TemplateArgument::NullPtr:
   1738     if (Arg.getKind() == TemplateArgument::NullPtr &&
   1739         S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType()))
   1740       return Sema::TDK_Success;
   1741 
   1742     Info.FirstArg = Param;
   1743     Info.SecondArg = Arg;
   1744     return Sema::TDK_NonDeducedMismatch;
   1745 
   1746   case TemplateArgument::Integral:
   1747     if (Arg.getKind() == TemplateArgument::Integral) {
   1748       if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
   1749         return Sema::TDK_Success;
   1750 
   1751       Info.FirstArg = Param;
   1752       Info.SecondArg = Arg;
   1753       return Sema::TDK_NonDeducedMismatch;
   1754     }
   1755 
   1756     if (Arg.getKind() == TemplateArgument::Expression) {
   1757       Info.FirstArg = Param;
   1758       Info.SecondArg = Arg;
   1759       return Sema::TDK_NonDeducedMismatch;
   1760     }
   1761 
   1762     Info.FirstArg = Param;
   1763     Info.SecondArg = Arg;
   1764     return Sema::TDK_NonDeducedMismatch;
   1765 
   1766   case TemplateArgument::Expression: {
   1767     if (NonTypeTemplateParmDecl *NTTP
   1768           = getDeducedParameterFromExpr(Param.getAsExpr())) {
   1769       if (Arg.getKind() == TemplateArgument::Integral)
   1770         return DeduceNonTypeTemplateArgument(S, NTTP,
   1771                                              Arg.getAsIntegral(),
   1772                                              Arg.getIntegralType(),
   1773                                              /*ArrayBound=*/false,
   1774                                              Info, Deduced);
   1775       if (Arg.getKind() == TemplateArgument::Expression)
   1776         return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
   1777                                              Info, Deduced);
   1778       if (Arg.getKind() == TemplateArgument::Declaration)
   1779         return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
   1780                                              Info, Deduced);
   1781 
   1782       Info.FirstArg = Param;
   1783       Info.SecondArg = Arg;
   1784       return Sema::TDK_NonDeducedMismatch;
   1785     }
   1786 
   1787     // Can't deduce anything, but that's okay.
   1788     return Sema::TDK_Success;
   1789   }
   1790   case TemplateArgument::Pack:
   1791     llvm_unreachable("Argument packs should be expanded by the caller!");
   1792   }
   1793 
   1794   llvm_unreachable("Invalid TemplateArgument Kind!");
   1795 }
   1796 
   1797 /// \brief Determine whether there is a template argument to be used for
   1798 /// deduction.
   1799 ///
   1800 /// This routine "expands" argument packs in-place, overriding its input
   1801 /// parameters so that \c Args[ArgIdx] will be the available template argument.
   1802 ///
   1803 /// \returns true if there is another template argument (which will be at
   1804 /// \c Args[ArgIdx]), false otherwise.
   1805 static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
   1806                                             unsigned &ArgIdx,
   1807                                             unsigned &NumArgs) {
   1808   if (ArgIdx == NumArgs)
   1809     return false;
   1810 
   1811   const TemplateArgument &Arg = Args[ArgIdx];
   1812   if (Arg.getKind() != TemplateArgument::Pack)
   1813     return true;
   1814 
   1815   assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
   1816   Args = Arg.pack_begin();
   1817   NumArgs = Arg.pack_size();
   1818   ArgIdx = 0;
   1819   return ArgIdx < NumArgs;
   1820 }
   1821 
   1822 /// \brief Determine whether the given set of template arguments has a pack
   1823 /// expansion that is not the last template argument.
   1824 static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
   1825                                       unsigned NumArgs) {
   1826   unsigned ArgIdx = 0;
   1827   while (ArgIdx < NumArgs) {
   1828     const TemplateArgument &Arg = Args[ArgIdx];
   1829 
   1830     // Unwrap argument packs.
   1831     if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
   1832       Args = Arg.pack_begin();
   1833       NumArgs = Arg.pack_size();
   1834       ArgIdx = 0;
   1835       continue;
   1836     }
   1837 
   1838     ++ArgIdx;
   1839     if (ArgIdx == NumArgs)
   1840       return false;
   1841 
   1842     if (Arg.isPackExpansion())
   1843       return true;
   1844   }
   1845 
   1846   return false;
   1847 }
   1848 
   1849 static Sema::TemplateDeductionResult
   1850 DeduceTemplateArguments(Sema &S,
   1851                         TemplateParameterList *TemplateParams,
   1852                         const TemplateArgument *Params, unsigned NumParams,
   1853                         const TemplateArgument *Args, unsigned NumArgs,
   1854                         TemplateDeductionInfo &Info,
   1855                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
   1856   // C++0x [temp.deduct.type]p9:
   1857   //   If the template argument list of P contains a pack expansion that is not
   1858   //   the last template argument, the entire template argument list is a
   1859   //   non-deduced context.
   1860   if (hasPackExpansionBeforeEnd(Params, NumParams))
   1861     return Sema::TDK_Success;
   1862 
   1863   // C++0x [temp.deduct.type]p9:
   1864   //   If P has a form that contains <T> or <i>, then each argument Pi of the
   1865   //   respective template argument list P is compared with the corresponding
   1866   //   argument Ai of the corresponding template argument list of A.
   1867   unsigned ArgIdx = 0, ParamIdx = 0;
   1868   for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
   1869        ++ParamIdx) {
   1870     if (!Params[ParamIdx].isPackExpansion()) {
   1871       // The simple case: deduce template arguments by matching Pi and Ai.
   1872 
   1873       // Check whether we have enough arguments.
   1874       if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
   1875         return Sema::TDK_Success;
   1876 
   1877       if (Args[ArgIdx].isPackExpansion()) {
   1878         // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
   1879         // but applied to pack expansions that are template arguments.
   1880         return Sema::TDK_MiscellaneousDeductionFailure;
   1881       }
   1882 
   1883       // Perform deduction for this Pi/Ai pair.
   1884       if (Sema::TemplateDeductionResult Result
   1885             = DeduceTemplateArguments(S, TemplateParams,
   1886                                       Params[ParamIdx], Args[ArgIdx],
   1887                                       Info, Deduced))
   1888         return Result;
   1889 
   1890       // Move to the next argument.
   1891       ++ArgIdx;
   1892       continue;
   1893     }
   1894 
   1895     // The parameter is a pack expansion.
   1896 
   1897     // C++0x [temp.deduct.type]p9:
   1898     //   If Pi is a pack expansion, then the pattern of Pi is compared with
   1899     //   each remaining argument in the template argument list of A. Each
   1900     //   comparison deduces template arguments for subsequent positions in the
   1901     //   template parameter packs expanded by Pi.
   1902     TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
   1903 
   1904     // FIXME: If there are no remaining arguments, we can bail out early
   1905     // and set any deduced parameter packs to an empty argument pack.
   1906     // The latter part of this is a (minor) correctness issue.
   1907 
   1908     // Prepare to deduce the packs within the pattern.
   1909     PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
   1910 
   1911     // Keep track of the deduced template arguments for each parameter pack
   1912     // expanded by this pack expansion (the outer index) and for each
   1913     // template argument (the inner SmallVectors).
   1914     bool HasAnyArguments = false;
   1915     for (; hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs); ++ArgIdx) {
   1916       HasAnyArguments = true;
   1917 
   1918       // Deduce template arguments from the pattern.
   1919       if (Sema::TemplateDeductionResult Result
   1920             = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
   1921                                       Info, Deduced))
   1922         return Result;
   1923 
   1924       PackScope.nextPackElement();
   1925     }
   1926 
   1927     // Build argument packs for each of the parameter packs expanded by this
   1928     // pack expansion.
   1929     if (auto Result = PackScope.finish(HasAnyArguments))
   1930       return Result;
   1931   }
   1932 
   1933   return Sema::TDK_Success;
   1934 }
   1935 
   1936 static Sema::TemplateDeductionResult
   1937 DeduceTemplateArguments(Sema &S,
   1938                         TemplateParameterList *TemplateParams,
   1939                         const TemplateArgumentList &ParamList,
   1940                         const TemplateArgumentList &ArgList,
   1941                         TemplateDeductionInfo &Info,
   1942                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
   1943   return DeduceTemplateArguments(S, TemplateParams,
   1944                                  ParamList.data(), ParamList.size(),
   1945                                  ArgList.data(), ArgList.size(),
   1946                                  Info, Deduced);
   1947 }
   1948 
   1949 /// \brief Determine whether two template arguments are the same.
   1950 static bool isSameTemplateArg(ASTContext &Context,
   1951                               const TemplateArgument &X,
   1952                               const TemplateArgument &Y) {
   1953   if (X.getKind() != Y.getKind())
   1954     return false;
   1955 
   1956   switch (X.getKind()) {
   1957     case TemplateArgument::Null:
   1958       llvm_unreachable("Comparing NULL template argument");
   1959 
   1960     case TemplateArgument::Type:
   1961       return Context.getCanonicalType(X.getAsType()) ==
   1962              Context.getCanonicalType(Y.getAsType());
   1963 
   1964     case TemplateArgument::Declaration:
   1965       return isSameDeclaration(X.getAsDecl(), Y.getAsDecl()) &&
   1966              X.isDeclForReferenceParam() == Y.isDeclForReferenceParam();
   1967 
   1968     case TemplateArgument::NullPtr:
   1969       return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
   1970 
   1971     case TemplateArgument::Template:
   1972     case TemplateArgument::TemplateExpansion:
   1973       return Context.getCanonicalTemplateName(
   1974                     X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
   1975              Context.getCanonicalTemplateName(
   1976                     Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
   1977 
   1978     case TemplateArgument::Integral:
   1979       return X.getAsIntegral() == Y.getAsIntegral();
   1980 
   1981     case TemplateArgument::Expression: {
   1982       llvm::FoldingSetNodeID XID, YID;
   1983       X.getAsExpr()->Profile(XID, Context, true);
   1984       Y.getAsExpr()->Profile(YID, Context, true);
   1985       return XID == YID;
   1986     }
   1987 
   1988     case TemplateArgument::Pack:
   1989       if (X.pack_size() != Y.pack_size())
   1990         return false;
   1991 
   1992       for (TemplateArgument::pack_iterator XP = X.pack_begin(),
   1993                                         XPEnd = X.pack_end(),
   1994                                            YP = Y.pack_begin();
   1995            XP != XPEnd; ++XP, ++YP)
   1996         if (!isSameTemplateArg(Context, *XP, *YP))
   1997           return false;
   1998 
   1999       return true;
   2000   }
   2001 
   2002   llvm_unreachable("Invalid TemplateArgument Kind!");
   2003 }
   2004 
   2005 /// \brief Allocate a TemplateArgumentLoc where all locations have
   2006 /// been initialized to the given location.
   2007 ///
   2008 /// \param S The semantic analysis object.
   2009 ///
   2010 /// \param Arg The template argument we are producing template argument
   2011 /// location information for.
   2012 ///
   2013 /// \param NTTPType For a declaration template argument, the type of
   2014 /// the non-type template parameter that corresponds to this template
   2015 /// argument.
   2016 ///
   2017 /// \param Loc The source location to use for the resulting template
   2018 /// argument.
   2019 static TemplateArgumentLoc
   2020 getTrivialTemplateArgumentLoc(Sema &S,
   2021                               const TemplateArgument &Arg,
   2022                               QualType NTTPType,
   2023                               SourceLocation Loc) {
   2024   switch (Arg.getKind()) {
   2025   case TemplateArgument::Null:
   2026     llvm_unreachable("Can't get a NULL template argument here");
   2027 
   2028   case TemplateArgument::Type:
   2029     return TemplateArgumentLoc(Arg,
   2030                      S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
   2031 
   2032   case TemplateArgument::Declaration: {
   2033     Expr *E
   2034       = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
   2035           .getAs<Expr>();
   2036     return TemplateArgumentLoc(TemplateArgument(E), E);
   2037   }
   2038 
   2039   case TemplateArgument::NullPtr: {
   2040     Expr *E
   2041       = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
   2042           .getAs<Expr>();
   2043     return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
   2044                                E);
   2045   }
   2046 
   2047   case TemplateArgument::Integral: {
   2048     Expr *E
   2049       = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>();
   2050     return TemplateArgumentLoc(TemplateArgument(E), E);
   2051   }
   2052 
   2053     case TemplateArgument::Template:
   2054     case TemplateArgument::TemplateExpansion: {
   2055       NestedNameSpecifierLocBuilder Builder;
   2056       TemplateName Template = Arg.getAsTemplate();
   2057       if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
   2058         Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
   2059       else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
   2060         Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
   2061 
   2062       if (Arg.getKind() == TemplateArgument::Template)
   2063         return TemplateArgumentLoc(Arg,
   2064                                    Builder.getWithLocInContext(S.Context),
   2065                                    Loc);
   2066 
   2067 
   2068       return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
   2069                                  Loc, Loc);
   2070     }
   2071 
   2072   case TemplateArgument::Expression:
   2073     return TemplateArgumentLoc(Arg, Arg.getAsExpr());
   2074 
   2075   case TemplateArgument::Pack:
   2076     return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
   2077   }
   2078 
   2079   llvm_unreachable("Invalid TemplateArgument Kind!");
   2080 }
   2081 
   2082 
   2083 /// \brief Convert the given deduced template argument and add it to the set of
   2084 /// fully-converted template arguments.
   2085 static bool
   2086 ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
   2087                                DeducedTemplateArgument Arg,
   2088                                NamedDecl *Template,
   2089                                QualType NTTPType,
   2090                                unsigned ArgumentPackIndex,
   2091                                TemplateDeductionInfo &Info,
   2092                                bool InFunctionTemplate,
   2093                                SmallVectorImpl<TemplateArgument> &Output) {
   2094   if (Arg.getKind() == TemplateArgument::Pack) {
   2095     // This is a template argument pack, so check each of its arguments against
   2096     // the template parameter.
   2097     SmallVector<TemplateArgument, 2> PackedArgsBuilder;
   2098     for (TemplateArgument::pack_iterator PA = Arg.pack_begin(),
   2099                                       PAEnd = Arg.pack_end();
   2100          PA != PAEnd; ++PA) {
   2101       // When converting the deduced template argument, append it to the
   2102       // general output list. We need to do this so that the template argument
   2103       // checking logic has all of the prior template arguments available.
   2104       DeducedTemplateArgument InnerArg(*PA);
   2105       InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
   2106       if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
   2107                                          NTTPType, PackedArgsBuilder.size(),
   2108                                          Info, InFunctionTemplate, Output))
   2109         return true;
   2110 
   2111       // Move the converted template argument into our argument pack.
   2112       PackedArgsBuilder.push_back(Output.pop_back_val());
   2113     }
   2114 
   2115     // Create the resulting argument pack.
   2116     Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
   2117                                                       PackedArgsBuilder.data(),
   2118                                                      PackedArgsBuilder.size()));
   2119     return false;
   2120   }
   2121 
   2122   // Convert the deduced template argument into a template
   2123   // argument that we can check, almost as if the user had written
   2124   // the template argument explicitly.
   2125   TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
   2126                                                              Info.getLocation());
   2127 
   2128   // Check the template argument, converting it as necessary.
   2129   return S.CheckTemplateArgument(Param, ArgLoc,
   2130                                  Template,
   2131                                  Template->getLocation(),
   2132                                  Template->getSourceRange().getEnd(),
   2133                                  ArgumentPackIndex,
   2134                                  Output,
   2135                                  InFunctionTemplate
   2136                                   ? (Arg.wasDeducedFromArrayBound()
   2137                                        ? Sema::CTAK_DeducedFromArrayBound
   2138                                        : Sema::CTAK_Deduced)
   2139                                  : Sema::CTAK_Specified);
   2140 }
   2141 
   2142 /// Complete template argument deduction for a class template partial
   2143 /// specialization.
   2144 static Sema::TemplateDeductionResult
   2145 FinishTemplateArgumentDeduction(Sema &S,
   2146                                 ClassTemplatePartialSpecializationDecl *Partial,
   2147                                 const TemplateArgumentList &TemplateArgs,
   2148                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2149                                 TemplateDeductionInfo &Info) {
   2150   // Unevaluated SFINAE context.
   2151   EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
   2152   Sema::SFINAETrap Trap(S);
   2153 
   2154   Sema::ContextRAII SavedContext(S, Partial);
   2155 
   2156   // C++ [temp.deduct.type]p2:
   2157   //   [...] or if any template argument remains neither deduced nor
   2158   //   explicitly specified, template argument deduction fails.
   2159   SmallVector<TemplateArgument, 4> Builder;
   2160   TemplateParameterList *PartialParams = Partial->getTemplateParameters();
   2161   for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
   2162     NamedDecl *Param = PartialParams->getParam(I);
   2163     if (Deduced[I].isNull()) {
   2164       Info.Param = makeTemplateParameter(Param);
   2165       return Sema::TDK_Incomplete;
   2166     }
   2167 
   2168     // We have deduced this argument, so it still needs to be
   2169     // checked and converted.
   2170 
   2171     // First, for a non-type template parameter type that is
   2172     // initialized by a declaration, we need the type of the
   2173     // corresponding non-type template parameter.
   2174     QualType NTTPType;
   2175     if (NonTypeTemplateParmDecl *NTTP
   2176                                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   2177       NTTPType = NTTP->getType();
   2178       if (NTTPType->isDependentType()) {
   2179         TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2180                                           Builder.data(), Builder.size());
   2181         NTTPType = S.SubstType(NTTPType,
   2182                                MultiLevelTemplateArgumentList(TemplateArgs),
   2183                                NTTP->getLocation(),
   2184                                NTTP->getDeclName());
   2185         if (NTTPType.isNull()) {
   2186           Info.Param = makeTemplateParameter(Param);
   2187           // FIXME: These template arguments are temporary. Free them!
   2188           Info.reset(TemplateArgumentList::CreateCopy(S.Context,
   2189                                                       Builder.data(),
   2190                                                       Builder.size()));
   2191           return Sema::TDK_SubstitutionFailure;
   2192         }
   2193       }
   2194     }
   2195 
   2196     if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
   2197                                        Partial, NTTPType, 0, Info, false,
   2198                                        Builder)) {
   2199       Info.Param = makeTemplateParameter(Param);
   2200       // FIXME: These template arguments are temporary. Free them!
   2201       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
   2202                                                   Builder.size()));
   2203       return Sema::TDK_SubstitutionFailure;
   2204     }
   2205   }
   2206 
   2207   // Form the template argument list from the deduced template arguments.
   2208   TemplateArgumentList *DeducedArgumentList
   2209     = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
   2210                                        Builder.size());
   2211 
   2212   Info.reset(DeducedArgumentList);
   2213 
   2214   // Substitute the deduced template arguments into the template
   2215   // arguments of the class template partial specialization, and
   2216   // verify that the instantiated template arguments are both valid
   2217   // and are equivalent to the template arguments originally provided
   2218   // to the class template.
   2219   LocalInstantiationScope InstScope(S);
   2220   ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
   2221   const ASTTemplateArgumentListInfo *PartialTemplArgInfo
   2222     = Partial->getTemplateArgsAsWritten();
   2223   const TemplateArgumentLoc *PartialTemplateArgs
   2224     = PartialTemplArgInfo->getTemplateArgs();
   2225 
   2226   TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
   2227                                     PartialTemplArgInfo->RAngleLoc);
   2228 
   2229   if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
   2230               InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
   2231     unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
   2232     if (ParamIdx >= Partial->getTemplateParameters()->size())
   2233       ParamIdx = Partial->getTemplateParameters()->size() - 1;
   2234 
   2235     Decl *Param
   2236       = const_cast<NamedDecl *>(
   2237                           Partial->getTemplateParameters()->getParam(ParamIdx));
   2238     Info.Param = makeTemplateParameter(Param);
   2239     Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
   2240     return Sema::TDK_SubstitutionFailure;
   2241   }
   2242 
   2243   SmallVector<TemplateArgument, 4> ConvertedInstArgs;
   2244   if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
   2245                                   InstArgs, false, ConvertedInstArgs))
   2246     return Sema::TDK_SubstitutionFailure;
   2247 
   2248   TemplateParameterList *TemplateParams
   2249     = ClassTemplate->getTemplateParameters();
   2250   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
   2251     TemplateArgument InstArg = ConvertedInstArgs.data()[I];
   2252     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
   2253       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
   2254       Info.FirstArg = TemplateArgs[I];
   2255       Info.SecondArg = InstArg;
   2256       return Sema::TDK_NonDeducedMismatch;
   2257     }
   2258   }
   2259 
   2260   if (Trap.hasErrorOccurred())
   2261     return Sema::TDK_SubstitutionFailure;
   2262 
   2263   return Sema::TDK_Success;
   2264 }
   2265 
   2266 /// \brief Perform template argument deduction to determine whether
   2267 /// the given template arguments match the given class template
   2268 /// partial specialization per C++ [temp.class.spec.match].
   2269 Sema::TemplateDeductionResult
   2270 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
   2271                               const TemplateArgumentList &TemplateArgs,
   2272                               TemplateDeductionInfo &Info) {
   2273   if (Partial->isInvalidDecl())
   2274     return TDK_Invalid;
   2275 
   2276   // C++ [temp.class.spec.match]p2:
   2277   //   A partial specialization matches a given actual template
   2278   //   argument list if the template arguments of the partial
   2279   //   specialization can be deduced from the actual template argument
   2280   //   list (14.8.2).
   2281 
   2282   // Unevaluated SFINAE context.
   2283   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   2284   SFINAETrap Trap(*this);
   2285 
   2286   SmallVector<DeducedTemplateArgument, 4> Deduced;
   2287   Deduced.resize(Partial->getTemplateParameters()->size());
   2288   if (TemplateDeductionResult Result
   2289         = ::DeduceTemplateArguments(*this,
   2290                                     Partial->getTemplateParameters(),
   2291                                     Partial->getTemplateArgs(),
   2292                                     TemplateArgs, Info, Deduced))
   2293     return Result;
   2294 
   2295   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
   2296   InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
   2297                              Info);
   2298   if (Inst.isInvalid())
   2299     return TDK_InstantiationDepth;
   2300 
   2301   if (Trap.hasErrorOccurred())
   2302     return Sema::TDK_SubstitutionFailure;
   2303 
   2304   return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
   2305                                            Deduced, Info);
   2306 }
   2307 
   2308 /// Complete template argument deduction for a variable template partial
   2309 /// specialization.
   2310 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
   2311 ///       May require unifying ClassTemplate(Partial)SpecializationDecl and
   2312 ///        VarTemplate(Partial)SpecializationDecl with a new data
   2313 ///        structure Template(Partial)SpecializationDecl, and
   2314 ///        using Template(Partial)SpecializationDecl as input type.
   2315 static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction(
   2316     Sema &S, VarTemplatePartialSpecializationDecl *Partial,
   2317     const TemplateArgumentList &TemplateArgs,
   2318     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2319     TemplateDeductionInfo &Info) {
   2320   // Unevaluated SFINAE context.
   2321   EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
   2322   Sema::SFINAETrap Trap(S);
   2323 
   2324   // C++ [temp.deduct.type]p2:
   2325   //   [...] or if any template argument remains neither deduced nor
   2326   //   explicitly specified, template argument deduction fails.
   2327   SmallVector<TemplateArgument, 4> Builder;
   2328   TemplateParameterList *PartialParams = Partial->getTemplateParameters();
   2329   for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
   2330     NamedDecl *Param = PartialParams->getParam(I);
   2331     if (Deduced[I].isNull()) {
   2332       Info.Param = makeTemplateParameter(Param);
   2333       return Sema::TDK_Incomplete;
   2334     }
   2335 
   2336     // We have deduced this argument, so it still needs to be
   2337     // checked and converted.
   2338 
   2339     // First, for a non-type template parameter type that is
   2340     // initialized by a declaration, we need the type of the
   2341     // corresponding non-type template parameter.
   2342     QualType NTTPType;
   2343     if (NonTypeTemplateParmDecl *NTTP =
   2344             dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   2345       NTTPType = NTTP->getType();
   2346       if (NTTPType->isDependentType()) {
   2347         TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2348                                           Builder.data(), Builder.size());
   2349         NTTPType =
   2350             S.SubstType(NTTPType, MultiLevelTemplateArgumentList(TemplateArgs),
   2351                         NTTP->getLocation(), NTTP->getDeclName());
   2352         if (NTTPType.isNull()) {
   2353           Info.Param = makeTemplateParameter(Param);
   2354           // FIXME: These template arguments are temporary. Free them!
   2355           Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
   2356                                                       Builder.size()));
   2357           return Sema::TDK_SubstitutionFailure;
   2358         }
   2359       }
   2360     }
   2361 
   2362     if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Partial, NTTPType,
   2363                                        0, Info, false, Builder)) {
   2364       Info.Param = makeTemplateParameter(Param);
   2365       // FIXME: These template arguments are temporary. Free them!
   2366       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
   2367                                                   Builder.size()));
   2368       return Sema::TDK_SubstitutionFailure;
   2369     }
   2370   }
   2371 
   2372   // Form the template argument list from the deduced template arguments.
   2373   TemplateArgumentList *DeducedArgumentList = TemplateArgumentList::CreateCopy(
   2374       S.Context, Builder.data(), Builder.size());
   2375 
   2376   Info.reset(DeducedArgumentList);
   2377 
   2378   // Substitute the deduced template arguments into the template
   2379   // arguments of the class template partial specialization, and
   2380   // verify that the instantiated template arguments are both valid
   2381   // and are equivalent to the template arguments originally provided
   2382   // to the class template.
   2383   LocalInstantiationScope InstScope(S);
   2384   VarTemplateDecl *VarTemplate = Partial->getSpecializedTemplate();
   2385   const ASTTemplateArgumentListInfo *PartialTemplArgInfo
   2386     = Partial->getTemplateArgsAsWritten();
   2387   const TemplateArgumentLoc *PartialTemplateArgs
   2388     = PartialTemplArgInfo->getTemplateArgs();
   2389 
   2390   TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
   2391                                     PartialTemplArgInfo->RAngleLoc);
   2392 
   2393   if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
   2394               InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
   2395     unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
   2396     if (ParamIdx >= Partial->getTemplateParameters()->size())
   2397       ParamIdx = Partial->getTemplateParameters()->size() - 1;
   2398 
   2399     Decl *Param = const_cast<NamedDecl *>(
   2400         Partial->getTemplateParameters()->getParam(ParamIdx));
   2401     Info.Param = makeTemplateParameter(Param);
   2402     Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
   2403     return Sema::TDK_SubstitutionFailure;
   2404   }
   2405   SmallVector<TemplateArgument, 4> ConvertedInstArgs;
   2406   if (S.CheckTemplateArgumentList(VarTemplate, Partial->getLocation(), InstArgs,
   2407                                   false, ConvertedInstArgs))
   2408     return Sema::TDK_SubstitutionFailure;
   2409 
   2410   TemplateParameterList *TemplateParams = VarTemplate->getTemplateParameters();
   2411   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
   2412     TemplateArgument InstArg = ConvertedInstArgs.data()[I];
   2413     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
   2414       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
   2415       Info.FirstArg = TemplateArgs[I];
   2416       Info.SecondArg = InstArg;
   2417       return Sema::TDK_NonDeducedMismatch;
   2418     }
   2419   }
   2420 
   2421   if (Trap.hasErrorOccurred())
   2422     return Sema::TDK_SubstitutionFailure;
   2423 
   2424   return Sema::TDK_Success;
   2425 }
   2426 
   2427 /// \brief Perform template argument deduction to determine whether
   2428 /// the given template arguments match the given variable template
   2429 /// partial specialization per C++ [temp.class.spec.match].
   2430 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
   2431 ///       May require unifying ClassTemplate(Partial)SpecializationDecl and
   2432 ///        VarTemplate(Partial)SpecializationDecl with a new data
   2433 ///        structure Template(Partial)SpecializationDecl, and
   2434 ///        using Template(Partial)SpecializationDecl as input type.
   2435 Sema::TemplateDeductionResult
   2436 Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
   2437                               const TemplateArgumentList &TemplateArgs,
   2438                               TemplateDeductionInfo &Info) {
   2439   if (Partial->isInvalidDecl())
   2440     return TDK_Invalid;
   2441 
   2442   // C++ [temp.class.spec.match]p2:
   2443   //   A partial specialization matches a given actual template
   2444   //   argument list if the template arguments of the partial
   2445   //   specialization can be deduced from the actual template argument
   2446   //   list (14.8.2).
   2447 
   2448   // Unevaluated SFINAE context.
   2449   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   2450   SFINAETrap Trap(*this);
   2451 
   2452   SmallVector<DeducedTemplateArgument, 4> Deduced;
   2453   Deduced.resize(Partial->getTemplateParameters()->size());
   2454   if (TemplateDeductionResult Result = ::DeduceTemplateArguments(
   2455           *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(),
   2456           TemplateArgs, Info, Deduced))
   2457     return Result;
   2458 
   2459   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
   2460   InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
   2461                              Info);
   2462   if (Inst.isInvalid())
   2463     return TDK_InstantiationDepth;
   2464 
   2465   if (Trap.hasErrorOccurred())
   2466     return Sema::TDK_SubstitutionFailure;
   2467 
   2468   return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
   2469                                            Deduced, Info);
   2470 }
   2471 
   2472 /// \brief Determine whether the given type T is a simple-template-id type.
   2473 static bool isSimpleTemplateIdType(QualType T) {
   2474   if (const TemplateSpecializationType *Spec
   2475         = T->getAs<TemplateSpecializationType>())
   2476     return Spec->getTemplateName().getAsTemplateDecl() != nullptr;
   2477 
   2478   return false;
   2479 }
   2480 
   2481 /// \brief Substitute the explicitly-provided template arguments into the
   2482 /// given function template according to C++ [temp.arg.explicit].
   2483 ///
   2484 /// \param FunctionTemplate the function template into which the explicit
   2485 /// template arguments will be substituted.
   2486 ///
   2487 /// \param ExplicitTemplateArgs the explicitly-specified template
   2488 /// arguments.
   2489 ///
   2490 /// \param Deduced the deduced template arguments, which will be populated
   2491 /// with the converted and checked explicit template arguments.
   2492 ///
   2493 /// \param ParamTypes will be populated with the instantiated function
   2494 /// parameters.
   2495 ///
   2496 /// \param FunctionType if non-NULL, the result type of the function template
   2497 /// will also be instantiated and the pointed-to value will be updated with
   2498 /// the instantiated function type.
   2499 ///
   2500 /// \param Info if substitution fails for any reason, this object will be
   2501 /// populated with more information about the failure.
   2502 ///
   2503 /// \returns TDK_Success if substitution was successful, or some failure
   2504 /// condition.
   2505 Sema::TemplateDeductionResult
   2506 Sema::SubstituteExplicitTemplateArguments(
   2507                                       FunctionTemplateDecl *FunctionTemplate,
   2508                                TemplateArgumentListInfo &ExplicitTemplateArgs,
   2509                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2510                                  SmallVectorImpl<QualType> &ParamTypes,
   2511                                           QualType *FunctionType,
   2512                                           TemplateDeductionInfo &Info) {
   2513   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   2514   TemplateParameterList *TemplateParams
   2515     = FunctionTemplate->getTemplateParameters();
   2516 
   2517   if (ExplicitTemplateArgs.size() == 0) {
   2518     // No arguments to substitute; just copy over the parameter types and
   2519     // fill in the function type.
   2520     for (auto P : Function->params())
   2521       ParamTypes.push_back(P->getType());
   2522 
   2523     if (FunctionType)
   2524       *FunctionType = Function->getType();
   2525     return TDK_Success;
   2526   }
   2527 
   2528   // Unevaluated SFINAE context.
   2529   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   2530   SFINAETrap Trap(*this);
   2531 
   2532   // C++ [temp.arg.explicit]p3:
   2533   //   Template arguments that are present shall be specified in the
   2534   //   declaration order of their corresponding template-parameters. The
   2535   //   template argument list shall not specify more template-arguments than
   2536   //   there are corresponding template-parameters.
   2537   SmallVector<TemplateArgument, 4> Builder;
   2538 
   2539   // Enter a new template instantiation context where we check the
   2540   // explicitly-specified template arguments against this function template,
   2541   // and then substitute them into the function parameter types.
   2542   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
   2543   InstantiatingTemplate Inst(*this, Info.getLocation(), FunctionTemplate,
   2544                              DeducedArgs,
   2545            ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
   2546                              Info);
   2547   if (Inst.isInvalid())
   2548     return TDK_InstantiationDepth;
   2549 
   2550   if (CheckTemplateArgumentList(FunctionTemplate,
   2551                                 SourceLocation(),
   2552                                 ExplicitTemplateArgs,
   2553                                 true,
   2554                                 Builder) || Trap.hasErrorOccurred()) {
   2555     unsigned Index = Builder.size();
   2556     if (Index >= TemplateParams->size())
   2557       Index = TemplateParams->size() - 1;
   2558     Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
   2559     return TDK_InvalidExplicitArguments;
   2560   }
   2561 
   2562   // Form the template argument list from the explicitly-specified
   2563   // template arguments.
   2564   TemplateArgumentList *ExplicitArgumentList
   2565     = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
   2566   Info.reset(ExplicitArgumentList);
   2567 
   2568   // Template argument deduction and the final substitution should be
   2569   // done in the context of the templated declaration.  Explicit
   2570   // argument substitution, on the other hand, needs to happen in the
   2571   // calling context.
   2572   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
   2573 
   2574   // If we deduced template arguments for a template parameter pack,
   2575   // note that the template argument pack is partially substituted and record
   2576   // the explicit template arguments. They'll be used as part of deduction
   2577   // for this template parameter pack.
   2578   for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
   2579     const TemplateArgument &Arg = Builder[I];
   2580     if (Arg.getKind() == TemplateArgument::Pack) {
   2581       CurrentInstantiationScope->SetPartiallySubstitutedPack(
   2582                                                  TemplateParams->getParam(I),
   2583                                                              Arg.pack_begin(),
   2584                                                              Arg.pack_size());
   2585       break;
   2586     }
   2587   }
   2588 
   2589   const FunctionProtoType *Proto
   2590     = Function->getType()->getAs<FunctionProtoType>();
   2591   assert(Proto && "Function template does not have a prototype?");
   2592 
   2593   // Instantiate the types of each of the function parameters given the
   2594   // explicitly-specified template arguments. If the function has a trailing
   2595   // return type, substitute it after the arguments to ensure we substitute
   2596   // in lexical order.
   2597   if (Proto->hasTrailingReturn()) {
   2598     if (SubstParmTypes(Function->getLocation(),
   2599                        Function->param_begin(), Function->getNumParams(),
   2600                        MultiLevelTemplateArgumentList(*ExplicitArgumentList),
   2601                        ParamTypes))
   2602       return TDK_SubstitutionFailure;
   2603   }
   2604 
   2605   // Instantiate the return type.
   2606   QualType ResultType;
   2607   {
   2608     // C++11 [expr.prim.general]p3:
   2609     //   If a declaration declares a member function or member function
   2610     //   template of a class X, the expression this is a prvalue of type
   2611     //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
   2612     //   and the end of the function-definition, member-declarator, or
   2613     //   declarator.
   2614     unsigned ThisTypeQuals = 0;
   2615     CXXRecordDecl *ThisContext = nullptr;
   2616     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
   2617       ThisContext = Method->getParent();
   2618       ThisTypeQuals = Method->getTypeQualifiers();
   2619     }
   2620 
   2621     CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
   2622                                getLangOpts().CPlusPlus11);
   2623 
   2624     ResultType =
   2625         SubstType(Proto->getReturnType(),
   2626                   MultiLevelTemplateArgumentList(*ExplicitArgumentList),
   2627                   Function->getTypeSpecStartLoc(), Function->getDeclName());
   2628     if (ResultType.isNull() || Trap.hasErrorOccurred())
   2629       return TDK_SubstitutionFailure;
   2630   }
   2631 
   2632   // Instantiate the types of each of the function parameters given the
   2633   // explicitly-specified template arguments if we didn't do so earlier.
   2634   if (!Proto->hasTrailingReturn() &&
   2635       SubstParmTypes(Function->getLocation(),
   2636                      Function->param_begin(), Function->getNumParams(),
   2637                      MultiLevelTemplateArgumentList(*ExplicitArgumentList),
   2638                      ParamTypes))
   2639     return TDK_SubstitutionFailure;
   2640 
   2641   if (FunctionType) {
   2642     *FunctionType = BuildFunctionType(ResultType, ParamTypes,
   2643                                       Function->getLocation(),
   2644                                       Function->getDeclName(),
   2645                                       Proto->getExtProtoInfo());
   2646     if (FunctionType->isNull() || Trap.hasErrorOccurred())
   2647       return TDK_SubstitutionFailure;
   2648   }
   2649 
   2650   // C++ [temp.arg.explicit]p2:
   2651   //   Trailing template arguments that can be deduced (14.8.2) may be
   2652   //   omitted from the list of explicit template-arguments. If all of the
   2653   //   template arguments can be deduced, they may all be omitted; in this
   2654   //   case, the empty template argument list <> itself may also be omitted.
   2655   //
   2656   // Take all of the explicitly-specified arguments and put them into
   2657   // the set of deduced template arguments. Explicitly-specified
   2658   // parameter packs, however, will be set to NULL since the deduction
   2659   // mechanisms handle explicitly-specified argument packs directly.
   2660   Deduced.reserve(TemplateParams->size());
   2661   for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
   2662     const TemplateArgument &Arg = ExplicitArgumentList->get(I);
   2663     if (Arg.getKind() == TemplateArgument::Pack)
   2664       Deduced.push_back(DeducedTemplateArgument());
   2665     else
   2666       Deduced.push_back(Arg);
   2667   }
   2668 
   2669   return TDK_Success;
   2670 }
   2671 
   2672 /// \brief Check whether the deduced argument type for a call to a function
   2673 /// template matches the actual argument type per C++ [temp.deduct.call]p4.
   2674 static bool
   2675 CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
   2676                               QualType DeducedA) {
   2677   ASTContext &Context = S.Context;
   2678 
   2679   QualType A = OriginalArg.OriginalArgType;
   2680   QualType OriginalParamType = OriginalArg.OriginalParamType;
   2681 
   2682   // Check for type equality (top-level cv-qualifiers are ignored).
   2683   if (Context.hasSameUnqualifiedType(A, DeducedA))
   2684     return false;
   2685 
   2686   // Strip off references on the argument types; they aren't needed for
   2687   // the following checks.
   2688   if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
   2689     DeducedA = DeducedARef->getPointeeType();
   2690   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
   2691     A = ARef->getPointeeType();
   2692 
   2693   // C++ [temp.deduct.call]p4:
   2694   //   [...] However, there are three cases that allow a difference:
   2695   //     - If the original P is a reference type, the deduced A (i.e., the
   2696   //       type referred to by the reference) can be more cv-qualified than
   2697   //       the transformed A.
   2698   if (const ReferenceType *OriginalParamRef
   2699       = OriginalParamType->getAs<ReferenceType>()) {
   2700     // We don't want to keep the reference around any more.
   2701     OriginalParamType = OriginalParamRef->getPointeeType();
   2702 
   2703     Qualifiers AQuals = A.getQualifiers();
   2704     Qualifiers DeducedAQuals = DeducedA.getQualifiers();
   2705 
   2706     // Under Objective-C++ ARC, the deduced type may have implicitly
   2707     // been given strong or (when dealing with a const reference)
   2708     // unsafe_unretained lifetime. If so, update the original
   2709     // qualifiers to include this lifetime.
   2710     if (S.getLangOpts().ObjCAutoRefCount &&
   2711         ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
   2712           AQuals.getObjCLifetime() == Qualifiers::OCL_None) ||
   2713          (DeducedAQuals.hasConst() &&
   2714           DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) {
   2715       AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime());
   2716     }
   2717 
   2718     if (AQuals == DeducedAQuals) {
   2719       // Qualifiers match; there's nothing to do.
   2720     } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
   2721       return true;
   2722     } else {
   2723       // Qualifiers are compatible, so have the argument type adopt the
   2724       // deduced argument type's qualifiers as if we had performed the
   2725       // qualification conversion.
   2726       A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
   2727     }
   2728   }
   2729 
   2730   //    - The transformed A can be another pointer or pointer to member
   2731   //      type that can be converted to the deduced A via a qualification
   2732   //      conversion.
   2733   //
   2734   // Also allow conversions which merely strip [[noreturn]] from function types
   2735   // (recursively) as an extension.
   2736   // FIXME: Currently, this doesn't play nicely with qualification conversions.
   2737   bool ObjCLifetimeConversion = false;
   2738   QualType ResultTy;
   2739   if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
   2740       (S.IsQualificationConversion(A, DeducedA, false,
   2741                                    ObjCLifetimeConversion) ||
   2742        S.IsNoReturnConversion(A, DeducedA, ResultTy)))
   2743     return false;
   2744 
   2745 
   2746   //    - If P is a class and P has the form simple-template-id, then the
   2747   //      transformed A can be a derived class of the deduced A. [...]
   2748   //     [...] Likewise, if P is a pointer to a class of the form
   2749   //      simple-template-id, the transformed A can be a pointer to a
   2750   //      derived class pointed to by the deduced A.
   2751   if (const PointerType *OriginalParamPtr
   2752       = OriginalParamType->getAs<PointerType>()) {
   2753     if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
   2754       if (const PointerType *APtr = A->getAs<PointerType>()) {
   2755         if (A->getPointeeType()->isRecordType()) {
   2756           OriginalParamType = OriginalParamPtr->getPointeeType();
   2757           DeducedA = DeducedAPtr->getPointeeType();
   2758           A = APtr->getPointeeType();
   2759         }
   2760       }
   2761     }
   2762   }
   2763 
   2764   if (Context.hasSameUnqualifiedType(A, DeducedA))
   2765     return false;
   2766 
   2767   if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
   2768       S.IsDerivedFrom(A, DeducedA))
   2769     return false;
   2770 
   2771   return true;
   2772 }
   2773 
   2774 /// \brief Finish template argument deduction for a function template,
   2775 /// checking the deduced template arguments for completeness and forming
   2776 /// the function template specialization.
   2777 ///
   2778 /// \param OriginalCallArgs If non-NULL, the original call arguments against
   2779 /// which the deduced argument types should be compared.
   2780 Sema::TemplateDeductionResult
   2781 Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
   2782                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2783                                       unsigned NumExplicitlySpecified,
   2784                                       FunctionDecl *&Specialization,
   2785                                       TemplateDeductionInfo &Info,
   2786         SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs) {
   2787   TemplateParameterList *TemplateParams
   2788     = FunctionTemplate->getTemplateParameters();
   2789 
   2790   // Unevaluated SFINAE context.
   2791   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   2792   SFINAETrap Trap(*this);
   2793 
   2794   // Enter a new template instantiation context while we instantiate the
   2795   // actual function declaration.
   2796   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
   2797   InstantiatingTemplate Inst(*this, Info.getLocation(), FunctionTemplate,
   2798                              DeducedArgs,
   2799               ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
   2800                              Info);
   2801   if (Inst.isInvalid())
   2802     return TDK_InstantiationDepth;
   2803 
   2804   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
   2805 
   2806   // C++ [temp.deduct.type]p2:
   2807   //   [...] or if any template argument remains neither deduced nor
   2808   //   explicitly specified, template argument deduction fails.
   2809   SmallVector<TemplateArgument, 4> Builder;
   2810   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
   2811     NamedDecl *Param = TemplateParams->getParam(I);
   2812 
   2813     if (!Deduced[I].isNull()) {
   2814       if (I < NumExplicitlySpecified) {
   2815         // We have already fully type-checked and converted this
   2816         // argument, because it was explicitly-specified. Just record the
   2817         // presence of this argument.
   2818         Builder.push_back(Deduced[I]);
   2819         // We may have had explicitly-specified template arguments for a
   2820         // template parameter pack (that may or may not have been extended
   2821         // via additional deduced arguments).
   2822         if (Param->isParameterPack() && CurrentInstantiationScope) {
   2823           if (CurrentInstantiationScope->getPartiallySubstitutedPack() ==
   2824               Param) {
   2825             // Forget the partially-substituted pack; its substitution is now
   2826             // complete.
   2827             CurrentInstantiationScope->ResetPartiallySubstitutedPack();
   2828           }
   2829         }
   2830         continue;
   2831       }
   2832       // We have deduced this argument, so it still needs to be
   2833       // checked and converted.
   2834 
   2835       // First, for a non-type template parameter type that is
   2836       // initialized by a declaration, we need the type of the
   2837       // corresponding non-type template parameter.
   2838       QualType NTTPType;
   2839       if (NonTypeTemplateParmDecl *NTTP
   2840                                 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   2841         NTTPType = NTTP->getType();
   2842         if (NTTPType->isDependentType()) {
   2843           TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2844                                             Builder.data(), Builder.size());
   2845           NTTPType = SubstType(NTTPType,
   2846                                MultiLevelTemplateArgumentList(TemplateArgs),
   2847                                NTTP->getLocation(),
   2848                                NTTP->getDeclName());
   2849           if (NTTPType.isNull()) {
   2850             Info.Param = makeTemplateParameter(Param);
   2851             // FIXME: These template arguments are temporary. Free them!
   2852             Info.reset(TemplateArgumentList::CreateCopy(Context,
   2853                                                         Builder.data(),
   2854                                                         Builder.size()));
   2855             return TDK_SubstitutionFailure;
   2856           }
   2857         }
   2858       }
   2859 
   2860       if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
   2861                                          FunctionTemplate, NTTPType, 0, Info,
   2862                                          true, Builder)) {
   2863         Info.Param = makeTemplateParameter(Param);
   2864         // FIXME: These template arguments are temporary. Free them!
   2865         Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
   2866                                                     Builder.size()));
   2867         return TDK_SubstitutionFailure;
   2868       }
   2869 
   2870       continue;
   2871     }
   2872 
   2873     // C++0x [temp.arg.explicit]p3:
   2874     //    A trailing template parameter pack (14.5.3) not otherwise deduced will
   2875     //    be deduced to an empty sequence of template arguments.
   2876     // FIXME: Where did the word "trailing" come from?
   2877     if (Param->isTemplateParameterPack()) {
   2878       // We may have had explicitly-specified template arguments for this
   2879       // template parameter pack. If so, our empty deduction extends the
   2880       // explicitly-specified set (C++0x [temp.arg.explicit]p9).
   2881       const TemplateArgument *ExplicitArgs;
   2882       unsigned NumExplicitArgs;
   2883       if (CurrentInstantiationScope &&
   2884           CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
   2885                                                              &NumExplicitArgs)
   2886             == Param) {
   2887         Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
   2888 
   2889         // Forget the partially-substituted pack; it's substitution is now
   2890         // complete.
   2891         CurrentInstantiationScope->ResetPartiallySubstitutedPack();
   2892       } else {
   2893         Builder.push_back(TemplateArgument::getEmptyPack());
   2894       }
   2895       continue;
   2896     }
   2897 
   2898     // Substitute into the default template argument, if available.
   2899     bool HasDefaultArg = false;
   2900     TemplateArgumentLoc DefArg
   2901       = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
   2902                                               FunctionTemplate->getLocation(),
   2903                                   FunctionTemplate->getSourceRange().getEnd(),
   2904                                                 Param,
   2905                                                 Builder, HasDefaultArg);
   2906 
   2907     // If there was no default argument, deduction is incomplete.
   2908     if (DefArg.getArgument().isNull()) {
   2909       Info.Param = makeTemplateParameter(
   2910                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
   2911       Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
   2912                                                   Builder.size()));
   2913       return HasDefaultArg ? TDK_SubstitutionFailure : TDK_Incomplete;
   2914     }
   2915 
   2916     // Check whether we can actually use the default argument.
   2917     if (CheckTemplateArgument(Param, DefArg,
   2918                               FunctionTemplate,
   2919                               FunctionTemplate->getLocation(),
   2920                               FunctionTemplate->getSourceRange().getEnd(),
   2921                               0, Builder,
   2922                               CTAK_Specified)) {
   2923       Info.Param = makeTemplateParameter(
   2924                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
   2925       // FIXME: These template arguments are temporary. Free them!
   2926       Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
   2927                                                   Builder.size()));
   2928       return TDK_SubstitutionFailure;
   2929     }
   2930 
   2931     // If we get here, we successfully used the default template argument.
   2932   }
   2933 
   2934   // Form the template argument list from the deduced template arguments.
   2935   TemplateArgumentList *DeducedArgumentList
   2936     = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
   2937   Info.reset(DeducedArgumentList);
   2938 
   2939   // Substitute the deduced template arguments into the function template
   2940   // declaration to produce the function template specialization.
   2941   DeclContext *Owner = FunctionTemplate->getDeclContext();
   2942   if (FunctionTemplate->getFriendObjectKind())
   2943     Owner = FunctionTemplate->getLexicalDeclContext();
   2944   Specialization = cast_or_null<FunctionDecl>(
   2945                       SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
   2946                          MultiLevelTemplateArgumentList(*DeducedArgumentList)));
   2947   if (!Specialization || Specialization->isInvalidDecl())
   2948     return TDK_SubstitutionFailure;
   2949 
   2950   assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
   2951          FunctionTemplate->getCanonicalDecl());
   2952 
   2953   // If the template argument list is owned by the function template
   2954   // specialization, release it.
   2955   if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
   2956       !Trap.hasErrorOccurred())
   2957     Info.take();
   2958 
   2959   // There may have been an error that did not prevent us from constructing a
   2960   // declaration. Mark the declaration invalid and return with a substitution
   2961   // failure.
   2962   if (Trap.hasErrorOccurred()) {
   2963     Specialization->setInvalidDecl(true);
   2964     return TDK_SubstitutionFailure;
   2965   }
   2966 
   2967   if (OriginalCallArgs) {
   2968     // C++ [temp.deduct.call]p4:
   2969     //   In general, the deduction process attempts to find template argument
   2970     //   values that will make the deduced A identical to A (after the type A
   2971     //   is transformed as described above). [...]
   2972     for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
   2973       OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
   2974       unsigned ParamIdx = OriginalArg.ArgIdx;
   2975 
   2976       if (ParamIdx >= Specialization->getNumParams())
   2977         continue;
   2978 
   2979       QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
   2980       if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
   2981         return Sema::TDK_SubstitutionFailure;
   2982     }
   2983   }
   2984 
   2985   // If we suppressed any diagnostics while performing template argument
   2986   // deduction, and if we haven't already instantiated this declaration,
   2987   // keep track of these diagnostics. They'll be emitted if this specialization
   2988   // is actually used.
   2989   if (Info.diag_begin() != Info.diag_end()) {
   2990     SuppressedDiagnosticsMap::iterator
   2991       Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
   2992     if (Pos == SuppressedDiagnostics.end())
   2993         SuppressedDiagnostics[Specialization->getCanonicalDecl()]
   2994           .append(Info.diag_begin(), Info.diag_end());
   2995   }
   2996 
   2997   return TDK_Success;
   2998 }
   2999 
   3000 /// Gets the type of a function for template-argument-deducton
   3001 /// purposes when it's considered as part of an overload set.
   3002 static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
   3003                                   FunctionDecl *Fn) {
   3004   // We may need to deduce the return type of the function now.
   3005   if (S.getLangOpts().CPlusPlus1y && Fn->getReturnType()->isUndeducedType() &&
   3006       S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false))
   3007     return QualType();
   3008 
   3009   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
   3010     if (Method->isInstance()) {
   3011       // An instance method that's referenced in a form that doesn't
   3012       // look like a member pointer is just invalid.
   3013       if (!R.HasFormOfMemberPointer) return QualType();
   3014 
   3015       return S.Context.getMemberPointerType(Fn->getType(),
   3016                S.Context.getTypeDeclType(Method->getParent()).getTypePtr());
   3017     }
   3018 
   3019   if (!R.IsAddressOfOperand) return Fn->getType();
   3020   return S.Context.getPointerType(Fn->getType());
   3021 }
   3022 
   3023 /// Apply the deduction rules for overload sets.
   3024 ///
   3025 /// \return the null type if this argument should be treated as an
   3026 /// undeduced context
   3027 static QualType
   3028 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
   3029                             Expr *Arg, QualType ParamType,
   3030                             bool ParamWasReference) {
   3031 
   3032   OverloadExpr::FindResult R = OverloadExpr::find(Arg);
   3033 
   3034   OverloadExpr *Ovl = R.Expression;
   3035 
   3036   // C++0x [temp.deduct.call]p4
   3037   unsigned TDF = 0;
   3038   if (ParamWasReference)
   3039     TDF |= TDF_ParamWithReferenceType;
   3040   if (R.IsAddressOfOperand)
   3041     TDF |= TDF_IgnoreQualifiers;
   3042 
   3043   // C++0x [temp.deduct.call]p6:
   3044   //   When P is a function type, pointer to function type, or pointer
   3045   //   to member function type:
   3046 
   3047   if (!ParamType->isFunctionType() &&
   3048       !ParamType->isFunctionPointerType() &&
   3049       !ParamType->isMemberFunctionPointerType()) {
   3050     if (Ovl->hasExplicitTemplateArgs()) {
   3051       // But we can still look for an explicit specialization.
   3052       if (FunctionDecl *ExplicitSpec
   3053             = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
   3054         return GetTypeOfFunction(S, R, ExplicitSpec);
   3055     }
   3056 
   3057     return QualType();
   3058   }
   3059 
   3060   // Gather the explicit template arguments, if any.
   3061   TemplateArgumentListInfo ExplicitTemplateArgs;
   3062   if (Ovl->hasExplicitTemplateArgs())
   3063     Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
   3064   QualType Match;
   3065   for (UnresolvedSetIterator I = Ovl->decls_begin(),
   3066          E = Ovl->decls_end(); I != E; ++I) {
   3067     NamedDecl *D = (*I)->getUnderlyingDecl();
   3068 
   3069     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
   3070       //   - If the argument is an overload set containing one or more
   3071       //     function templates, the parameter is treated as a
   3072       //     non-deduced context.
   3073       if (!Ovl->hasExplicitTemplateArgs())
   3074         return QualType();
   3075 
   3076       // Otherwise, see if we can resolve a function type
   3077       FunctionDecl *Specialization = nullptr;
   3078       TemplateDeductionInfo Info(Ovl->getNameLoc());
   3079       if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
   3080                                     Specialization, Info))
   3081         continue;
   3082 
   3083       D = Specialization;
   3084     }
   3085 
   3086     FunctionDecl *Fn = cast<FunctionDecl>(D);
   3087     QualType ArgType = GetTypeOfFunction(S, R, Fn);
   3088     if (ArgType.isNull()) continue;
   3089 
   3090     // Function-to-pointer conversion.
   3091     if (!ParamWasReference && ParamType->isPointerType() &&
   3092         ArgType->isFunctionType())
   3093       ArgType = S.Context.getPointerType(ArgType);
   3094 
   3095     //   - If the argument is an overload set (not containing function
   3096     //     templates), trial argument deduction is attempted using each
   3097     //     of the members of the set. If deduction succeeds for only one
   3098     //     of the overload set members, that member is used as the
   3099     //     argument value for the deduction. If deduction succeeds for
   3100     //     more than one member of the overload set the parameter is
   3101     //     treated as a non-deduced context.
   3102 
   3103     // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
   3104     //   Type deduction is done independently for each P/A pair, and
   3105     //   the deduced template argument values are then combined.
   3106     // So we do not reject deductions which were made elsewhere.
   3107     SmallVector<DeducedTemplateArgument, 8>
   3108       Deduced(TemplateParams->size());
   3109     TemplateDeductionInfo Info(Ovl->getNameLoc());
   3110     Sema::TemplateDeductionResult Result
   3111       = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
   3112                                            ArgType, Info, Deduced, TDF);
   3113     if (Result) continue;
   3114     if (!Match.isNull()) return QualType();
   3115     Match = ArgType;
   3116   }
   3117 
   3118   return Match;
   3119 }
   3120 
   3121 /// \brief Perform the adjustments to the parameter and argument types
   3122 /// described in C++ [temp.deduct.call].
   3123 ///
   3124 /// \returns true if the caller should not attempt to perform any template
   3125 /// argument deduction based on this P/A pair because the argument is an
   3126 /// overloaded function set that could not be resolved.
   3127 static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
   3128                                           TemplateParameterList *TemplateParams,
   3129                                                       QualType &ParamType,
   3130                                                       QualType &ArgType,
   3131                                                       Expr *Arg,
   3132                                                       unsigned &TDF) {
   3133   // C++0x [temp.deduct.call]p3:
   3134   //   If P is a cv-qualified type, the top level cv-qualifiers of P's type
   3135   //   are ignored for type deduction.
   3136   if (ParamType.hasQualifiers())
   3137     ParamType = ParamType.getUnqualifiedType();
   3138   const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
   3139   if (ParamRefType) {
   3140     QualType PointeeType = ParamRefType->getPointeeType();
   3141 
   3142     // If the argument has incomplete array type, try to complete its type.
   3143     if (ArgType->isIncompleteArrayType() && !S.RequireCompleteExprType(Arg, 0))
   3144       ArgType = Arg->getType();
   3145 
   3146     //   [C++0x] If P is an rvalue reference to a cv-unqualified
   3147     //   template parameter and the argument is an lvalue, the type
   3148     //   "lvalue reference to A" is used in place of A for type
   3149     //   deduction.
   3150     if (isa<RValueReferenceType>(ParamType)) {
   3151       if (!PointeeType.getQualifiers() &&
   3152           isa<TemplateTypeParmType>(PointeeType) &&
   3153           Arg->Classify(S.Context).isLValue() &&
   3154           Arg->getType() != S.Context.OverloadTy &&
   3155           Arg->getType() != S.Context.BoundMemberTy)
   3156         ArgType = S.Context.getLValueReferenceType(ArgType);
   3157     }
   3158 
   3159     //   [...] If P is a reference type, the type referred to by P is used
   3160     //   for type deduction.
   3161     ParamType = PointeeType;
   3162   }
   3163 
   3164   // Overload sets usually make this parameter an undeduced
   3165   // context, but there are sometimes special circumstances.
   3166   if (ArgType == S.Context.OverloadTy) {
   3167     ArgType = ResolveOverloadForDeduction(S, TemplateParams,
   3168                                           Arg, ParamType,
   3169                                           ParamRefType != nullptr);
   3170     if (ArgType.isNull())
   3171       return true;
   3172   }
   3173 
   3174   if (ParamRefType) {
   3175     // C++0x [temp.deduct.call]p3:
   3176     //   [...] If P is of the form T&&, where T is a template parameter, and
   3177     //   the argument is an lvalue, the type A& is used in place of A for
   3178     //   type deduction.
   3179     if (ParamRefType->isRValueReferenceType() &&
   3180         ParamRefType->getAs<TemplateTypeParmType>() &&
   3181         Arg->isLValue())
   3182       ArgType = S.Context.getLValueReferenceType(ArgType);
   3183   } else {
   3184     // C++ [temp.deduct.call]p2:
   3185     //   If P is not a reference type:
   3186     //   - If A is an array type, the pointer type produced by the
   3187     //     array-to-pointer standard conversion (4.2) is used in place of
   3188     //     A for type deduction; otherwise,
   3189     if (ArgType->isArrayType())
   3190       ArgType = S.Context.getArrayDecayedType(ArgType);
   3191     //   - If A is a function type, the pointer type produced by the
   3192     //     function-to-pointer standard conversion (4.3) is used in place
   3193     //     of A for type deduction; otherwise,
   3194     else if (ArgType->isFunctionType())
   3195       ArgType = S.Context.getPointerType(ArgType);
   3196     else {
   3197       // - If A is a cv-qualified type, the top level cv-qualifiers of A's
   3198       //   type are ignored for type deduction.
   3199       ArgType = ArgType.getUnqualifiedType();
   3200     }
   3201   }
   3202 
   3203   // C++0x [temp.deduct.call]p4:
   3204   //   In general, the deduction process attempts to find template argument
   3205   //   values that will make the deduced A identical to A (after the type A
   3206   //   is transformed as described above). [...]
   3207   TDF = TDF_SkipNonDependent;
   3208 
   3209   //     - If the original P is a reference type, the deduced A (i.e., the
   3210   //       type referred to by the reference) can be more cv-qualified than
   3211   //       the transformed A.
   3212   if (ParamRefType)
   3213     TDF |= TDF_ParamWithReferenceType;
   3214   //     - The transformed A can be another pointer or pointer to member
   3215   //       type that can be converted to the deduced A via a qualification
   3216   //       conversion (4.4).
   3217   if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
   3218       ArgType->isObjCObjectPointerType())
   3219     TDF |= TDF_IgnoreQualifiers;
   3220   //     - If P is a class and P has the form simple-template-id, then the
   3221   //       transformed A can be a derived class of the deduced A. Likewise,
   3222   //       if P is a pointer to a class of the form simple-template-id, the
   3223   //       transformed A can be a pointer to a derived class pointed to by
   3224   //       the deduced A.
   3225   if (isSimpleTemplateIdType(ParamType) ||
   3226       (isa<PointerType>(ParamType) &&
   3227        isSimpleTemplateIdType(
   3228                               ParamType->getAs<PointerType>()->getPointeeType())))
   3229     TDF |= TDF_DerivedClass;
   3230 
   3231   return false;
   3232 }
   3233 
   3234 static bool hasDeducibleTemplateParameters(Sema &S,
   3235                                            FunctionTemplateDecl *FunctionTemplate,
   3236                                            QualType T);
   3237 
   3238 /// \brief Perform template argument deduction by matching a parameter type
   3239 ///        against a single expression, where the expression is an element of
   3240 ///        an initializer list that was originally matched against a parameter
   3241 ///        of type \c initializer_list\<ParamType\>.
   3242 static Sema::TemplateDeductionResult
   3243 DeduceTemplateArgumentByListElement(Sema &S,
   3244                                     TemplateParameterList *TemplateParams,
   3245                                     QualType ParamType, Expr *Arg,
   3246                                     TemplateDeductionInfo &Info,
   3247                               SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   3248                                     unsigned TDF) {
   3249   // Handle the case where an init list contains another init list as the
   3250   // element.
   3251   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
   3252     QualType X;
   3253     if (!S.isStdInitializerList(ParamType.getNonReferenceType(), &X))
   3254       return Sema::TDK_Success; // Just ignore this expression.
   3255 
   3256     // Recurse down into the init list.
   3257     for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
   3258       if (Sema::TemplateDeductionResult Result =
   3259             DeduceTemplateArgumentByListElement(S, TemplateParams, X,
   3260                                                  ILE->getInit(i),
   3261                                                  Info, Deduced, TDF))
   3262         return Result;
   3263     }
   3264     return Sema::TDK_Success;
   3265   }
   3266 
   3267   // For all other cases, just match by type.
   3268   QualType ArgType = Arg->getType();
   3269   if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType,
   3270                                                 ArgType, Arg, TDF)) {
   3271     Info.Expression = Arg;
   3272     return Sema::TDK_FailedOverloadResolution;
   3273   }
   3274   return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
   3275                                             ArgType, Info, Deduced, TDF);
   3276 }
   3277 
   3278 /// \brief Perform template argument deduction from a function call
   3279 /// (C++ [temp.deduct.call]).
   3280 ///
   3281 /// \param FunctionTemplate the function template for which we are performing
   3282 /// template argument deduction.
   3283 ///
   3284 /// \param ExplicitTemplateArgs the explicit template arguments provided
   3285 /// for this call.
   3286 ///
   3287 /// \param Args the function call arguments
   3288 ///
   3289 /// \param Specialization if template argument deduction was successful,
   3290 /// this will be set to the function template specialization produced by
   3291 /// template argument deduction.
   3292 ///
   3293 /// \param Info the argument will be updated to provide additional information
   3294 /// about template argument deduction.
   3295 ///
   3296 /// \returns the result of template argument deduction.
   3297 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
   3298     FunctionTemplateDecl *FunctionTemplate,
   3299     TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
   3300     FunctionDecl *&Specialization, TemplateDeductionInfo &Info) {
   3301   if (FunctionTemplate->isInvalidDecl())
   3302     return TDK_Invalid;
   3303 
   3304   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   3305 
   3306   // C++ [temp.deduct.call]p1:
   3307   //   Template argument deduction is done by comparing each function template
   3308   //   parameter type (call it P) with the type of the corresponding argument
   3309   //   of the call (call it A) as described below.
   3310   unsigned CheckArgs = Args.size();
   3311   if (Args.size() < Function->getMinRequiredArguments())
   3312     return TDK_TooFewArguments;
   3313   else if (Args.size() > Function->getNumParams()) {
   3314     const FunctionProtoType *Proto
   3315       = Function->getType()->getAs<FunctionProtoType>();
   3316     if (Proto->isTemplateVariadic())
   3317       /* Do nothing */;
   3318     else if (Proto->isVariadic())
   3319       CheckArgs = Function->getNumParams();
   3320     else
   3321       return TDK_TooManyArguments;
   3322   }
   3323 
   3324   // The types of the parameters from which we will perform template argument
   3325   // deduction.
   3326   LocalInstantiationScope InstScope(*this);
   3327   TemplateParameterList *TemplateParams
   3328     = FunctionTemplate->getTemplateParameters();
   3329   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3330   SmallVector<QualType, 4> ParamTypes;
   3331   unsigned NumExplicitlySpecified = 0;
   3332   if (ExplicitTemplateArgs) {
   3333     TemplateDeductionResult Result =
   3334       SubstituteExplicitTemplateArguments(FunctionTemplate,
   3335                                           *ExplicitTemplateArgs,
   3336                                           Deduced,
   3337                                           ParamTypes,
   3338                                           nullptr,
   3339                                           Info);
   3340     if (Result)
   3341       return Result;
   3342 
   3343     NumExplicitlySpecified = Deduced.size();
   3344   } else {
   3345     // Just fill in the parameter types from the function declaration.
   3346     for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
   3347       ParamTypes.push_back(Function->getParamDecl(I)->getType());
   3348   }
   3349 
   3350   // Deduce template arguments from the function parameters.
   3351   Deduced.resize(TemplateParams->size());
   3352   unsigned ArgIdx = 0;
   3353   SmallVector<OriginalCallArg, 4> OriginalCallArgs;
   3354   for (unsigned ParamIdx = 0, NumParams = ParamTypes.size();
   3355        ParamIdx != NumParams; ++ParamIdx) {
   3356     QualType OrigParamType = ParamTypes[ParamIdx];
   3357     QualType ParamType = OrigParamType;
   3358 
   3359     const PackExpansionType *ParamExpansion
   3360       = dyn_cast<PackExpansionType>(ParamType);
   3361     if (!ParamExpansion) {
   3362       // Simple case: matching a function parameter to a function argument.
   3363       if (ArgIdx >= CheckArgs)
   3364         break;
   3365 
   3366       Expr *Arg = Args[ArgIdx++];
   3367       QualType ArgType = Arg->getType();
   3368 
   3369       unsigned TDF = 0;
   3370       if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
   3371                                                     ParamType, ArgType, Arg,
   3372                                                     TDF))
   3373         continue;
   3374 
   3375       // If we have nothing to deduce, we're done.
   3376       if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
   3377         continue;
   3378 
   3379       // If the argument is an initializer list ...
   3380       if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
   3381         // ... then the parameter is an undeduced context, unless the parameter
   3382         // type is (reference to cv) std::initializer_list<P'>, in which case
   3383         // deduction is done for each element of the initializer list, and the
   3384         // result is the deduced type if it's the same for all elements.
   3385         QualType X;
   3386         // Removing references was already done.
   3387         if (!isStdInitializerList(ParamType, &X))
   3388           continue;
   3389 
   3390         for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
   3391           if (TemplateDeductionResult Result =
   3392                 DeduceTemplateArgumentByListElement(*this, TemplateParams, X,
   3393                                                      ILE->getInit(i),
   3394                                                      Info, Deduced, TDF))
   3395             return Result;
   3396         }
   3397         // Don't track the argument type, since an initializer list has none.
   3398         continue;
   3399       }
   3400 
   3401       // Keep track of the argument type and corresponding parameter index,
   3402       // so we can check for compatibility between the deduced A and A.
   3403       OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
   3404                                                  ArgType));
   3405 
   3406       if (TemplateDeductionResult Result
   3407             = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
   3408                                                  ParamType, ArgType,
   3409                                                  Info, Deduced, TDF))
   3410         return Result;
   3411 
   3412       continue;
   3413     }
   3414 
   3415     // C++0x [temp.deduct.call]p1:
   3416     //   For a function parameter pack that occurs at the end of the
   3417     //   parameter-declaration-list, the type A of each remaining argument of
   3418     //   the call is compared with the type P of the declarator-id of the
   3419     //   function parameter pack. Each comparison deduces template arguments
   3420     //   for subsequent positions in the template parameter packs expanded by
   3421     //   the function parameter pack. For a function parameter pack that does
   3422     //   not occur at the end of the parameter-declaration-list, the type of
   3423     //   the parameter pack is a non-deduced context.
   3424     if (ParamIdx + 1 < NumParams)
   3425       break;
   3426 
   3427     QualType ParamPattern = ParamExpansion->getPattern();
   3428     PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info,
   3429                                  ParamPattern);
   3430 
   3431     bool HasAnyArguments = false;
   3432     for (; ArgIdx < Args.size(); ++ArgIdx) {
   3433       HasAnyArguments = true;
   3434 
   3435       QualType OrigParamType = ParamPattern;
   3436       ParamType = OrigParamType;
   3437       Expr *Arg = Args[ArgIdx];
   3438       QualType ArgType = Arg->getType();
   3439 
   3440       unsigned TDF = 0;
   3441       if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
   3442                                                     ParamType, ArgType, Arg,
   3443                                                     TDF)) {
   3444         // We can't actually perform any deduction for this argument, so stop
   3445         // deduction at this point.
   3446         ++ArgIdx;
   3447         break;
   3448       }
   3449 
   3450       // As above, initializer lists need special handling.
   3451       if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
   3452         QualType X;
   3453         if (!isStdInitializerList(ParamType, &X)) {
   3454           ++ArgIdx;
   3455           break;
   3456         }
   3457 
   3458         for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
   3459           if (TemplateDeductionResult Result =
   3460                 DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X,
   3461                                                    ILE->getInit(i)->getType(),
   3462                                                    Info, Deduced, TDF))
   3463             return Result;
   3464         }
   3465       } else {
   3466 
   3467         // Keep track of the argument type and corresponding argument index,
   3468         // so we can check for compatibility between the deduced A and A.
   3469         if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
   3470           OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
   3471                                                      ArgType));
   3472 
   3473         if (TemplateDeductionResult Result
   3474             = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
   3475                                                  ParamType, ArgType, Info,
   3476                                                  Deduced, TDF))
   3477           return Result;
   3478       }
   3479 
   3480       PackScope.nextPackElement();
   3481     }
   3482 
   3483     // Build argument packs for each of the parameter packs expanded by this
   3484     // pack expansion.
   3485     if (auto Result = PackScope.finish(HasAnyArguments))
   3486       return Result;
   3487 
   3488     // After we've matching against a parameter pack, we're done.
   3489     break;
   3490   }
   3491 
   3492   return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
   3493                                          NumExplicitlySpecified,
   3494                                          Specialization, Info, &OriginalCallArgs);
   3495 }
   3496 
   3497 QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType,
   3498                                    QualType FunctionType) {
   3499   if (ArgFunctionType.isNull())
   3500     return ArgFunctionType;
   3501 
   3502   const FunctionProtoType *FunctionTypeP =
   3503       FunctionType->castAs<FunctionProtoType>();
   3504   CallingConv CC = FunctionTypeP->getCallConv();
   3505   bool NoReturn = FunctionTypeP->getNoReturnAttr();
   3506   const FunctionProtoType *ArgFunctionTypeP =
   3507       ArgFunctionType->getAs<FunctionProtoType>();
   3508   if (ArgFunctionTypeP->getCallConv() == CC &&
   3509       ArgFunctionTypeP->getNoReturnAttr() == NoReturn)
   3510     return ArgFunctionType;
   3511 
   3512   FunctionType::ExtInfo EI = ArgFunctionTypeP->getExtInfo().withCallingConv(CC);
   3513   EI = EI.withNoReturn(NoReturn);
   3514   ArgFunctionTypeP =
   3515       cast<FunctionProtoType>(Context.adjustFunctionType(ArgFunctionTypeP, EI));
   3516   return QualType(ArgFunctionTypeP, 0);
   3517 }
   3518 
   3519 /// \brief Deduce template arguments when taking the address of a function
   3520 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
   3521 /// a template.
   3522 ///
   3523 /// \param FunctionTemplate the function template for which we are performing
   3524 /// template argument deduction.
   3525 ///
   3526 /// \param ExplicitTemplateArgs the explicitly-specified template
   3527 /// arguments.
   3528 ///
   3529 /// \param ArgFunctionType the function type that will be used as the
   3530 /// "argument" type (A) when performing template argument deduction from the
   3531 /// function template's function type. This type may be NULL, if there is no
   3532 /// argument type to compare against, in C++0x [temp.arg.explicit]p3.
   3533 ///
   3534 /// \param Specialization if template argument deduction was successful,
   3535 /// this will be set to the function template specialization produced by
   3536 /// template argument deduction.
   3537 ///
   3538 /// \param Info the argument will be updated to provide additional information
   3539 /// about template argument deduction.
   3540 ///
   3541 /// \returns the result of template argument deduction.
   3542 Sema::TemplateDeductionResult
   3543 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   3544                               TemplateArgumentListInfo *ExplicitTemplateArgs,
   3545                               QualType ArgFunctionType,
   3546                               FunctionDecl *&Specialization,
   3547                               TemplateDeductionInfo &Info,
   3548                               bool InOverloadResolution) {
   3549   if (FunctionTemplate->isInvalidDecl())
   3550     return TDK_Invalid;
   3551 
   3552   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   3553   TemplateParameterList *TemplateParams
   3554     = FunctionTemplate->getTemplateParameters();
   3555   QualType FunctionType = Function->getType();
   3556   if (!InOverloadResolution)
   3557     ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType);
   3558 
   3559   // Substitute any explicit template arguments.
   3560   LocalInstantiationScope InstScope(*this);
   3561   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3562   unsigned NumExplicitlySpecified = 0;
   3563   SmallVector<QualType, 4> ParamTypes;
   3564   if (ExplicitTemplateArgs) {
   3565     if (TemplateDeductionResult Result
   3566           = SubstituteExplicitTemplateArguments(FunctionTemplate,
   3567                                                 *ExplicitTemplateArgs,
   3568                                                 Deduced, ParamTypes,
   3569                                                 &FunctionType, Info))
   3570       return Result;
   3571 
   3572     NumExplicitlySpecified = Deduced.size();
   3573   }
   3574 
   3575   // Unevaluated SFINAE context.
   3576   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   3577   SFINAETrap Trap(*this);
   3578 
   3579   Deduced.resize(TemplateParams->size());
   3580 
   3581   // If the function has a deduced return type, substitute it for a dependent
   3582   // type so that we treat it as a non-deduced context in what follows.
   3583   bool HasDeducedReturnType = false;
   3584   if (getLangOpts().CPlusPlus1y && InOverloadResolution &&
   3585       Function->getReturnType()->getContainedAutoType()) {
   3586     FunctionType = SubstAutoType(FunctionType, Context.DependentTy);
   3587     HasDeducedReturnType = true;
   3588   }
   3589 
   3590   if (!ArgFunctionType.isNull()) {
   3591     unsigned TDF = TDF_TopLevelParameterTypeList;
   3592     if (InOverloadResolution) TDF |= TDF_InOverloadResolution;
   3593     // Deduce template arguments from the function type.
   3594     if (TemplateDeductionResult Result
   3595           = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
   3596                                                FunctionType, ArgFunctionType,
   3597                                                Info, Deduced, TDF))
   3598       return Result;
   3599   }
   3600 
   3601   if (TemplateDeductionResult Result
   3602         = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
   3603                                           NumExplicitlySpecified,
   3604                                           Specialization, Info))
   3605     return Result;
   3606 
   3607   // If the function has a deduced return type, deduce it now, so we can check
   3608   // that the deduced function type matches the requested type.
   3609   if (HasDeducedReturnType &&
   3610       Specialization->getReturnType()->isUndeducedType() &&
   3611       DeduceReturnType(Specialization, Info.getLocation(), false))
   3612     return TDK_MiscellaneousDeductionFailure;
   3613 
   3614   // If the requested function type does not match the actual type of the
   3615   // specialization with respect to arguments of compatible pointer to function
   3616   // types, template argument deduction fails.
   3617   if (!ArgFunctionType.isNull()) {
   3618     if (InOverloadResolution && !isSameOrCompatibleFunctionType(
   3619                            Context.getCanonicalType(Specialization->getType()),
   3620                            Context.getCanonicalType(ArgFunctionType)))
   3621       return TDK_MiscellaneousDeductionFailure;
   3622     else if(!InOverloadResolution &&
   3623             !Context.hasSameType(Specialization->getType(), ArgFunctionType))
   3624       return TDK_MiscellaneousDeductionFailure;
   3625   }
   3626 
   3627   return TDK_Success;
   3628 }
   3629 
   3630 /// \brief Given a function declaration (e.g. a generic lambda conversion
   3631 ///  function) that contains an 'auto' in its result type, substitute it
   3632 ///  with TypeToReplaceAutoWith.  Be careful to pass in the type you want
   3633 ///  to replace 'auto' with and not the actual result type you want
   3634 ///  to set the function to.
   3635 static inline void
   3636 SubstAutoWithinFunctionReturnType(FunctionDecl *F,
   3637                                     QualType TypeToReplaceAutoWith, Sema &S) {
   3638   assert(!TypeToReplaceAutoWith->getContainedAutoType());
   3639   QualType AutoResultType = F->getReturnType();
   3640   assert(AutoResultType->getContainedAutoType());
   3641   QualType DeducedResultType = S.SubstAutoType(AutoResultType,
   3642                                                TypeToReplaceAutoWith);
   3643   S.Context.adjustDeducedFunctionResultType(F, DeducedResultType);
   3644 }
   3645 
   3646 /// \brief Given a specialized conversion operator of a generic lambda
   3647 /// create the corresponding specializations of the call operator and
   3648 /// the static-invoker. If the return type of the call operator is auto,
   3649 /// deduce its return type and check if that matches the
   3650 /// return type of the destination function ptr.
   3651 
   3652 static inline Sema::TemplateDeductionResult
   3653 SpecializeCorrespondingLambdaCallOperatorAndInvoker(
   3654     CXXConversionDecl *ConversionSpecialized,
   3655     SmallVectorImpl<DeducedTemplateArgument> &DeducedArguments,
   3656     QualType ReturnTypeOfDestFunctionPtr,
   3657     TemplateDeductionInfo &TDInfo,
   3658     Sema &S) {
   3659 
   3660   CXXRecordDecl *LambdaClass = ConversionSpecialized->getParent();
   3661   assert(LambdaClass && LambdaClass->isGenericLambda());
   3662 
   3663   CXXMethodDecl *CallOpGeneric = LambdaClass->getLambdaCallOperator();
   3664   QualType CallOpResultType = CallOpGeneric->getReturnType();
   3665   const bool GenericLambdaCallOperatorHasDeducedReturnType =
   3666       CallOpResultType->getContainedAutoType();
   3667 
   3668   FunctionTemplateDecl *CallOpTemplate =
   3669       CallOpGeneric->getDescribedFunctionTemplate();
   3670 
   3671   FunctionDecl *CallOpSpecialized = nullptr;
   3672   // Use the deduced arguments of the conversion function, to specialize our
   3673   // generic lambda's call operator.
   3674   if (Sema::TemplateDeductionResult Result
   3675       = S.FinishTemplateArgumentDeduction(CallOpTemplate,
   3676                                           DeducedArguments,
   3677                                           0, CallOpSpecialized, TDInfo))
   3678     return Result;
   3679 
   3680   // If we need to deduce the return type, do so (instantiates the callop).
   3681   if (GenericLambdaCallOperatorHasDeducedReturnType &&
   3682       CallOpSpecialized->getReturnType()->isUndeducedType())
   3683     S.DeduceReturnType(CallOpSpecialized,
   3684                        CallOpSpecialized->getPointOfInstantiation(),
   3685                        /*Diagnose*/ true);
   3686 
   3687   // Check to see if the return type of the destination ptr-to-function
   3688   // matches the return type of the call operator.
   3689   if (!S.Context.hasSameType(CallOpSpecialized->getReturnType(),
   3690                              ReturnTypeOfDestFunctionPtr))
   3691     return Sema::TDK_NonDeducedMismatch;
   3692   // Since we have succeeded in matching the source and destination
   3693   // ptr-to-functions (now including return type), and have successfully
   3694   // specialized our corresponding call operator, we are ready to
   3695   // specialize the static invoker with the deduced arguments of our
   3696   // ptr-to-function.
   3697   FunctionDecl *InvokerSpecialized = nullptr;
   3698   FunctionTemplateDecl *InvokerTemplate = LambdaClass->
   3699                   getLambdaStaticInvoker()->getDescribedFunctionTemplate();
   3700 
   3701   Sema::TemplateDeductionResult LLVM_ATTRIBUTE_UNUSED Result
   3702     = S.FinishTemplateArgumentDeduction(InvokerTemplate, DeducedArguments, 0,
   3703           InvokerSpecialized, TDInfo);
   3704   assert(Result == Sema::TDK_Success &&
   3705     "If the call operator succeeded so should the invoker!");
   3706   // Set the result type to match the corresponding call operator
   3707   // specialization's result type.
   3708   if (GenericLambdaCallOperatorHasDeducedReturnType &&
   3709       InvokerSpecialized->getReturnType()->isUndeducedType()) {
   3710     // Be sure to get the type to replace 'auto' with and not
   3711     // the full result type of the call op specialization
   3712     // to substitute into the 'auto' of the invoker and conversion
   3713     // function.
   3714     // For e.g.
   3715     //  int* (*fp)(int*) = [](auto* a) -> auto* { return a; };
   3716     // We don't want to subst 'int*' into 'auto' to get int**.
   3717 
   3718     QualType TypeToReplaceAutoWith = CallOpSpecialized->getReturnType()
   3719                                          ->getContainedAutoType()
   3720                                          ->getDeducedType();
   3721     SubstAutoWithinFunctionReturnType(InvokerSpecialized,
   3722         TypeToReplaceAutoWith, S);
   3723     SubstAutoWithinFunctionReturnType(ConversionSpecialized,
   3724         TypeToReplaceAutoWith, S);
   3725   }
   3726 
   3727   // Ensure that static invoker doesn't have a const qualifier.
   3728   // FIXME: When creating the InvokerTemplate in SemaLambda.cpp
   3729   // do not use the CallOperator's TypeSourceInfo which allows
   3730   // the const qualifier to leak through.
   3731   const FunctionProtoType *InvokerFPT = InvokerSpecialized->
   3732                   getType().getTypePtr()->castAs<FunctionProtoType>();
   3733   FunctionProtoType::ExtProtoInfo EPI = InvokerFPT->getExtProtoInfo();
   3734   EPI.TypeQuals = 0;
   3735   InvokerSpecialized->setType(S.Context.getFunctionType(
   3736       InvokerFPT->getReturnType(), InvokerFPT->getParamTypes(), EPI));
   3737   return Sema::TDK_Success;
   3738 }
   3739 /// \brief Deduce template arguments for a templated conversion
   3740 /// function (C++ [temp.deduct.conv]) and, if successful, produce a
   3741 /// conversion function template specialization.
   3742 Sema::TemplateDeductionResult
   3743 Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate,
   3744                               QualType ToType,
   3745                               CXXConversionDecl *&Specialization,
   3746                               TemplateDeductionInfo &Info) {
   3747   if (ConversionTemplate->isInvalidDecl())
   3748     return TDK_Invalid;
   3749 
   3750   CXXConversionDecl *ConversionGeneric
   3751     = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl());
   3752 
   3753   QualType FromType = ConversionGeneric->getConversionType();
   3754 
   3755   // Canonicalize the types for deduction.
   3756   QualType P = Context.getCanonicalType(FromType);
   3757   QualType A = Context.getCanonicalType(ToType);
   3758 
   3759   // C++0x [temp.deduct.conv]p2:
   3760   //   If P is a reference type, the type referred to by P is used for
   3761   //   type deduction.
   3762   if (const ReferenceType *PRef = P->getAs<ReferenceType>())
   3763     P = PRef->getPointeeType();
   3764 
   3765   // C++0x [temp.deduct.conv]p4:
   3766   //   [...] If A is a reference type, the type referred to by A is used
   3767   //   for type deduction.
   3768   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
   3769     A = ARef->getPointeeType().getUnqualifiedType();
   3770   // C++ [temp.deduct.conv]p3:
   3771   //
   3772   //   If A is not a reference type:
   3773   else {
   3774     assert(!A->isReferenceType() && "Reference types were handled above");
   3775 
   3776     //   - If P is an array type, the pointer type produced by the
   3777     //     array-to-pointer standard conversion (4.2) is used in place
   3778     //     of P for type deduction; otherwise,
   3779     if (P->isArrayType())
   3780       P = Context.getArrayDecayedType(P);
   3781     //   - If P is a function type, the pointer type produced by the
   3782     //     function-to-pointer standard conversion (4.3) is used in
   3783     //     place of P for type deduction; otherwise,
   3784     else if (P->isFunctionType())
   3785       P = Context.getPointerType(P);
   3786     //   - If P is a cv-qualified type, the top level cv-qualifiers of
   3787     //     P's type are ignored for type deduction.
   3788     else
   3789       P = P.getUnqualifiedType();
   3790 
   3791     // C++0x [temp.deduct.conv]p4:
   3792     //   If A is a cv-qualified type, the top level cv-qualifiers of A's
   3793     //   type are ignored for type deduction. If A is a reference type, the type
   3794     //   referred to by A is used for type deduction.
   3795     A = A.getUnqualifiedType();
   3796   }
   3797 
   3798   // Unevaluated SFINAE context.
   3799   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   3800   SFINAETrap Trap(*this);
   3801 
   3802   // C++ [temp.deduct.conv]p1:
   3803   //   Template argument deduction is done by comparing the return
   3804   //   type of the template conversion function (call it P) with the
   3805   //   type that is required as the result of the conversion (call it
   3806   //   A) as described in 14.8.2.4.
   3807   TemplateParameterList *TemplateParams
   3808     = ConversionTemplate->getTemplateParameters();
   3809   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3810   Deduced.resize(TemplateParams->size());
   3811 
   3812   // C++0x [temp.deduct.conv]p4:
   3813   //   In general, the deduction process attempts to find template
   3814   //   argument values that will make the deduced A identical to
   3815   //   A. However, there are two cases that allow a difference:
   3816   unsigned TDF = 0;
   3817   //     - If the original A is a reference type, A can be more
   3818   //       cv-qualified than the deduced A (i.e., the type referred to
   3819   //       by the reference)
   3820   if (ToType->isReferenceType())
   3821     TDF |= TDF_ParamWithReferenceType;
   3822   //     - The deduced A can be another pointer or pointer to member
   3823   //       type that can be converted to A via a qualification
   3824   //       conversion.
   3825   //
   3826   // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
   3827   // both P and A are pointers or member pointers. In this case, we
   3828   // just ignore cv-qualifiers completely).
   3829   if ((P->isPointerType() && A->isPointerType()) ||
   3830       (P->isMemberPointerType() && A->isMemberPointerType()))
   3831     TDF |= TDF_IgnoreQualifiers;
   3832   if (TemplateDeductionResult Result
   3833         = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
   3834                                              P, A, Info, Deduced, TDF))
   3835     return Result;
   3836 
   3837   // Create an Instantiation Scope for finalizing the operator.
   3838   LocalInstantiationScope InstScope(*this);
   3839   // Finish template argument deduction.
   3840   FunctionDecl *ConversionSpecialized = nullptr;
   3841   TemplateDeductionResult Result
   3842       = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0,
   3843                                         ConversionSpecialized, Info);
   3844   Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized);
   3845 
   3846   // If the conversion operator is being invoked on a lambda closure to convert
   3847   // to a ptr-to-function, use the deduced arguments from the conversion function
   3848   // to specialize the corresponding call operator.
   3849   //   e.g., int (*fp)(int) = [](auto a) { return a; };
   3850   if (Result == TDK_Success && isLambdaConversionOperator(ConversionGeneric)) {
   3851 
   3852     // Get the return type of the destination ptr-to-function we are converting
   3853     // to.  This is necessary for matching the lambda call operator's return
   3854     // type to that of the destination ptr-to-function's return type.
   3855     assert(A->isPointerType() &&
   3856         "Can only convert from lambda to ptr-to-function");
   3857     const FunctionType *ToFunType =
   3858         A->getPointeeType().getTypePtr()->getAs<FunctionType>();
   3859     const QualType DestFunctionPtrReturnType = ToFunType->getReturnType();
   3860 
   3861     // Create the corresponding specializations of the call operator and
   3862     // the static-invoker; and if the return type is auto,
   3863     // deduce the return type and check if it matches the
   3864     // DestFunctionPtrReturnType.
   3865     // For instance:
   3866     //   auto L = [](auto a) { return f(a); };
   3867     //   int (*fp)(int) = L;
   3868     //   char (*fp2)(int) = L; <-- Not OK.
   3869 
   3870     Result = SpecializeCorrespondingLambdaCallOperatorAndInvoker(
   3871         Specialization, Deduced, DestFunctionPtrReturnType,
   3872         Info, *this);
   3873   }
   3874   return Result;
   3875 }
   3876 
   3877 /// \brief Deduce template arguments for a function template when there is
   3878 /// nothing to deduce against (C++0x [temp.arg.explicit]p3).
   3879 ///
   3880 /// \param FunctionTemplate the function template for which we are performing
   3881 /// template argument deduction.
   3882 ///
   3883 /// \param ExplicitTemplateArgs the explicitly-specified template
   3884 /// arguments.
   3885 ///
   3886 /// \param Specialization if template argument deduction was successful,
   3887 /// this will be set to the function template specialization produced by
   3888 /// template argument deduction.
   3889 ///
   3890 /// \param Info the argument will be updated to provide additional information
   3891 /// about template argument deduction.
   3892 ///
   3893 /// \returns the result of template argument deduction.
   3894 Sema::TemplateDeductionResult
   3895 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   3896                               TemplateArgumentListInfo *ExplicitTemplateArgs,
   3897                               FunctionDecl *&Specialization,
   3898                               TemplateDeductionInfo &Info,
   3899                               bool InOverloadResolution) {
   3900   return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
   3901                                  QualType(), Specialization, Info,
   3902                                  InOverloadResolution);
   3903 }
   3904 
   3905 namespace {
   3906   /// Substitute the 'auto' type specifier within a type for a given replacement
   3907   /// type.
   3908   class SubstituteAutoTransform :
   3909     public TreeTransform<SubstituteAutoTransform> {
   3910     QualType Replacement;
   3911   public:
   3912     SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) :
   3913       TreeTransform<SubstituteAutoTransform>(SemaRef), Replacement(Replacement) {
   3914     }
   3915     QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
   3916       // If we're building the type pattern to deduce against, don't wrap the
   3917       // substituted type in an AutoType. Certain template deduction rules
   3918       // apply only when a template type parameter appears directly (and not if
   3919       // the parameter is found through desugaring). For instance:
   3920       //   auto &&lref = lvalue;
   3921       // must transform into "rvalue reference to T" not "rvalue reference to
   3922       // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
   3923       if (!Replacement.isNull() && isa<TemplateTypeParmType>(Replacement)) {
   3924         QualType Result = Replacement;
   3925         TemplateTypeParmTypeLoc NewTL =
   3926           TLB.push<TemplateTypeParmTypeLoc>(Result);
   3927         NewTL.setNameLoc(TL.getNameLoc());
   3928         return Result;
   3929       } else {
   3930         bool Dependent =
   3931           !Replacement.isNull() && Replacement->isDependentType();
   3932         QualType Result =
   3933           SemaRef.Context.getAutoType(Dependent ? QualType() : Replacement,
   3934                                       TL.getTypePtr()->isDecltypeAuto(),
   3935                                       Dependent);
   3936         AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
   3937         NewTL.setNameLoc(TL.getNameLoc());
   3938         return Result;
   3939       }
   3940     }
   3941 
   3942     ExprResult TransformLambdaExpr(LambdaExpr *E) {
   3943       // Lambdas never need to be transformed.
   3944       return E;
   3945     }
   3946 
   3947     QualType Apply(TypeLoc TL) {
   3948       // Create some scratch storage for the transformed type locations.
   3949       // FIXME: We're just going to throw this information away. Don't build it.
   3950       TypeLocBuilder TLB;
   3951       TLB.reserve(TL.getFullDataSize());
   3952       return TransformType(TLB, TL);
   3953     }
   3954   };
   3955 }
   3956 
   3957 Sema::DeduceAutoResult
   3958 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result) {
   3959   return DeduceAutoType(Type->getTypeLoc(), Init, Result);
   3960 }
   3961 
   3962 /// \brief Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
   3963 ///
   3964 /// \param Type the type pattern using the auto type-specifier.
   3965 /// \param Init the initializer for the variable whose type is to be deduced.
   3966 /// \param Result if type deduction was successful, this will be set to the
   3967 ///        deduced type.
   3968 Sema::DeduceAutoResult
   3969 Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result) {
   3970   if (Init->getType()->isNonOverloadPlaceholderType()) {
   3971     ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
   3972     if (NonPlaceholder.isInvalid())
   3973       return DAR_FailedAlreadyDiagnosed;
   3974     Init = NonPlaceholder.get();
   3975   }
   3976 
   3977   if (Init->isTypeDependent() || Type.getType()->isDependentType()) {
   3978     Result = SubstituteAutoTransform(*this, Context.DependentTy).Apply(Type);
   3979     assert(!Result.isNull() && "substituting DependentTy can't fail");
   3980     return DAR_Succeeded;
   3981   }
   3982 
   3983   // If this is a 'decltype(auto)' specifier, do the decltype dance.
   3984   // Since 'decltype(auto)' can only occur at the top of the type, we
   3985   // don't need to go digging for it.
   3986   if (const AutoType *AT = Type.getType()->getAs<AutoType>()) {
   3987     if (AT->isDecltypeAuto()) {
   3988       if (isa<InitListExpr>(Init)) {
   3989         Diag(Init->getLocStart(), diag::err_decltype_auto_initializer_list);
   3990         return DAR_FailedAlreadyDiagnosed;
   3991       }
   3992 
   3993       QualType Deduced = BuildDecltypeType(Init, Init->getLocStart());
   3994       // FIXME: Support a non-canonical deduced type for 'auto'.
   3995       Deduced = Context.getCanonicalType(Deduced);
   3996       Result = SubstituteAutoTransform(*this, Deduced).Apply(Type);
   3997       if (Result.isNull())
   3998         return DAR_FailedAlreadyDiagnosed;
   3999       return DAR_Succeeded;
   4000     }
   4001   }
   4002 
   4003   SourceLocation Loc = Init->getExprLoc();
   4004 
   4005   LocalInstantiationScope InstScope(*this);
   4006 
   4007   // Build template<class TemplParam> void Func(FuncParam);
   4008   TemplateTypeParmDecl *TemplParam =
   4009     TemplateTypeParmDecl::Create(Context, nullptr, SourceLocation(), Loc, 0, 0,
   4010                                  nullptr, false, false);
   4011   QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
   4012   NamedDecl *TemplParamPtr = TemplParam;
   4013   FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
   4014                                                    Loc);
   4015 
   4016   QualType FuncParam = SubstituteAutoTransform(*this, TemplArg).Apply(Type);
   4017   assert(!FuncParam.isNull() &&
   4018          "substituting template parameter for 'auto' failed");
   4019 
   4020   // Deduce type of TemplParam in Func(Init)
   4021   SmallVector<DeducedTemplateArgument, 1> Deduced;
   4022   Deduced.resize(1);
   4023   QualType InitType = Init->getType();
   4024   unsigned TDF = 0;
   4025 
   4026   TemplateDeductionInfo Info(Loc);
   4027 
   4028   InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
   4029   if (InitList) {
   4030     for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
   4031       if (DeduceTemplateArgumentByListElement(*this, &TemplateParams,
   4032                                               TemplArg,
   4033                                               InitList->getInit(i),
   4034                                               Info, Deduced, TDF))
   4035         return DAR_Failed;
   4036     }
   4037   } else {
   4038     if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
   4039                                                   FuncParam, InitType, Init,
   4040                                                   TDF))
   4041       return DAR_Failed;
   4042 
   4043     if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam,
   4044                                            InitType, Info, Deduced, TDF))
   4045       return DAR_Failed;
   4046   }
   4047 
   4048   if (Deduced[0].getKind() != TemplateArgument::Type)
   4049     return DAR_Failed;
   4050 
   4051   QualType DeducedType = Deduced[0].getAsType();
   4052 
   4053   if (InitList) {
   4054     DeducedType = BuildStdInitializerList(DeducedType, Loc);
   4055     if (DeducedType.isNull())
   4056       return DAR_FailedAlreadyDiagnosed;
   4057   }
   4058 
   4059   Result = SubstituteAutoTransform(*this, DeducedType).Apply(Type);
   4060   if (Result.isNull())
   4061    return DAR_FailedAlreadyDiagnosed;
   4062 
   4063   // Check that the deduced argument type is compatible with the original
   4064   // argument type per C++ [temp.deduct.call]p4.
   4065   if (!InitList && !Result.isNull() &&
   4066       CheckOriginalCallArgDeduction(*this,
   4067                                     Sema::OriginalCallArg(FuncParam,0,InitType),
   4068                                     Result)) {
   4069     Result = QualType();
   4070     return DAR_Failed;
   4071   }
   4072 
   4073   return DAR_Succeeded;
   4074 }
   4075 
   4076 QualType Sema::SubstAutoType(QualType TypeWithAuto,
   4077                              QualType TypeToReplaceAuto) {
   4078   return SubstituteAutoTransform(*this, TypeToReplaceAuto).
   4079                TransformType(TypeWithAuto);
   4080 }
   4081 
   4082 TypeSourceInfo* Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
   4083                              QualType TypeToReplaceAuto) {
   4084     return SubstituteAutoTransform(*this, TypeToReplaceAuto).
   4085                TransformType(TypeWithAuto);
   4086 }
   4087 
   4088 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
   4089   if (isa<InitListExpr>(Init))
   4090     Diag(VDecl->getLocation(),
   4091          VDecl->isInitCapture()
   4092              ? diag::err_init_capture_deduction_failure_from_init_list
   4093              : diag::err_auto_var_deduction_failure_from_init_list)
   4094       << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
   4095   else
   4096     Diag(VDecl->getLocation(),
   4097          VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure
   4098                                 : diag::err_auto_var_deduction_failure)
   4099       << VDecl->getDeclName() << VDecl->getType() << Init->getType()
   4100       << Init->getSourceRange();
   4101 }
   4102 
   4103 bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
   4104                             bool Diagnose) {
   4105   assert(FD->getReturnType()->isUndeducedType());
   4106 
   4107   if (FD->getTemplateInstantiationPattern())
   4108     InstantiateFunctionDefinition(Loc, FD);
   4109 
   4110   bool StillUndeduced = FD->getReturnType()->isUndeducedType();
   4111   if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
   4112     Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
   4113     Diag(FD->getLocation(), diag::note_callee_decl) << FD;
   4114   }
   4115 
   4116   return StillUndeduced;
   4117 }
   4118 
   4119 static void
   4120 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
   4121                            bool OnlyDeduced,
   4122                            unsigned Level,
   4123                            llvm::SmallBitVector &Deduced);
   4124 
   4125 /// \brief If this is a non-static member function,
   4126 static void
   4127 AddImplicitObjectParameterType(ASTContext &Context,
   4128                                CXXMethodDecl *Method,
   4129                                SmallVectorImpl<QualType> &ArgTypes) {
   4130   // C++11 [temp.func.order]p3:
   4131   //   [...] The new parameter is of type "reference to cv A," where cv are
   4132   //   the cv-qualifiers of the function template (if any) and A is
   4133   //   the class of which the function template is a member.
   4134   //
   4135   // The standard doesn't say explicitly, but we pick the appropriate kind of
   4136   // reference type based on [over.match.funcs]p4.
   4137   QualType ArgTy = Context.getTypeDeclType(Method->getParent());
   4138   ArgTy = Context.getQualifiedType(ArgTy,
   4139                         Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
   4140   if (Method->getRefQualifier() == RQ_RValue)
   4141     ArgTy = Context.getRValueReferenceType(ArgTy);
   4142   else
   4143     ArgTy = Context.getLValueReferenceType(ArgTy);
   4144   ArgTypes.push_back(ArgTy);
   4145 }
   4146 
   4147 /// \brief Determine whether the function template \p FT1 is at least as
   4148 /// specialized as \p FT2.
   4149 static bool isAtLeastAsSpecializedAs(Sema &S,
   4150                                      SourceLocation Loc,
   4151                                      FunctionTemplateDecl *FT1,
   4152                                      FunctionTemplateDecl *FT2,
   4153                                      TemplatePartialOrderingContext TPOC,
   4154                                      unsigned NumCallArguments1,
   4155     SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
   4156   FunctionDecl *FD1 = FT1->getTemplatedDecl();
   4157   FunctionDecl *FD2 = FT2->getTemplatedDecl();
   4158   const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
   4159   const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
   4160 
   4161   assert(Proto1 && Proto2 && "Function templates must have prototypes");
   4162   TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
   4163   SmallVector<DeducedTemplateArgument, 4> Deduced;
   4164   Deduced.resize(TemplateParams->size());
   4165 
   4166   // C++0x [temp.deduct.partial]p3:
   4167   //   The types used to determine the ordering depend on the context in which
   4168   //   the partial ordering is done:
   4169   TemplateDeductionInfo Info(Loc);
   4170   SmallVector<QualType, 4> Args2;
   4171   switch (TPOC) {
   4172   case TPOC_Call: {
   4173     //   - In the context of a function call, the function parameter types are
   4174     //     used.
   4175     CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1);
   4176     CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2);
   4177 
   4178     // C++11 [temp.func.order]p3:
   4179     //   [...] If only one of the function templates is a non-static
   4180     //   member, that function template is considered to have a new
   4181     //   first parameter inserted in its function parameter list. The
   4182     //   new parameter is of type "reference to cv A," where cv are
   4183     //   the cv-qualifiers of the function template (if any) and A is
   4184     //   the class of which the function template is a member.
   4185     //
   4186     // Note that we interpret this to mean "if one of the function
   4187     // templates is a non-static member and the other is a non-member";
   4188     // otherwise, the ordering rules for static functions against non-static
   4189     // functions don't make any sense.
   4190     //
   4191     // C++98/03 doesn't have this provision but we've extended DR532 to cover
   4192     // it as wording was broken prior to it.
   4193     SmallVector<QualType, 4> Args1;
   4194 
   4195     unsigned NumComparedArguments = NumCallArguments1;
   4196 
   4197     if (!Method2 && Method1 && !Method1->isStatic()) {
   4198       // Compare 'this' from Method1 against first parameter from Method2.
   4199       AddImplicitObjectParameterType(S.Context, Method1, Args1);
   4200       ++NumComparedArguments;
   4201     } else if (!Method1 && Method2 && !Method2->isStatic()) {
   4202       // Compare 'this' from Method2 against first parameter from Method1.
   4203       AddImplicitObjectParameterType(S.Context, Method2, Args2);
   4204     }
   4205 
   4206     Args1.insert(Args1.end(), Proto1->param_type_begin(),
   4207                  Proto1->param_type_end());
   4208     Args2.insert(Args2.end(), Proto2->param_type_begin(),
   4209                  Proto2->param_type_end());
   4210 
   4211     // C++ [temp.func.order]p5:
   4212     //   The presence of unused ellipsis and default arguments has no effect on
   4213     //   the partial ordering of function templates.
   4214     if (Args1.size() > NumComparedArguments)
   4215       Args1.resize(NumComparedArguments);
   4216     if (Args2.size() > NumComparedArguments)
   4217       Args2.resize(NumComparedArguments);
   4218     if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
   4219                                 Args1.data(), Args1.size(), Info, Deduced,
   4220                                 TDF_None, /*PartialOrdering=*/true,
   4221                                 RefParamComparisons))
   4222       return false;
   4223 
   4224     break;
   4225   }
   4226 
   4227   case TPOC_Conversion:
   4228     //   - In the context of a call to a conversion operator, the return types
   4229     //     of the conversion function templates are used.
   4230     if (DeduceTemplateArgumentsByTypeMatch(
   4231             S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(),
   4232             Info, Deduced, TDF_None,
   4233             /*PartialOrdering=*/true, RefParamComparisons))
   4234       return false;
   4235     break;
   4236 
   4237   case TPOC_Other:
   4238     //   - In other contexts (14.6.6.2) the function template's function type
   4239     //     is used.
   4240     if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   4241                                            FD2->getType(), FD1->getType(),
   4242                                            Info, Deduced, TDF_None,
   4243                                            /*PartialOrdering=*/true,
   4244                                            RefParamComparisons))
   4245       return false;
   4246     break;
   4247   }
   4248 
   4249   // C++0x [temp.deduct.partial]p11:
   4250   //   In most cases, all template parameters must have values in order for
   4251   //   deduction to succeed, but for partial ordering purposes a template
   4252   //   parameter may remain without a value provided it is not used in the
   4253   //   types being used for partial ordering. [ Note: a template parameter used
   4254   //   in a non-deduced context is considered used. -end note]
   4255   unsigned ArgIdx = 0, NumArgs = Deduced.size();
   4256   for (; ArgIdx != NumArgs; ++ArgIdx)
   4257     if (Deduced[ArgIdx].isNull())
   4258       break;
   4259 
   4260   if (ArgIdx == NumArgs) {
   4261     // All template arguments were deduced. FT1 is at least as specialized
   4262     // as FT2.
   4263     return true;
   4264   }
   4265 
   4266   // Figure out which template parameters were used.
   4267   llvm::SmallBitVector UsedParameters(TemplateParams->size());
   4268   switch (TPOC) {
   4269   case TPOC_Call:
   4270     for (unsigned I = 0, N = Args2.size(); I != N; ++I)
   4271       ::MarkUsedTemplateParameters(S.Context, Args2[I], false,
   4272                                    TemplateParams->getDepth(),
   4273                                    UsedParameters);
   4274     break;
   4275 
   4276   case TPOC_Conversion:
   4277     ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false,
   4278                                  TemplateParams->getDepth(), UsedParameters);
   4279     break;
   4280 
   4281   case TPOC_Other:
   4282     ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
   4283                                  TemplateParams->getDepth(),
   4284                                  UsedParameters);
   4285     break;
   4286   }
   4287 
   4288   for (; ArgIdx != NumArgs; ++ArgIdx)
   4289     // If this argument had no value deduced but was used in one of the types
   4290     // used for partial ordering, then deduction fails.
   4291     if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
   4292       return false;
   4293 
   4294   return true;
   4295 }
   4296 
   4297 /// \brief Determine whether this a function template whose parameter-type-list
   4298 /// ends with a function parameter pack.
   4299 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
   4300   FunctionDecl *Function = FunTmpl->getTemplatedDecl();
   4301   unsigned NumParams = Function->getNumParams();
   4302   if (NumParams == 0)
   4303     return false;
   4304 
   4305   ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
   4306   if (!Last->isParameterPack())
   4307     return false;
   4308 
   4309   // Make sure that no previous parameter is a parameter pack.
   4310   while (--NumParams > 0) {
   4311     if (Function->getParamDecl(NumParams - 1)->isParameterPack())
   4312       return false;
   4313   }
   4314 
   4315   return true;
   4316 }
   4317 
   4318 /// \brief Returns the more specialized function template according
   4319 /// to the rules of function template partial ordering (C++ [temp.func.order]).
   4320 ///
   4321 /// \param FT1 the first function template
   4322 ///
   4323 /// \param FT2 the second function template
   4324 ///
   4325 /// \param TPOC the context in which we are performing partial ordering of
   4326 /// function templates.
   4327 ///
   4328 /// \param NumCallArguments1 The number of arguments in the call to FT1, used
   4329 /// only when \c TPOC is \c TPOC_Call.
   4330 ///
   4331 /// \param NumCallArguments2 The number of arguments in the call to FT2, used
   4332 /// only when \c TPOC is \c TPOC_Call.
   4333 ///
   4334 /// \returns the more specialized function template. If neither
   4335 /// template is more specialized, returns NULL.
   4336 FunctionTemplateDecl *
   4337 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
   4338                                  FunctionTemplateDecl *FT2,
   4339                                  SourceLocation Loc,
   4340                                  TemplatePartialOrderingContext TPOC,
   4341                                  unsigned NumCallArguments1,
   4342                                  unsigned NumCallArguments2) {
   4343   SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons;
   4344   bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
   4345                                           NumCallArguments1, nullptr);
   4346   bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
   4347                                           NumCallArguments2,
   4348                                           &RefParamComparisons);
   4349 
   4350   if (Better1 != Better2) // We have a clear winner
   4351     return Better1? FT1 : FT2;
   4352 
   4353   if (!Better1 && !Better2) // Neither is better than the other
   4354     return nullptr;
   4355 
   4356   // C++0x [temp.deduct.partial]p10:
   4357   //   If for each type being considered a given template is at least as
   4358   //   specialized for all types and more specialized for some set of types and
   4359   //   the other template is not more specialized for any types or is not at
   4360   //   least as specialized for any types, then the given template is more
   4361   //   specialized than the other template. Otherwise, neither template is more
   4362   //   specialized than the other.
   4363   Better1 = false;
   4364   Better2 = false;
   4365   for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) {
   4366     // C++0x [temp.deduct.partial]p9:
   4367     //   If, for a given type, deduction succeeds in both directions (i.e., the
   4368     //   types are identical after the transformations above) and both P and A
   4369     //   were reference types (before being replaced with the type referred to
   4370     //   above):
   4371 
   4372     //     -- if the type from the argument template was an lvalue reference
   4373     //        and the type from the parameter template was not, the argument
   4374     //        type is considered to be more specialized than the other;
   4375     //        otherwise,
   4376     if (!RefParamComparisons[I].ArgIsRvalueRef &&
   4377         RefParamComparisons[I].ParamIsRvalueRef) {
   4378       Better2 = true;
   4379       if (Better1)
   4380         return nullptr;
   4381       continue;
   4382     } else if (!RefParamComparisons[I].ParamIsRvalueRef &&
   4383                RefParamComparisons[I].ArgIsRvalueRef) {
   4384       Better1 = true;
   4385       if (Better2)
   4386         return nullptr;
   4387       continue;
   4388     }
   4389 
   4390     //     -- if the type from the argument template is more cv-qualified than
   4391     //        the type from the parameter template (as described above), the
   4392     //        argument type is considered to be more specialized than the
   4393     //        other; otherwise,
   4394     switch (RefParamComparisons[I].Qualifiers) {
   4395     case NeitherMoreQualified:
   4396       break;
   4397 
   4398     case ParamMoreQualified:
   4399       Better1 = true;
   4400       if (Better2)
   4401         return nullptr;
   4402       continue;
   4403 
   4404     case ArgMoreQualified:
   4405       Better2 = true;
   4406       if (Better1)
   4407         return nullptr;
   4408       continue;
   4409     }
   4410 
   4411     //     -- neither type is more specialized than the other.
   4412   }
   4413 
   4414   assert(!(Better1 && Better2) && "Should have broken out in the loop above");
   4415   if (Better1)
   4416     return FT1;
   4417   else if (Better2)
   4418     return FT2;
   4419 
   4420   // FIXME: This mimics what GCC implements, but doesn't match up with the
   4421   // proposed resolution for core issue 692. This area needs to be sorted out,
   4422   // but for now we attempt to maintain compatibility.
   4423   bool Variadic1 = isVariadicFunctionTemplate(FT1);
   4424   bool Variadic2 = isVariadicFunctionTemplate(FT2);
   4425   if (Variadic1 != Variadic2)
   4426     return Variadic1? FT2 : FT1;
   4427 
   4428   return nullptr;
   4429 }
   4430 
   4431 /// \brief Determine if the two templates are equivalent.
   4432 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
   4433   if (T1 == T2)
   4434     return true;
   4435 
   4436   if (!T1 || !T2)
   4437     return false;
   4438 
   4439   return T1->getCanonicalDecl() == T2->getCanonicalDecl();
   4440 }
   4441 
   4442 /// \brief Retrieve the most specialized of the given function template
   4443 /// specializations.
   4444 ///
   4445 /// \param SpecBegin the start iterator of the function template
   4446 /// specializations that we will be comparing.
   4447 ///
   4448 /// \param SpecEnd the end iterator of the function template
   4449 /// specializations, paired with \p SpecBegin.
   4450 ///
   4451 /// \param Loc the location where the ambiguity or no-specializations
   4452 /// diagnostic should occur.
   4453 ///
   4454 /// \param NoneDiag partial diagnostic used to diagnose cases where there are
   4455 /// no matching candidates.
   4456 ///
   4457 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
   4458 /// occurs.
   4459 ///
   4460 /// \param CandidateDiag partial diagnostic used for each function template
   4461 /// specialization that is a candidate in the ambiguous ordering. One parameter
   4462 /// in this diagnostic should be unbound, which will correspond to the string
   4463 /// describing the template arguments for the function template specialization.
   4464 ///
   4465 /// \returns the most specialized function template specialization, if
   4466 /// found. Otherwise, returns SpecEnd.
   4467 UnresolvedSetIterator Sema::getMostSpecialized(
   4468     UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd,
   4469     TemplateSpecCandidateSet &FailedCandidates,
   4470     SourceLocation Loc, const PartialDiagnostic &NoneDiag,
   4471     const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
   4472     bool Complain, QualType TargetType) {
   4473   if (SpecBegin == SpecEnd) {
   4474     if (Complain) {
   4475       Diag(Loc, NoneDiag);
   4476       FailedCandidates.NoteCandidates(*this, Loc);
   4477     }
   4478     return SpecEnd;
   4479   }
   4480 
   4481   if (SpecBegin + 1 == SpecEnd)
   4482     return SpecBegin;
   4483 
   4484   // Find the function template that is better than all of the templates it
   4485   // has been compared to.
   4486   UnresolvedSetIterator Best = SpecBegin;
   4487   FunctionTemplateDecl *BestTemplate
   4488     = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
   4489   assert(BestTemplate && "Not a function template specialization?");
   4490   for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
   4491     FunctionTemplateDecl *Challenger
   4492       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
   4493     assert(Challenger && "Not a function template specialization?");
   4494     if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
   4495                                                   Loc, TPOC_Other, 0, 0),
   4496                        Challenger)) {
   4497       Best = I;
   4498       BestTemplate = Challenger;
   4499     }
   4500   }
   4501 
   4502   // Make sure that the "best" function template is more specialized than all
   4503   // of the others.
   4504   bool Ambiguous = false;
   4505   for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
   4506     FunctionTemplateDecl *Challenger
   4507       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
   4508     if (I != Best &&
   4509         !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
   4510                                                    Loc, TPOC_Other, 0, 0),
   4511                         BestTemplate)) {
   4512       Ambiguous = true;
   4513       break;
   4514     }
   4515   }
   4516 
   4517   if (!Ambiguous) {
   4518     // We found an answer. Return it.
   4519     return Best;
   4520   }
   4521 
   4522   // Diagnose the ambiguity.
   4523   if (Complain) {
   4524     Diag(Loc, AmbigDiag);
   4525 
   4526     // FIXME: Can we order the candidates in some sane way?
   4527     for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
   4528       PartialDiagnostic PD = CandidateDiag;
   4529       PD << getTemplateArgumentBindingsText(
   4530           cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
   4531                     *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
   4532       if (!TargetType.isNull())
   4533         HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
   4534                                    TargetType);
   4535       Diag((*I)->getLocation(), PD);
   4536     }
   4537   }
   4538 
   4539   return SpecEnd;
   4540 }
   4541 
   4542 /// \brief Returns the more specialized class template partial specialization
   4543 /// according to the rules of partial ordering of class template partial
   4544 /// specializations (C++ [temp.class.order]).
   4545 ///
   4546 /// \param PS1 the first class template partial specialization
   4547 ///
   4548 /// \param PS2 the second class template partial specialization
   4549 ///
   4550 /// \returns the more specialized class template partial specialization. If
   4551 /// neither partial specialization is more specialized, returns NULL.
   4552 ClassTemplatePartialSpecializationDecl *
   4553 Sema::getMoreSpecializedPartialSpecialization(
   4554                                   ClassTemplatePartialSpecializationDecl *PS1,
   4555                                   ClassTemplatePartialSpecializationDecl *PS2,
   4556                                               SourceLocation Loc) {
   4557   // C++ [temp.class.order]p1:
   4558   //   For two class template partial specializations, the first is at least as
   4559   //   specialized as the second if, given the following rewrite to two
   4560   //   function templates, the first function template is at least as
   4561   //   specialized as the second according to the ordering rules for function
   4562   //   templates (14.6.6.2):
   4563   //     - the first function template has the same template parameters as the
   4564   //       first partial specialization and has a single function parameter
   4565   //       whose type is a class template specialization with the template
   4566   //       arguments of the first partial specialization, and
   4567   //     - the second function template has the same template parameters as the
   4568   //       second partial specialization and has a single function parameter
   4569   //       whose type is a class template specialization with the template
   4570   //       arguments of the second partial specialization.
   4571   //
   4572   // Rather than synthesize function templates, we merely perform the
   4573   // equivalent partial ordering by performing deduction directly on
   4574   // the template arguments of the class template partial
   4575   // specializations. This computation is slightly simpler than the
   4576   // general problem of function template partial ordering, because
   4577   // class template partial specializations are more constrained. We
   4578   // know that every template parameter is deducible from the class
   4579   // template partial specialization's template arguments, for
   4580   // example.
   4581   SmallVector<DeducedTemplateArgument, 4> Deduced;
   4582   TemplateDeductionInfo Info(Loc);
   4583 
   4584   QualType PT1 = PS1->getInjectedSpecializationType();
   4585   QualType PT2 = PS2->getInjectedSpecializationType();
   4586 
   4587   // Determine whether PS1 is at least as specialized as PS2
   4588   Deduced.resize(PS2->getTemplateParameters()->size());
   4589   bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
   4590                                             PS2->getTemplateParameters(),
   4591                                             PT2, PT1, Info, Deduced, TDF_None,
   4592                                             /*PartialOrdering=*/true,
   4593                                             /*RefParamComparisons=*/nullptr);
   4594   if (Better1) {
   4595     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
   4596     InstantiatingTemplate Inst(*this, Loc, PS2, DeducedArgs, Info);
   4597     Better1 = !::FinishTemplateArgumentDeduction(
   4598         *this, PS2, PS1->getTemplateArgs(), Deduced, Info);
   4599   }
   4600 
   4601   // Determine whether PS2 is at least as specialized as PS1
   4602   Deduced.clear();
   4603   Deduced.resize(PS1->getTemplateParameters()->size());
   4604   bool Better2 = !DeduceTemplateArgumentsByTypeMatch(
   4605       *this, PS1->getTemplateParameters(), PT1, PT2, Info, Deduced, TDF_None,
   4606       /*PartialOrdering=*/true,
   4607       /*RefParamComparisons=*/nullptr);
   4608   if (Better2) {
   4609     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
   4610                                                  Deduced.end());
   4611     InstantiatingTemplate Inst(*this, Loc, PS1, DeducedArgs, Info);
   4612     Better2 = !::FinishTemplateArgumentDeduction(
   4613         *this, PS1, PS2->getTemplateArgs(), Deduced, Info);
   4614   }
   4615 
   4616   if (Better1 == Better2)
   4617     return nullptr;
   4618 
   4619   return Better1 ? PS1 : PS2;
   4620 }
   4621 
   4622 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
   4623 ///       May require unifying ClassTemplate(Partial)SpecializationDecl and
   4624 ///        VarTemplate(Partial)SpecializationDecl with a new data
   4625 ///        structure Template(Partial)SpecializationDecl, and
   4626 ///        using Template(Partial)SpecializationDecl as input type.
   4627 VarTemplatePartialSpecializationDecl *
   4628 Sema::getMoreSpecializedPartialSpecialization(
   4629     VarTemplatePartialSpecializationDecl *PS1,
   4630     VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) {
   4631   SmallVector<DeducedTemplateArgument, 4> Deduced;
   4632   TemplateDeductionInfo Info(Loc);
   4633 
   4634   assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() &&
   4635          "the partial specializations being compared should specialize"
   4636          " the same template.");
   4637   TemplateName Name(PS1->getSpecializedTemplate());
   4638   TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
   4639   QualType PT1 = Context.getTemplateSpecializationType(
   4640       CanonTemplate, PS1->getTemplateArgs().data(),
   4641       PS1->getTemplateArgs().size());
   4642   QualType PT2 = Context.getTemplateSpecializationType(
   4643       CanonTemplate, PS2->getTemplateArgs().data(),
   4644       PS2->getTemplateArgs().size());
   4645 
   4646   // Determine whether PS1 is at least as specialized as PS2
   4647   Deduced.resize(PS2->getTemplateParameters()->size());
   4648   bool Better1 = !DeduceTemplateArgumentsByTypeMatch(
   4649       *this, PS2->getTemplateParameters(), PT2, PT1, Info, Deduced, TDF_None,
   4650       /*PartialOrdering=*/true,
   4651       /*RefParamComparisons=*/nullptr);
   4652   if (Better1) {
   4653     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
   4654                                                  Deduced.end());
   4655     InstantiatingTemplate Inst(*this, Loc, PS2, DeducedArgs, Info);
   4656     Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
   4657                                                  PS1->getTemplateArgs(),
   4658                                                  Deduced, Info);
   4659   }
   4660 
   4661   // Determine whether PS2 is at least as specialized as PS1
   4662   Deduced.clear();
   4663   Deduced.resize(PS1->getTemplateParameters()->size());
   4664   bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
   4665                                             PS1->getTemplateParameters(),
   4666                                             PT1, PT2, Info, Deduced, TDF_None,
   4667                                             /*PartialOrdering=*/true,
   4668                                             /*RefParamComparisons=*/nullptr);
   4669   if (Better2) {
   4670     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
   4671     InstantiatingTemplate Inst(*this, Loc, PS1, DeducedArgs, Info);
   4672     Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
   4673                                                  PS2->getTemplateArgs(),
   4674                                                  Deduced, Info);
   4675   }
   4676 
   4677   if (Better1 == Better2)
   4678     return nullptr;
   4679 
   4680   return Better1? PS1 : PS2;
   4681 }
   4682 
   4683 static void
   4684 MarkUsedTemplateParameters(ASTContext &Ctx,
   4685                            const TemplateArgument &TemplateArg,
   4686                            bool OnlyDeduced,
   4687                            unsigned Depth,
   4688                            llvm::SmallBitVector &Used);
   4689 
   4690 /// \brief Mark the template parameters that are used by the given
   4691 /// expression.
   4692 static void
   4693 MarkUsedTemplateParameters(ASTContext &Ctx,
   4694                            const Expr *E,
   4695                            bool OnlyDeduced,
   4696                            unsigned Depth,
   4697                            llvm::SmallBitVector &Used) {
   4698   // We can deduce from a pack expansion.
   4699   if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
   4700     E = Expansion->getPattern();
   4701 
   4702   // Skip through any implicit casts we added while type-checking, and any
   4703   // substitutions performed by template alias expansion.
   4704   while (1) {
   4705     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
   4706       E = ICE->getSubExpr();
   4707     else if (const SubstNonTypeTemplateParmExpr *Subst =
   4708                dyn_cast<SubstNonTypeTemplateParmExpr>(E))
   4709       E = Subst->getReplacement();
   4710     else
   4711       break;
   4712   }
   4713 
   4714   // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
   4715   // find other occurrences of template parameters.
   4716   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
   4717   if (!DRE)
   4718     return;
   4719 
   4720   const NonTypeTemplateParmDecl *NTTP
   4721     = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
   4722   if (!NTTP)
   4723     return;
   4724 
   4725   if (NTTP->getDepth() == Depth)
   4726     Used[NTTP->getIndex()] = true;
   4727 }
   4728 
   4729 /// \brief Mark the template parameters that are used by the given
   4730 /// nested name specifier.
   4731 static void
   4732 MarkUsedTemplateParameters(ASTContext &Ctx,
   4733                            NestedNameSpecifier *NNS,
   4734                            bool OnlyDeduced,
   4735                            unsigned Depth,
   4736                            llvm::SmallBitVector &Used) {
   4737   if (!NNS)
   4738     return;
   4739 
   4740   MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
   4741                              Used);
   4742   MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
   4743                              OnlyDeduced, Depth, Used);
   4744 }
   4745 
   4746 /// \brief Mark the template parameters that are used by the given
   4747 /// template name.
   4748 static void
   4749 MarkUsedTemplateParameters(ASTContext &Ctx,
   4750                            TemplateName Name,
   4751                            bool OnlyDeduced,
   4752                            unsigned Depth,
   4753                            llvm::SmallBitVector &Used) {
   4754   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
   4755     if (TemplateTemplateParmDecl *TTP
   4756           = dyn_cast<TemplateTemplateParmDecl>(Template)) {
   4757       if (TTP->getDepth() == Depth)
   4758         Used[TTP->getIndex()] = true;
   4759     }
   4760     return;
   4761   }
   4762 
   4763   if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
   4764     MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
   4765                                Depth, Used);
   4766   if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
   4767     MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
   4768                                Depth, Used);
   4769 }
   4770 
   4771 /// \brief Mark the template parameters that are used by the given
   4772 /// type.
   4773 static void
   4774 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
   4775                            bool OnlyDeduced,
   4776                            unsigned Depth,
   4777                            llvm::SmallBitVector &Used) {
   4778   if (T.isNull())
   4779     return;
   4780 
   4781   // Non-dependent types have nothing deducible
   4782   if (!T->isDependentType())
   4783     return;
   4784 
   4785   T = Ctx.getCanonicalType(T);
   4786   switch (T->getTypeClass()) {
   4787   case Type::Pointer:
   4788     MarkUsedTemplateParameters(Ctx,
   4789                                cast<PointerType>(T)->getPointeeType(),
   4790                                OnlyDeduced,
   4791                                Depth,
   4792                                Used);
   4793     break;
   4794 
   4795   case Type::BlockPointer:
   4796     MarkUsedTemplateParameters(Ctx,
   4797                                cast<BlockPointerType>(T)->getPointeeType(),
   4798                                OnlyDeduced,
   4799                                Depth,
   4800                                Used);
   4801     break;
   4802 
   4803   case Type::LValueReference:
   4804   case Type::RValueReference:
   4805     MarkUsedTemplateParameters(Ctx,
   4806                                cast<ReferenceType>(T)->getPointeeType(),
   4807                                OnlyDeduced,
   4808                                Depth,
   4809                                Used);
   4810     break;
   4811 
   4812   case Type::MemberPointer: {
   4813     const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
   4814     MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
   4815                                Depth, Used);
   4816     MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
   4817                                OnlyDeduced, Depth, Used);
   4818     break;
   4819   }
   4820 
   4821   case Type::DependentSizedArray:
   4822     MarkUsedTemplateParameters(Ctx,
   4823                                cast<DependentSizedArrayType>(T)->getSizeExpr(),
   4824                                OnlyDeduced, Depth, Used);
   4825     // Fall through to check the element type
   4826 
   4827   case Type::ConstantArray:
   4828   case Type::IncompleteArray:
   4829     MarkUsedTemplateParameters(Ctx,
   4830                                cast<ArrayType>(T)->getElementType(),
   4831                                OnlyDeduced, Depth, Used);
   4832     break;
   4833 
   4834   case Type::Vector:
   4835   case Type::ExtVector:
   4836     MarkUsedTemplateParameters(Ctx,
   4837                                cast<VectorType>(T)->getElementType(),
   4838                                OnlyDeduced, Depth, Used);
   4839     break;
   4840 
   4841   case Type::DependentSizedExtVector: {
   4842     const DependentSizedExtVectorType *VecType
   4843       = cast<DependentSizedExtVectorType>(T);
   4844     MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
   4845                                Depth, Used);
   4846     MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
   4847                                Depth, Used);
   4848     break;
   4849   }
   4850 
   4851   case Type::FunctionProto: {
   4852     const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
   4853     MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth,
   4854                                Used);
   4855     for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I)
   4856       MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced,
   4857                                  Depth, Used);
   4858     break;
   4859   }
   4860 
   4861   case Type::TemplateTypeParm: {
   4862     const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
   4863     if (TTP->getDepth() == Depth)
   4864       Used[TTP->getIndex()] = true;
   4865     break;
   4866   }
   4867 
   4868   case Type::SubstTemplateTypeParmPack: {
   4869     const SubstTemplateTypeParmPackType *Subst
   4870       = cast<SubstTemplateTypeParmPackType>(T);
   4871     MarkUsedTemplateParameters(Ctx,
   4872                                QualType(Subst->getReplacedParameter(), 0),
   4873                                OnlyDeduced, Depth, Used);
   4874     MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
   4875                                OnlyDeduced, Depth, Used);
   4876     break;
   4877   }
   4878 
   4879   case Type::InjectedClassName:
   4880     T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
   4881     // fall through
   4882 
   4883   case Type::TemplateSpecialization: {
   4884     const TemplateSpecializationType *Spec
   4885       = cast<TemplateSpecializationType>(T);
   4886     MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
   4887                                Depth, Used);
   4888 
   4889     // C++0x [temp.deduct.type]p9:
   4890     //   If the template argument list of P contains a pack expansion that is not
   4891     //   the last template argument, the entire template argument list is a
   4892     //   non-deduced context.
   4893     if (OnlyDeduced &&
   4894         hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
   4895       break;
   4896 
   4897     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
   4898       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
   4899                                  Used);
   4900     break;
   4901   }
   4902 
   4903   case Type::Complex:
   4904     if (!OnlyDeduced)
   4905       MarkUsedTemplateParameters(Ctx,
   4906                                  cast<ComplexType>(T)->getElementType(),
   4907                                  OnlyDeduced, Depth, Used);
   4908     break;
   4909 
   4910   case Type::Atomic:
   4911     if (!OnlyDeduced)
   4912       MarkUsedTemplateParameters(Ctx,
   4913                                  cast<AtomicType>(T)->getValueType(),
   4914                                  OnlyDeduced, Depth, Used);
   4915     break;
   4916 
   4917   case Type::DependentName:
   4918     if (!OnlyDeduced)
   4919       MarkUsedTemplateParameters(Ctx,
   4920                                  cast<DependentNameType>(T)->getQualifier(),
   4921                                  OnlyDeduced, Depth, Used);
   4922     break;
   4923 
   4924   case Type::DependentTemplateSpecialization: {
   4925     const DependentTemplateSpecializationType *Spec
   4926       = cast<DependentTemplateSpecializationType>(T);
   4927     if (!OnlyDeduced)
   4928       MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
   4929                                  OnlyDeduced, Depth, Used);
   4930 
   4931     // C++0x [temp.deduct.type]p9:
   4932     //   If the template argument list of P contains a pack expansion that is not
   4933     //   the last template argument, the entire template argument list is a
   4934     //   non-deduced context.
   4935     if (OnlyDeduced &&
   4936         hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
   4937       break;
   4938 
   4939     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
   4940       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
   4941                                  Used);
   4942     break;
   4943   }
   4944 
   4945   case Type::TypeOf:
   4946     if (!OnlyDeduced)
   4947       MarkUsedTemplateParameters(Ctx,
   4948                                  cast<TypeOfType>(T)->getUnderlyingType(),
   4949                                  OnlyDeduced, Depth, Used);
   4950     break;
   4951 
   4952   case Type::TypeOfExpr:
   4953     if (!OnlyDeduced)
   4954       MarkUsedTemplateParameters(Ctx,
   4955                                  cast<TypeOfExprType>(T)->getUnderlyingExpr(),
   4956                                  OnlyDeduced, Depth, Used);
   4957     break;
   4958 
   4959   case Type::Decltype:
   4960     if (!OnlyDeduced)
   4961       MarkUsedTemplateParameters(Ctx,
   4962                                  cast<DecltypeType>(T)->getUnderlyingExpr(),
   4963                                  OnlyDeduced, Depth, Used);
   4964     break;
   4965 
   4966   case Type::UnaryTransform:
   4967     if (!OnlyDeduced)
   4968       MarkUsedTemplateParameters(Ctx,
   4969                                cast<UnaryTransformType>(T)->getUnderlyingType(),
   4970                                  OnlyDeduced, Depth, Used);
   4971     break;
   4972 
   4973   case Type::PackExpansion:
   4974     MarkUsedTemplateParameters(Ctx,
   4975                                cast<PackExpansionType>(T)->getPattern(),
   4976                                OnlyDeduced, Depth, Used);
   4977     break;
   4978 
   4979   case Type::Auto:
   4980     MarkUsedTemplateParameters(Ctx,
   4981                                cast<AutoType>(T)->getDeducedType(),
   4982                                OnlyDeduced, Depth, Used);
   4983 
   4984   // None of these types have any template parameters in them.
   4985   case Type::Builtin:
   4986   case Type::VariableArray:
   4987   case Type::FunctionNoProto:
   4988   case Type::Record:
   4989   case Type::Enum:
   4990   case Type::ObjCInterface:
   4991   case Type::ObjCObject:
   4992   case Type::ObjCObjectPointer:
   4993   case Type::UnresolvedUsing:
   4994 #define TYPE(Class, Base)
   4995 #define ABSTRACT_TYPE(Class, Base)
   4996 #define DEPENDENT_TYPE(Class, Base)
   4997 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
   4998 #include "clang/AST/TypeNodes.def"
   4999     break;
   5000   }
   5001 }
   5002 
   5003 /// \brief Mark the template parameters that are used by this
   5004 /// template argument.
   5005 static void
   5006 MarkUsedTemplateParameters(ASTContext &Ctx,
   5007                            const TemplateArgument &TemplateArg,
   5008                            bool OnlyDeduced,
   5009                            unsigned Depth,
   5010                            llvm::SmallBitVector &Used) {
   5011   switch (TemplateArg.getKind()) {
   5012   case TemplateArgument::Null:
   5013   case TemplateArgument::Integral:
   5014   case TemplateArgument::Declaration:
   5015     break;
   5016 
   5017   case TemplateArgument::NullPtr:
   5018     MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced,
   5019                                Depth, Used);
   5020     break;
   5021 
   5022   case TemplateArgument::Type:
   5023     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
   5024                                Depth, Used);
   5025     break;
   5026 
   5027   case TemplateArgument::Template:
   5028   case TemplateArgument::TemplateExpansion:
   5029     MarkUsedTemplateParameters(Ctx,
   5030                                TemplateArg.getAsTemplateOrTemplatePattern(),
   5031                                OnlyDeduced, Depth, Used);
   5032     break;
   5033 
   5034   case TemplateArgument::Expression:
   5035     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
   5036                                Depth, Used);
   5037     break;
   5038 
   5039   case TemplateArgument::Pack:
   5040     for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
   5041                                       PEnd = TemplateArg.pack_end();
   5042          P != PEnd; ++P)
   5043       MarkUsedTemplateParameters(Ctx, *P, OnlyDeduced, Depth, Used);
   5044     break;
   5045   }
   5046 }
   5047 
   5048 /// \brief Mark which template parameters can be deduced from a given
   5049 /// template argument list.
   5050 ///
   5051 /// \param TemplateArgs the template argument list from which template
   5052 /// parameters will be deduced.
   5053 ///
   5054 /// \param Used a bit vector whose elements will be set to \c true
   5055 /// to indicate when the corresponding template parameter will be
   5056 /// deduced.
   5057 void
   5058 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
   5059                                  bool OnlyDeduced, unsigned Depth,
   5060                                  llvm::SmallBitVector &Used) {
   5061   // C++0x [temp.deduct.type]p9:
   5062   //   If the template argument list of P contains a pack expansion that is not
   5063   //   the last template argument, the entire template argument list is a
   5064   //   non-deduced context.
   5065   if (OnlyDeduced &&
   5066       hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
   5067     return;
   5068 
   5069   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   5070     ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
   5071                                  Depth, Used);
   5072 }
   5073 
   5074 /// \brief Marks all of the template parameters that will be deduced by a
   5075 /// call to the given function template.
   5076 void
   5077 Sema::MarkDeducedTemplateParameters(ASTContext &Ctx,
   5078                                     const FunctionTemplateDecl *FunctionTemplate,
   5079                                     llvm::SmallBitVector &Deduced) {
   5080   TemplateParameterList *TemplateParams
   5081     = FunctionTemplate->getTemplateParameters();
   5082   Deduced.clear();
   5083   Deduced.resize(TemplateParams->size());
   5084 
   5085   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   5086   for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
   5087     ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
   5088                                  true, TemplateParams->getDepth(), Deduced);
   5089 }
   5090 
   5091 bool hasDeducibleTemplateParameters(Sema &S,
   5092                                     FunctionTemplateDecl *FunctionTemplate,
   5093                                     QualType T) {
   5094   if (!T->isDependentType())
   5095     return false;
   5096 
   5097   TemplateParameterList *TemplateParams
   5098     = FunctionTemplate->getTemplateParameters();
   5099   llvm::SmallBitVector Deduced(TemplateParams->size());
   5100   ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
   5101                                Deduced);
   5102 
   5103   return Deduced.any();
   5104 }
   5105