Home | History | Annotate | Download | only in src
      1 /*
      2  * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
      3  * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
      4  * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
      5  */
      6 
      7 /* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/rpe.c,v 1.3 1994/05/10 20:18:46 jutta Exp $ */
      8 
      9 #include <stdio.h>
     10 #include <assert.h>
     11 
     12 #include "private.h"
     13 
     14 #include "gsm.h"
     15 #include "proto.h"
     16 
     17 /*  4.2.13 .. 4.2.17  RPE ENCODING SECTION
     18  */
     19 
     20 /* 4.2.13 */
     21 
     22 static void Weighting_filter P2((e, x),
     23 	register word	* e,		/* signal [-5..0.39.44]	IN  */
     24 	word		* x		/* signal [0..39]	OUT */
     25 )
     26 /*
     27  *  The coefficients of the weighting filter are stored in a table
     28  *  (see table 4.4).  The following scaling is used:
     29  *
     30  *	H[0..10] = integer( real_H[ 0..10] * 8192 );
     31  */
     32 {
     33 	/* word			wt[ 50 ]; */
     34 
     35 	register longword	L_result;
     36 	register int		k /* , i */ ;
     37 
     38 	/*  Initialization of a temporary working array wt[0...49]
     39 	 */
     40 
     41 	/* for (k =  0; k <=  4; k++) wt[k] = 0;
     42 	 * for (k =  5; k <= 44; k++) wt[k] = *e++;
     43 	 * for (k = 45; k <= 49; k++) wt[k] = 0;
     44 	 *
     45 	 *  (e[-5..-1] and e[40..44] are allocated by the caller,
     46 	 *  are initially zero and are not written anywhere.)
     47 	 */
     48 	e -= 5;
     49 
     50 	/*  Compute the signal x[0..39]
     51 	 */
     52 	for (k = 0; k <= 39; k++) {
     53 
     54 		L_result = 8192 >> 1;
     55 
     56 		/* for (i = 0; i <= 10; i++) {
     57 		 *	L_temp   = GSM_L_MULT( wt[k+i], gsm_H[i] );
     58 		 *	L_result = GSM_L_ADD( L_result, L_temp );
     59 		 * }
     60 		 */
     61 
     62 #undef	STEP
     63 #define	STEP( i, H )	(e[ k + i ] * (longword)H)
     64 
     65 		/*  Every one of these multiplications is done twice --
     66 		 *  but I don't see an elegant way to optimize this.
     67 		 *  Do you?
     68 		 */
     69 
     70 #ifdef	STUPID_COMPILER
     71 		L_result += STEP(	0, 	-134 ) ;
     72 		L_result += STEP(	1, 	-374 )  ;
     73 	               /* + STEP(	2, 	0    )  */
     74 		L_result += STEP(	3, 	2054 ) ;
     75 		L_result += STEP(	4, 	5741 ) ;
     76 		L_result += STEP(	5, 	8192 ) ;
     77 		L_result += STEP(	6, 	5741 ) ;
     78 		L_result += STEP(	7, 	2054 ) ;
     79 	 	       /* + STEP(	8, 	0    )  */
     80 		L_result += STEP(	9, 	-374 ) ;
     81 		L_result += STEP(	10, 	-134 ) ;
     82 #else
     83 		L_result +=
     84 		  STEP(	0, 	-134 )
     85 		+ STEP(	1, 	-374 )
     86 	     /* + STEP(	2, 	0    )  */
     87 		+ STEP(	3, 	2054 )
     88 		+ STEP(	4, 	5741 )
     89 		+ STEP(	5, 	8192 )
     90 		+ STEP(	6, 	5741 )
     91 		+ STEP(	7, 	2054 )
     92 	     /* + STEP(	8, 	0    )  */
     93 		+ STEP(	9, 	-374 )
     94 		+ STEP(10, 	-134 )
     95 		;
     96 #endif
     97 
     98 		/* L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x2) *)
     99 		 * L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x4) *)
    100 		 *
    101 		 * x[k] = SASR( L_result, 16 );
    102 		 */
    103 
    104 		/* 2 adds vs. >>16 => 14, minus one shift to compensate for
    105 		 * those we lost when replacing L_MULT by '*'.
    106 		 */
    107 
    108 		L_result = SASR( L_result, 13 );
    109 		x[k] =  (  L_result < MIN_WORD ? MIN_WORD
    110 			: (L_result > MAX_WORD ? MAX_WORD : L_result ));
    111 	}
    112 }
    113 
    114 /* 4.2.14 */
    115 
    116 static void RPE_grid_selection P3((x,xM,Mc_out),
    117 	word		* x,		/* [0..39]		IN  */
    118 	word		* xM,		/* [0..12]		OUT */
    119 	word		* Mc_out	/*			OUT */
    120 )
    121 /*
    122  *  The signal x[0..39] is used to select the RPE grid which is
    123  *  represented by Mc.
    124  */
    125 {
    126 	/* register word	temp1;	*/
    127 	register int		/* m, */  i;
    128 	register longword	L_result, L_temp;
    129 	longword		EM;	/* xxx should be L_EM? */
    130 	word			Mc;
    131 
    132 	longword		L_common_0_3;
    133 
    134 	EM = 0;
    135 	Mc = 0;
    136 
    137 	/* for (m = 0; m <= 3; m++) {
    138 	 *	L_result = 0;
    139 	 *
    140 	 *
    141 	 *	for (i = 0; i <= 12; i++) {
    142 	 *
    143 	 *		temp1    = SASR( x[m + 3*i], 2 );
    144 	 *
    145 	 *		assert(temp1 != MIN_WORD);
    146 	 *
    147 	 *		L_temp   = GSM_L_MULT( temp1, temp1 );
    148 	 *		L_result = GSM_L_ADD( L_temp, L_result );
    149 	 *	}
    150 	 *
    151 	 *	if (L_result > EM) {
    152 	 *		Mc = m;
    153 	 *		EM = L_result;
    154 	 *	}
    155 	 * }
    156 	 */
    157 
    158 #undef	STEP
    159 #define	STEP( m, i )		L_temp = SASR( x[m + 3 * i], 2 );	\
    160 				L_result += L_temp * L_temp;
    161 
    162 	/* common part of 0 and 3 */
    163 
    164 	L_result = 0;
    165 	STEP( 0, 1 ); STEP( 0, 2 ); STEP( 0, 3 ); STEP( 0, 4 );
    166 	STEP( 0, 5 ); STEP( 0, 6 ); STEP( 0, 7 ); STEP( 0, 8 );
    167 	STEP( 0, 9 ); STEP( 0, 10); STEP( 0, 11); STEP( 0, 12);
    168 	L_common_0_3 = L_result;
    169 
    170 	/* i = 0 */
    171 
    172 	STEP( 0, 0 );
    173 	L_result <<= 1;	/* implicit in L_MULT */
    174 	EM = L_result;
    175 
    176 	/* i = 1 */
    177 
    178 	L_result = 0;
    179 	STEP( 1, 0 );
    180 	STEP( 1, 1 ); STEP( 1, 2 ); STEP( 1, 3 ); STEP( 1, 4 );
    181 	STEP( 1, 5 ); STEP( 1, 6 ); STEP( 1, 7 ); STEP( 1, 8 );
    182 	STEP( 1, 9 ); STEP( 1, 10); STEP( 1, 11); STEP( 1, 12);
    183 	L_result <<= 1;
    184 	if (L_result > EM) {
    185 		Mc = 1;
    186 	 	EM = L_result;
    187 	}
    188 
    189 	/* i = 2 */
    190 
    191 	L_result = 0;
    192 	STEP( 2, 0 );
    193 	STEP( 2, 1 ); STEP( 2, 2 ); STEP( 2, 3 ); STEP( 2, 4 );
    194 	STEP( 2, 5 ); STEP( 2, 6 ); STEP( 2, 7 ); STEP( 2, 8 );
    195 	STEP( 2, 9 ); STEP( 2, 10); STEP( 2, 11); STEP( 2, 12);
    196 	L_result <<= 1;
    197 	if (L_result > EM) {
    198 		Mc = 2;
    199 	 	EM = L_result;
    200 	}
    201 
    202 	/* i = 3 */
    203 
    204 	L_result = L_common_0_3;
    205 	STEP( 3, 12 );
    206 	L_result <<= 1;
    207 	if (L_result > EM) {
    208 		Mc = 3;
    209 	 	EM = L_result;
    210 	}
    211 
    212 	/**/
    213 
    214 	/*  Down-sampling by a factor 3 to get the selected xM[0..12]
    215 	 *  RPE sequence.
    216 	 */
    217 	for (i = 0; i <= 12; i ++) xM[i] = x[Mc + 3*i];
    218 	*Mc_out = Mc;
    219 }
    220 
    221 /* 4.12.15 */
    222 
    223 static void APCM_quantization_xmaxc_to_exp_mant P3((xmaxc,exp_out,mant_out),
    224 	word		xmaxc,		/* IN 	*/
    225 	word		* exp_out,	/* OUT	*/
    226 	word		* mant_out )	/* OUT  */
    227 {
    228 	word	exp, mant;
    229 
    230 	/* Compute exponent and mantissa of the decoded version of xmaxc
    231 	 */
    232 
    233 	exp = 0;
    234 	if (xmaxc > 15) exp = SASR(xmaxc, 3) - 1;
    235 	mant = xmaxc - (exp << 3);
    236 
    237 	if (mant == 0) {
    238 		exp  = -4;
    239 		mant = 7;
    240 	}
    241 	else {
    242 		while (mant <= 7) {
    243 			mant = mant << 1 | 1;
    244 			exp--;
    245 		}
    246 		mant -= 8;
    247 	}
    248 
    249 	assert( exp  >= -4 && exp <= 6 );
    250 	assert( mant >= 0 && mant <= 7 );
    251 
    252 	*exp_out  = exp;
    253 	*mant_out = mant;
    254 }
    255 
    256 static void APCM_quantization P5((xM,xMc,mant_out,exp_out,xmaxc_out),
    257 	word		* xM,		/* [0..12]		IN	*/
    258 
    259 	word		* xMc,		/* [0..12]		OUT	*/
    260 	word		* mant_out,	/* 			OUT	*/
    261 	word		* exp_out,	/*			OUT	*/
    262 	word		* xmaxc_out	/*			OUT	*/
    263 )
    264 {
    265 	int	i, itest;
    266 
    267 	word	xmax, xmaxc, temp, temp1, temp2;
    268 	word	exp, mant;
    269 
    270 
    271 	/*  Find the maximum absolute value xmax of xM[0..12].
    272 	 */
    273 
    274 	xmax = 0;
    275 	for (i = 0; i <= 12; i++) {
    276 		temp = xM[i];
    277 		temp = GSM_ABS(temp);
    278 		if (temp > xmax) xmax = temp;
    279 	}
    280 
    281 	/*  Qantizing and coding of xmax to get xmaxc.
    282 	 */
    283 
    284 	exp   = 0;
    285 	temp  = SASR( xmax, 9 );
    286 	itest = 0;
    287 
    288 	for (i = 0; i <= 5; i++) {
    289 
    290 		itest |= (temp <= 0);
    291 		temp = SASR( temp, 1 );
    292 
    293 		assert(exp <= 5);
    294 		if (itest == 0) exp++;		/* exp = add (exp, 1) */
    295 	}
    296 
    297 	assert(exp <= 6 && exp >= 0);
    298 	temp = exp + 5;
    299 
    300 	assert(temp <= 11 && temp >= 0);
    301 	xmaxc = gsm_add( SASR(xmax, temp), exp << 3 );
    302 
    303 	/*   Quantizing and coding of the xM[0..12] RPE sequence
    304 	 *   to get the xMc[0..12]
    305 	 */
    306 
    307 	APCM_quantization_xmaxc_to_exp_mant( xmaxc, &exp, &mant );
    308 
    309 	/*  This computation uses the fact that the decoded version of xmaxc
    310 	 *  can be calculated by using the exponent and the mantissa part of
    311 	 *  xmaxc (logarithmic table).
    312 	 *  So, this method avoids any division and uses only a scaling
    313 	 *  of the RPE samples by a function of the exponent.  A direct
    314 	 *  multiplication by the inverse of the mantissa (NRFAC[0..7]
    315 	 *  found in table 4.5) gives the 3 bit coded version xMc[0..12]
    316 	 *  of the RPE samples.
    317 	 */
    318 
    319 
    320 	/* Direct computation of xMc[0..12] using table 4.5
    321 	 */
    322 
    323 	assert( exp <= 4096 && exp >= -4096);
    324 	assert( mant >= 0 && mant <= 7 );
    325 
    326 	temp1 = 6 - exp;		/* normalization by the exponent */
    327 	temp2 = gsm_NRFAC[ mant ];  	/* inverse mantissa 		 */
    328 
    329 	for (i = 0; i <= 12; i++) {
    330 
    331 		assert(temp1 >= 0 && temp1 < 16);
    332 
    333 		temp = xM[i] << temp1;
    334 		temp = GSM_MULT( temp, temp2 );
    335 		temp = SASR(temp, 12);
    336 		xMc[i] = temp + 4;		/* see note below */
    337 	}
    338 
    339 	/*  NOTE: This equation is used to make all the xMc[i] positive.
    340 	 */
    341 
    342 	*mant_out  = mant;
    343 	*exp_out   = exp;
    344 	*xmaxc_out = xmaxc;
    345 }
    346 
    347 /* 4.2.16 */
    348 
    349 static void APCM_inverse_quantization P4((xMc,mant,exp,xMp),
    350 	register word	* xMc,	/* [0..12]			IN 	*/
    351 	word		mant,
    352 	word		exp,
    353 	register word	* xMp)	/* [0..12]			OUT 	*/
    354 /*
    355  *  This part is for decoding the RPE sequence of coded xMc[0..12]
    356  *  samples to obtain the xMp[0..12] array.  Table 4.6 is used to get
    357  *  the mantissa of xmaxc (FAC[0..7]).
    358  */
    359 {
    360 	int	i;
    361 	word	temp, temp1, temp2, temp3;
    362 	longword	ltmp;
    363 
    364 	assert( mant >= 0 && mant <= 7 );
    365 
    366 	temp1 = gsm_FAC[ mant ];	/* see 4.2-15 for mant */
    367 	temp2 = gsm_sub( 6, exp );	/* see 4.2-15 for exp  */
    368 	temp3 = gsm_asl( 1, gsm_sub( temp2, 1 ));
    369 
    370 	for (i = 13; i--;) {
    371 
    372 		assert( *xMc <= 7 && *xMc >= 0 ); 	/* 3 bit unsigned */
    373 
    374 		/* temp = gsm_sub( *xMc++ << 1, 7 ); */
    375 		temp = (*xMc++ << 1) - 7;	        /* restore sign   */
    376 		assert( temp <= 7 && temp >= -7 ); 	/* 4 bit signed   */
    377 
    378 		temp <<= 12;				/* 16 bit signed  */
    379 		temp = GSM_MULT_R( temp1, temp );
    380 		temp = GSM_ADD( temp, temp3 );
    381 		*xMp++ = gsm_asr( temp, temp2 );
    382 	}
    383 }
    384 
    385 /* 4.2.17 */
    386 
    387 static void RPE_grid_positioning P3((Mc,xMp,ep),
    388 	word		Mc,		/* grid position	IN	*/
    389 	register word	* xMp,		/* [0..12]		IN	*/
    390 	register word	* ep		/* [0..39]		OUT	*/
    391 )
    392 /*
    393  *  This procedure computes the reconstructed long term residual signal
    394  *  ep[0..39] for the LTP analysis filter.  The inputs are the Mc
    395  *  which is the grid position selection and the xMp[0..12] decoded
    396  *  RPE samples which are upsampled by a factor of 3 by inserting zero
    397  *  values.
    398  */
    399 {
    400 	int	i = 13;
    401 
    402 	assert(0 <= Mc && Mc <= 3);
    403 
    404         switch (Mc) {
    405                 case 3: *ep++ = 0;
    406                 case 2:  do {
    407                                 *ep++ = 0;
    408                 case 1:         *ep++ = 0;
    409                 case 0:         *ep++ = *xMp++;
    410                          } while (--i);
    411         }
    412         while (++Mc < 4) *ep++ = 0;
    413 
    414 	/*
    415 
    416 	int i, k;
    417 	for (k = 0; k <= 39; k++) ep[k] = 0;
    418 	for (i = 0; i <= 12; i++) {
    419 		ep[ Mc + (3*i) ] = xMp[i];
    420 	}
    421 	*/
    422 }
    423 
    424 /* 4.2.18 */
    425 
    426 /*  This procedure adds the reconstructed long term residual signal
    427  *  ep[0..39] to the estimated signal dpp[0..39] from the long term
    428  *  analysis filter to compute the reconstructed short term residual
    429  *  signal dp[-40..-1]; also the reconstructed short term residual
    430  *  array dp[-120..-41] is updated.
    431  */
    432 
    433 #if 0	/* Has been inlined in code.c */
    434 void Gsm_Update_of_reconstructed_short_time_residual_signal P3((dpp, ep, dp),
    435 	word	* dpp,		/* [0...39]	IN	*/
    436 	word	* ep,		/* [0...39]	IN	*/
    437 	word	* dp)		/* [-120...-1]  IN/OUT 	*/
    438 {
    439 	int 		k;
    440 
    441 	for (k = 0; k <= 79; k++)
    442 		dp[ -120 + k ] = dp[ -80 + k ];
    443 
    444 	for (k = 0; k <= 39; k++)
    445 		dp[ -40 + k ] = gsm_add( ep[k], dpp[k] );
    446 }
    447 #endif	/* Has been inlined in code.c */
    448 
    449 void Gsm_RPE_Encoding P5((S,e,xmaxc,Mc,xMc),
    450 
    451 	struct gsm_state * S,
    452 
    453 	word	* e,		/* -5..-1][0..39][40..44	IN/OUT  */
    454 	word	* xmaxc,	/* 				OUT */
    455 	word	* Mc,		/* 			  	OUT */
    456 	word	* xMc)		/* [0..12]			OUT */
    457 {
    458 	word	x[40];
    459 	word	xM[13], xMp[13];
    460 	word	mant, exp;
    461 
    462 	Weighting_filter(e, x);
    463 	RPE_grid_selection(x, xM, Mc);
    464 
    465 	APCM_quantization(	xM, xMc, &mant, &exp, xmaxc);
    466 	APCM_inverse_quantization(  xMc,  mant,  exp, xMp);
    467 
    468 	RPE_grid_positioning( *Mc, xMp, e );
    469 
    470 }
    471 
    472 void Gsm_RPE_Decoding P5((S, xmaxcr, Mcr, xMcr, erp),
    473 	struct gsm_state	* S,
    474 
    475 	word 		xmaxcr,
    476 	word		Mcr,
    477 	word		* xMcr,  /* [0..12], 3 bits 		IN	*/
    478 	word		* erp	 /* [0..39]			OUT 	*/
    479 )
    480 {
    481 	word	exp, mant;
    482 	word	xMp[ 13 ];
    483 
    484 	APCM_quantization_xmaxc_to_exp_mant( xmaxcr, &exp, &mant );
    485 	APCM_inverse_quantization( xMcr, mant, exp, xMp );
    486 	RPE_grid_positioning( Mcr, xMp, erp );
    487 
    488 }
    489