Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define ATRACE_TAG ATRACE_TAG_DALVIK
     18 
     19 #include "thread.h"
     20 
     21 #include <cutils/trace.h>
     22 #include <pthread.h>
     23 #include <signal.h>
     24 #include <sys/resource.h>
     25 #include <sys/time.h>
     26 
     27 #include <algorithm>
     28 #include <bitset>
     29 #include <cerrno>
     30 #include <iostream>
     31 #include <list>
     32 
     33 #include "arch/context.h"
     34 #include "base/mutex.h"
     35 #include "class_linker-inl.h"
     36 #include "class_linker.h"
     37 #include "debugger.h"
     38 #include "dex_file-inl.h"
     39 #include "entrypoints/entrypoint_utils.h"
     40 #include "entrypoints/quick/quick_alloc_entrypoints.h"
     41 #include "gc_map.h"
     42 #include "gc/accounting/card_table-inl.h"
     43 #include "gc/allocator/rosalloc.h"
     44 #include "gc/heap.h"
     45 #include "gc/space/space.h"
     46 #include "handle_scope-inl.h"
     47 #include "handle_scope.h"
     48 #include "indirect_reference_table-inl.h"
     49 #include "jni_internal.h"
     50 #include "mirror/art_field-inl.h"
     51 #include "mirror/art_method-inl.h"
     52 #include "mirror/class_loader.h"
     53 #include "mirror/class-inl.h"
     54 #include "mirror/object_array-inl.h"
     55 #include "mirror/stack_trace_element.h"
     56 #include "monitor.h"
     57 #include "object_lock.h"
     58 #include "quick_exception_handler.h"
     59 #include "quick/quick_method_frame_info.h"
     60 #include "reflection.h"
     61 #include "runtime.h"
     62 #include "scoped_thread_state_change.h"
     63 #include "ScopedLocalRef.h"
     64 #include "ScopedUtfChars.h"
     65 #include "stack.h"
     66 #include "thread_list.h"
     67 #include "thread-inl.h"
     68 #include "utils.h"
     69 #include "verifier/dex_gc_map.h"
     70 #include "verify_object-inl.h"
     71 #include "vmap_table.h"
     72 #include "well_known_classes.h"
     73 
     74 namespace art {
     75 
     76 bool Thread::is_started_ = false;
     77 pthread_key_t Thread::pthread_key_self_;
     78 ConditionVariable* Thread::resume_cond_ = nullptr;
     79 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
     80 
     81 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
     82 
     83 void Thread::InitCardTable() {
     84   tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
     85 }
     86 
     87 static void UnimplementedEntryPoint() {
     88   UNIMPLEMENTED(FATAL);
     89 }
     90 
     91 void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
     92                      PortableEntryPoints* ppoints, QuickEntryPoints* qpoints);
     93 
     94 void Thread::InitTlsEntryPoints() {
     95   // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
     96   uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints);
     97   uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) +
     98                                                 sizeof(tlsPtr_.quick_entrypoints));
     99   for (uintptr_t* it = begin; it != end; ++it) {
    100     *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
    101   }
    102   InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints,
    103                   &tlsPtr_.portable_entrypoints, &tlsPtr_.quick_entrypoints);
    104 }
    105 
    106 void Thread::ResetQuickAllocEntryPointsForThread() {
    107   ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
    108 }
    109 
    110 void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
    111   tlsPtr_.deoptimization_shadow_frame = sf;
    112 }
    113 
    114 void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
    115   tls64_.deoptimization_return_value.SetJ(ret_val.GetJ());
    116 }
    117 
    118 ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
    119   ShadowFrame* sf = tlsPtr_.deoptimization_shadow_frame;
    120   tlsPtr_.deoptimization_shadow_frame = nullptr;
    121   ret_val->SetJ(tls64_.deoptimization_return_value.GetJ());
    122   return sf;
    123 }
    124 
    125 void Thread::SetShadowFrameUnderConstruction(ShadowFrame* sf) {
    126   sf->SetLink(tlsPtr_.shadow_frame_under_construction);
    127   tlsPtr_.shadow_frame_under_construction = sf;
    128 }
    129 
    130 void Thread::ClearShadowFrameUnderConstruction() {
    131   CHECK_NE(static_cast<ShadowFrame*>(nullptr), tlsPtr_.shadow_frame_under_construction);
    132   tlsPtr_.shadow_frame_under_construction = tlsPtr_.shadow_frame_under_construction->GetLink();
    133 }
    134 
    135 void Thread::InitTid() {
    136   tls32_.tid = ::art::GetTid();
    137 }
    138 
    139 void Thread::InitAfterFork() {
    140   // One thread (us) survived the fork, but we have a new tid so we need to
    141   // update the value stashed in this Thread*.
    142   InitTid();
    143 }
    144 
    145 void* Thread::CreateCallback(void* arg) {
    146   Thread* self = reinterpret_cast<Thread*>(arg);
    147   Runtime* runtime = Runtime::Current();
    148   if (runtime == nullptr) {
    149     LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
    150     return nullptr;
    151   }
    152   {
    153     // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
    154     //       after self->Init().
    155     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
    156     // Check that if we got here we cannot be shutting down (as shutdown should never have started
    157     // while threads are being born).
    158     CHECK(!runtime->IsShuttingDownLocked());
    159     self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
    160     Runtime::Current()->EndThreadBirth();
    161   }
    162   {
    163     ScopedObjectAccess soa(self);
    164 
    165     // Copy peer into self, deleting global reference when done.
    166     CHECK(self->tlsPtr_.jpeer != nullptr);
    167     self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer);
    168     self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
    169     self->tlsPtr_.jpeer = nullptr;
    170     self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str());
    171 
    172     mirror::ArtField* priorityField = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority);
    173     self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
    174     Dbg::PostThreadStart(self);
    175 
    176     // Invoke the 'run' method of our java.lang.Thread.
    177     mirror::Object* receiver = self->tlsPtr_.opeer;
    178     jmethodID mid = WellKnownClasses::java_lang_Thread_run;
    179     InvokeVirtualOrInterfaceWithJValues(soa, receiver, mid, nullptr);
    180   }
    181   // Detach and delete self.
    182   Runtime::Current()->GetThreadList()->Unregister(self);
    183 
    184   return nullptr;
    185 }
    186 
    187 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
    188                                   mirror::Object* thread_peer) {
    189   mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
    190   Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
    191   // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
    192   // to stop it from going away.
    193   if (kIsDebugBuild) {
    194     MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
    195     if (result != nullptr && !result->IsSuspended()) {
    196       Locks::thread_list_lock_->AssertHeld(soa.Self());
    197     }
    198   }
    199   return result;
    200 }
    201 
    202 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
    203                                   jobject java_thread) {
    204   return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
    205 }
    206 
    207 static size_t FixStackSize(size_t stack_size) {
    208   // A stack size of zero means "use the default".
    209   if (stack_size == 0) {
    210     stack_size = Runtime::Current()->GetDefaultStackSize();
    211   }
    212 
    213   // Dalvik used the bionic pthread default stack size for native threads,
    214   // so include that here to support apps that expect large native stacks.
    215   stack_size += 1 * MB;
    216 
    217   // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
    218   if (stack_size < PTHREAD_STACK_MIN) {
    219     stack_size = PTHREAD_STACK_MIN;
    220   }
    221 
    222   if (Runtime::Current()->ExplicitStackOverflowChecks()) {
    223     // It's likely that callers are trying to ensure they have at least a certain amount of
    224     // stack space, so we should add our reserved space on top of what they requested, rather
    225     // than implicitly take it away from them.
    226     stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
    227   } else {
    228     // If we are going to use implicit stack checks, allocate space for the protected
    229     // region at the bottom of the stack.
    230     stack_size += Thread::kStackOverflowImplicitCheckSize +
    231         GetStackOverflowReservedBytes(kRuntimeISA);
    232   }
    233 
    234   // Some systems require the stack size to be a multiple of the system page size, so round up.
    235   stack_size = RoundUp(stack_size, kPageSize);
    236 
    237   return stack_size;
    238 }
    239 
    240 // Global variable to prevent the compiler optimizing away the page reads for the stack.
    241 byte dont_optimize_this;
    242 
    243 // Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
    244 // overflow is detected.  It is located right below the stack_begin_.
    245 //
    246 // There is a little complexity here that deserves a special mention.  On some
    247 // architectures, the stack created using a VM_GROWSDOWN flag
    248 // to prevent memory being allocated when it's not needed.  This flag makes the
    249 // kernel only allocate memory for the stack by growing down in memory.  Because we
    250 // want to put an mprotected region far away from that at the stack top, we need
    251 // to make sure the pages for the stack are mapped in before we call mprotect.  We do
    252 // this by reading every page from the stack bottom (highest address) to the stack top.
    253 // We then madvise this away.
    254 void Thread::InstallImplicitProtection() {
    255   byte* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
    256   byte* stack_himem = tlsPtr_.stack_end;
    257   byte* stack_top = reinterpret_cast<byte*>(reinterpret_cast<uintptr_t>(&stack_himem) &
    258       ~(kPageSize - 1));    // Page containing current top of stack.
    259 
    260   // First remove the protection on the protected region as will want to read and
    261   // write it.  This may fail (on the first attempt when the stack is not mapped)
    262   // but we ignore that.
    263   UnprotectStack();
    264 
    265   // Map in the stack.  This must be done by reading from the
    266   // current stack pointer downwards as the stack may be mapped using VM_GROWSDOWN
    267   // in the kernel.  Any access more than a page below the current SP might cause
    268   // a segv.
    269 
    270   // Read every page from the high address to the low.
    271   for (byte* p = stack_top; p >= pregion; p -= kPageSize) {
    272     dont_optimize_this = *p;
    273   }
    274 
    275   VLOG(threads) << "installing stack protected region at " << std::hex <<
    276       static_cast<void*>(pregion) << " to " <<
    277       static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
    278 
    279   // Protect the bottom of the stack to prevent read/write to it.
    280   ProtectStack();
    281 
    282   // Tell the kernel that we won't be needing these pages any more.
    283   // NB. madvise will probably write zeroes into the memory (on linux it does).
    284   uint32_t unwanted_size = stack_top - pregion - kPageSize;
    285   madvise(pregion, unwanted_size, MADV_DONTNEED);
    286 }
    287 
    288 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
    289   CHECK(java_peer != nullptr);
    290   Thread* self = static_cast<JNIEnvExt*>(env)->self;
    291   Runtime* runtime = Runtime::Current();
    292 
    293   // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
    294   bool thread_start_during_shutdown = false;
    295   {
    296     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    297     if (runtime->IsShuttingDownLocked()) {
    298       thread_start_during_shutdown = true;
    299     } else {
    300       runtime->StartThreadBirth();
    301     }
    302   }
    303   if (thread_start_during_shutdown) {
    304     ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
    305     env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
    306     return;
    307   }
    308 
    309   Thread* child_thread = new Thread(is_daemon);
    310   // Use global JNI ref to hold peer live while child thread starts.
    311   child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
    312   stack_size = FixStackSize(stack_size);
    313 
    314   // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
    315   // assign it.
    316   env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
    317                     reinterpret_cast<jlong>(child_thread));
    318 
    319   pthread_t new_pthread;
    320   pthread_attr_t attr;
    321   CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
    322   CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
    323   CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
    324   int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
    325   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
    326 
    327   if (pthread_create_result != 0) {
    328     // pthread_create(3) failed, so clean up.
    329     {
    330       MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    331       runtime->EndThreadBirth();
    332     }
    333     // Manually delete the global reference since Thread::Init will not have been run.
    334     env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
    335     child_thread->tlsPtr_.jpeer = nullptr;
    336     delete child_thread;
    337     child_thread = nullptr;
    338     // TODO: remove from thread group?
    339     env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
    340     {
    341       std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
    342                                    PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
    343       ScopedObjectAccess soa(env);
    344       soa.Self()->ThrowOutOfMemoryError(msg.c_str());
    345     }
    346   }
    347 }
    348 
    349 void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
    350   // This function does all the initialization that must be run by the native thread it applies to.
    351   // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
    352   // we can handshake with the corresponding native thread when it's ready.) Check this native
    353   // thread hasn't been through here already...
    354   CHECK(Thread::Current() == nullptr);
    355   SetUpAlternateSignalStack();
    356   InitCpu();
    357   InitTlsEntryPoints();
    358   RemoveSuspendTrigger();
    359   InitCardTable();
    360   InitTid();
    361   // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
    362   // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
    363   tlsPtr_.pthread_self = pthread_self();
    364   CHECK(is_started_);
    365   CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
    366   DCHECK_EQ(Thread::Current(), this);
    367 
    368   tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
    369   InitStackHwm();
    370 
    371   tlsPtr_.jni_env = new JNIEnvExt(this, java_vm);
    372   thread_list->Register(this);
    373 }
    374 
    375 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
    376                        bool create_peer) {
    377   Thread* self;
    378   Runtime* runtime = Runtime::Current();
    379   if (runtime == nullptr) {
    380     LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
    381     return nullptr;
    382   }
    383   {
    384     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
    385     if (runtime->IsShuttingDownLocked()) {
    386       LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
    387       return nullptr;
    388     } else {
    389       Runtime::Current()->StartThreadBirth();
    390       self = new Thread(as_daemon);
    391       self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
    392       Runtime::Current()->EndThreadBirth();
    393     }
    394   }
    395 
    396   CHECK_NE(self->GetState(), kRunnable);
    397   self->SetState(kNative);
    398 
    399   // If we're the main thread, ClassLinker won't be created until after we're attached,
    400   // so that thread needs a two-stage attach. Regular threads don't need this hack.
    401   // In the compiler, all threads need this hack, because no-one's going to be getting
    402   // a native peer!
    403   if (create_peer) {
    404     self->CreatePeer(thread_name, as_daemon, thread_group);
    405   } else {
    406     // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
    407     if (thread_name != nullptr) {
    408       self->tlsPtr_.name->assign(thread_name);
    409       ::art::SetThreadName(thread_name);
    410     } else if (self->GetJniEnv()->check_jni) {
    411       LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
    412     }
    413   }
    414 
    415   {
    416     ScopedObjectAccess soa(self);
    417     Dbg::PostThreadStart(self);
    418   }
    419 
    420   return self;
    421 }
    422 
    423 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
    424   Runtime* runtime = Runtime::Current();
    425   CHECK(runtime->IsStarted());
    426   JNIEnv* env = tlsPtr_.jni_env;
    427 
    428   if (thread_group == nullptr) {
    429     thread_group = runtime->GetMainThreadGroup();
    430   }
    431   ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
    432   if (name != nullptr && thread_name.get() == nullptr) {
    433     CHECK(IsExceptionPending());
    434     return;
    435   }
    436   jint thread_priority = GetNativePriority();
    437   jboolean thread_is_daemon = as_daemon;
    438 
    439   ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
    440   if (peer.get() == nullptr) {
    441     CHECK(IsExceptionPending());
    442     return;
    443   }
    444   {
    445     ScopedObjectAccess soa(this);
    446     tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get());
    447   }
    448   env->CallNonvirtualVoidMethod(peer.get(),
    449                                 WellKnownClasses::java_lang_Thread,
    450                                 WellKnownClasses::java_lang_Thread_init,
    451                                 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
    452   AssertNoPendingException();
    453 
    454   Thread* self = this;
    455   DCHECK_EQ(self, Thread::Current());
    456   env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
    457                     reinterpret_cast<jlong>(self));
    458 
    459   ScopedObjectAccess soa(self);
    460   StackHandleScope<1> hs(self);
    461   Handle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa)));
    462   if (peer_thread_name.Get() == nullptr) {
    463     // The Thread constructor should have set the Thread.name to a
    464     // non-null value. However, because we can run without code
    465     // available (in the compiler, in tests), we manually assign the
    466     // fields the constructor should have set.
    467     if (runtime->IsActiveTransaction()) {
    468       InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
    469     } else {
    470       InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
    471     }
    472     peer_thread_name.Assign(GetThreadName(soa));
    473   }
    474   // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
    475   if (peer_thread_name.Get() != nullptr) {
    476     SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
    477   }
    478 }
    479 
    480 template<bool kTransactionActive>
    481 void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
    482                       jobject thread_name, jint thread_priority) {
    483   soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
    484       SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon);
    485   soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
    486       SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group));
    487   soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
    488       SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name));
    489   soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
    490       SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority);
    491 }
    492 
    493 void Thread::SetThreadName(const char* name) {
    494   tlsPtr_.name->assign(name);
    495   ::art::SetThreadName(name);
    496   Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
    497 }
    498 
    499 void Thread::InitStackHwm() {
    500   void* read_stack_base;
    501   size_t read_stack_size;
    502   size_t read_guard_size;
    503   GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
    504 
    505   // This is included in the SIGQUIT output, but it's useful here for thread debugging.
    506   VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
    507                                 read_stack_base,
    508                                 PrettySize(read_stack_size).c_str(),
    509                                 PrettySize(read_guard_size).c_str());
    510 
    511   tlsPtr_.stack_begin = reinterpret_cast<byte*>(read_stack_base);
    512   tlsPtr_.stack_size = read_stack_size;
    513 
    514   // The minimum stack size we can cope with is the overflow reserved bytes (typically
    515   // 8K) + the protected region size (4K) + another page (4K).  Typically this will
    516   // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
    517   // between 8K and 12K.
    518   uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
    519     + 4 * KB;
    520   if (read_stack_size <= min_stack) {
    521     LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << read_stack_size
    522         << " bytes)";
    523   }
    524 
    525   // TODO: move this into the Linux GetThreadStack implementation.
    526 #if !defined(__APPLE__)
    527   // If we're the main thread, check whether we were run with an unlimited stack. In that case,
    528   // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
    529   // will be broken because we'll die long before we get close to 2GB.
    530   bool is_main_thread = (::art::GetTid() == getpid());
    531   if (is_main_thread) {
    532     rlimit stack_limit;
    533     if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
    534       PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
    535     }
    536     if (stack_limit.rlim_cur == RLIM_INFINITY) {
    537       // Find the default stack size for new threads...
    538       pthread_attr_t default_attributes;
    539       size_t default_stack_size;
    540       CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
    541       CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
    542                          "default stack size query");
    543       CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
    544 
    545       // ...and use that as our limit.
    546       size_t old_stack_size = read_stack_size;
    547       tlsPtr_.stack_size = default_stack_size;
    548       tlsPtr_.stack_begin += (old_stack_size - default_stack_size);
    549       VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
    550                     << " to " << PrettySize(default_stack_size)
    551                     << " with base " << reinterpret_cast<void*>(tlsPtr_.stack_begin);
    552     }
    553   }
    554 #endif
    555 
    556   // Set stack_end_ to the bottom of the stack saving space of stack overflows
    557 
    558   Runtime* runtime = Runtime::Current();
    559   bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsCompiler();
    560   ResetDefaultStackEnd();
    561 
    562   // Install the protected region if we are doing implicit overflow checks.
    563   if (implicit_stack_check) {
    564     // The thread might have protected region at the bottom.  We need
    565     // to install our own region so we need to move the limits
    566     // of the stack to make room for it.
    567 
    568     tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
    569     tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
    570     tlsPtr_.stack_size -= read_guard_size;
    571 
    572     InstallImplicitProtection();
    573   }
    574 
    575   // Sanity check.
    576   int stack_variable;
    577   CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end));
    578 }
    579 
    580 void Thread::ShortDump(std::ostream& os) const {
    581   os << "Thread[";
    582   if (GetThreadId() != 0) {
    583     // If we're in kStarting, we won't have a thin lock id or tid yet.
    584     os << GetThreadId()
    585              << ",tid=" << GetTid() << ',';
    586   }
    587   os << GetState()
    588            << ",Thread*=" << this
    589            << ",peer=" << tlsPtr_.opeer
    590            << ",\"" << *tlsPtr_.name << "\""
    591            << "]";
    592 }
    593 
    594 void Thread::Dump(std::ostream& os) const {
    595   DumpState(os);
    596   DumpStack(os);
    597 }
    598 
    599 mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const {
    600   mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
    601   return (tlsPtr_.opeer != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr;
    602 }
    603 
    604 void Thread::GetThreadName(std::string& name) const {
    605   name.assign(*tlsPtr_.name);
    606 }
    607 
    608 uint64_t Thread::GetCpuMicroTime() const {
    609 #if defined(HAVE_POSIX_CLOCKS)
    610   clockid_t cpu_clock_id;
    611   pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
    612   timespec now;
    613   clock_gettime(cpu_clock_id, &now);
    614   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
    615 #else
    616   UNIMPLEMENTED(WARNING);
    617   return -1;
    618 #endif
    619 }
    620 
    621 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
    622 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
    623   LOG(ERROR) << *thread << " suspend count already zero.";
    624   Locks::thread_suspend_count_lock_->Unlock(self);
    625   if (!Locks::mutator_lock_->IsSharedHeld(self)) {
    626     Locks::mutator_lock_->SharedTryLock(self);
    627     if (!Locks::mutator_lock_->IsSharedHeld(self)) {
    628       LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
    629     }
    630   }
    631   if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
    632     Locks::thread_list_lock_->TryLock(self);
    633     if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
    634       LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
    635     }
    636   }
    637   std::ostringstream ss;
    638   Runtime::Current()->GetThreadList()->DumpLocked(ss);
    639   LOG(FATAL) << ss.str();
    640 }
    641 
    642 void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
    643   if (kIsDebugBuild) {
    644     DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
    645           << delta << " " << tls32_.debug_suspend_count << " " << this;
    646     DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
    647     Locks::thread_suspend_count_lock_->AssertHeld(self);
    648     if (this != self && !IsSuspended()) {
    649       Locks::thread_list_lock_->AssertHeld(self);
    650     }
    651   }
    652   if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
    653     UnsafeLogFatalForSuspendCount(self, this);
    654     return;
    655   }
    656 
    657   tls32_.suspend_count += delta;
    658   if (for_debugger) {
    659     tls32_.debug_suspend_count += delta;
    660   }
    661 
    662   if (tls32_.suspend_count == 0) {
    663     AtomicClearFlag(kSuspendRequest);
    664   } else {
    665     AtomicSetFlag(kSuspendRequest);
    666     TriggerSuspend();
    667   }
    668 }
    669 
    670 void Thread::RunCheckpointFunction() {
    671   Closure *checkpoints[kMaxCheckpoints];
    672 
    673   // Grab the suspend_count lock and copy the current set of
    674   // checkpoints.  Then clear the list and the flag.  The RequestCheckpoint
    675   // function will also grab this lock so we prevent a race between setting
    676   // the kCheckpointRequest flag and clearing it.
    677   {
    678     MutexLock mu(this, *Locks::thread_suspend_count_lock_);
    679     for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
    680       checkpoints[i] = tlsPtr_.checkpoint_functions[i];
    681       tlsPtr_.checkpoint_functions[i] = nullptr;
    682     }
    683     AtomicClearFlag(kCheckpointRequest);
    684   }
    685 
    686   // Outside the lock, run all the checkpoint functions that
    687   // we collected.
    688   bool found_checkpoint = false;
    689   for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
    690     if (checkpoints[i] != nullptr) {
    691       ATRACE_BEGIN("Checkpoint function");
    692       checkpoints[i]->Run(this);
    693       ATRACE_END();
    694       found_checkpoint = true;
    695     }
    696   }
    697   CHECK(found_checkpoint);
    698 }
    699 
    700 bool Thread::RequestCheckpoint(Closure* function) {
    701   union StateAndFlags old_state_and_flags;
    702   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
    703   if (old_state_and_flags.as_struct.state != kRunnable) {
    704     return false;  // Fail, thread is suspended and so can't run a checkpoint.
    705   }
    706 
    707   uint32_t available_checkpoint = kMaxCheckpoints;
    708   for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
    709     if (tlsPtr_.checkpoint_functions[i] == nullptr) {
    710       available_checkpoint = i;
    711       break;
    712     }
    713   }
    714   if (available_checkpoint == kMaxCheckpoints) {
    715     // No checkpoint functions available, we can't run a checkpoint
    716     return false;
    717   }
    718   tlsPtr_.checkpoint_functions[available_checkpoint] = function;
    719 
    720   // Checkpoint function installed now install flag bit.
    721   // We must be runnable to request a checkpoint.
    722   DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
    723   union StateAndFlags new_state_and_flags;
    724   new_state_and_flags.as_int = old_state_and_flags.as_int;
    725   new_state_and_flags.as_struct.flags |= kCheckpointRequest;
    726   bool success =
    727       tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(old_state_and_flags.as_int,
    728                                                                                        new_state_and_flags.as_int);
    729   if (UNLIKELY(!success)) {
    730     // The thread changed state before the checkpoint was installed.
    731     CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function);
    732     tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr;
    733   } else {
    734     CHECK_EQ(ReadFlag(kCheckpointRequest), true);
    735     TriggerSuspend();
    736   }
    737   return success;
    738 }
    739 
    740 void Thread::FullSuspendCheck() {
    741   VLOG(threads) << this << " self-suspending";
    742   ATRACE_BEGIN("Full suspend check");
    743   // Make thread appear suspended to other threads, release mutator_lock_.
    744   TransitionFromRunnableToSuspended(kSuspended);
    745   // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
    746   TransitionFromSuspendedToRunnable();
    747   ATRACE_END();
    748   VLOG(threads) << this << " self-reviving";
    749 }
    750 
    751 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
    752   std::string group_name;
    753   int priority;
    754   bool is_daemon = false;
    755   Thread* self = Thread::Current();
    756 
    757   // Don't do this if we are aborting since the GC may have all the threads suspended. This will
    758   // cause ScopedObjectAccessUnchecked to deadlock.
    759   if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
    760     ScopedObjectAccessUnchecked soa(self);
    761     priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)
    762         ->GetInt(thread->tlsPtr_.opeer);
    763     is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)
    764         ->GetBoolean(thread->tlsPtr_.opeer);
    765 
    766     mirror::Object* thread_group =
    767         soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer);
    768 
    769     if (thread_group != nullptr) {
    770       mirror::ArtField* group_name_field =
    771           soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
    772       mirror::String* group_name_string =
    773           reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
    774       group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
    775     }
    776   } else {
    777     priority = GetNativePriority();
    778   }
    779 
    780   std::string scheduler_group_name(GetSchedulerGroupName(tid));
    781   if (scheduler_group_name.empty()) {
    782     scheduler_group_name = "default";
    783   }
    784 
    785   if (thread != nullptr) {
    786     os << '"' << *thread->tlsPtr_.name << '"';
    787     if (is_daemon) {
    788       os << " daemon";
    789     }
    790     os << " prio=" << priority
    791        << " tid=" << thread->GetThreadId()
    792        << " " << thread->GetState();
    793     if (thread->IsStillStarting()) {
    794       os << " (still starting up)";
    795     }
    796     os << "\n";
    797   } else {
    798     os << '"' << ::art::GetThreadName(tid) << '"'
    799        << " prio=" << priority
    800        << " (not attached)\n";
    801   }
    802 
    803   if (thread != nullptr) {
    804     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
    805     os << "  | group=\"" << group_name << "\""
    806        << " sCount=" << thread->tls32_.suspend_count
    807        << " dsCount=" << thread->tls32_.debug_suspend_count
    808        << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
    809        << " self=" << reinterpret_cast<const void*>(thread) << "\n";
    810   }
    811 
    812   os << "  | sysTid=" << tid
    813      << " nice=" << getpriority(PRIO_PROCESS, tid)
    814      << " cgrp=" << scheduler_group_name;
    815   if (thread != nullptr) {
    816     int policy;
    817     sched_param sp;
    818     CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
    819                        __FUNCTION__);
    820     os << " sched=" << policy << "/" << sp.sched_priority
    821        << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
    822   }
    823   os << "\n";
    824 
    825   // Grab the scheduler stats for this thread.
    826   std::string scheduler_stats;
    827   if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
    828     scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
    829   } else {
    830     scheduler_stats = "0 0 0";
    831   }
    832 
    833   char native_thread_state = '?';
    834   int utime = 0;
    835   int stime = 0;
    836   int task_cpu = 0;
    837   GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
    838 
    839   os << "  | state=" << native_thread_state
    840      << " schedstat=( " << scheduler_stats << " )"
    841      << " utm=" << utime
    842      << " stm=" << stime
    843      << " core=" << task_cpu
    844      << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
    845   if (thread != nullptr) {
    846     os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
    847         << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
    848         << PrettySize(thread->tlsPtr_.stack_size) << "\n";
    849     // Dump the held mutexes.
    850     os << "  | held mutexes=";
    851     for (size_t i = 0; i < kLockLevelCount; ++i) {
    852       if (i != kMonitorLock) {
    853         BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
    854         if (mutex != nullptr) {
    855           os << " \"" << mutex->GetName() << "\"";
    856           if (mutex->IsReaderWriterMutex()) {
    857             ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
    858             if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
    859               os << "(exclusive held)";
    860             } else {
    861               os << "(shared held)";
    862             }
    863           }
    864         }
    865       }
    866     }
    867     os << "\n";
    868   }
    869 }
    870 
    871 void Thread::DumpState(std::ostream& os) const {
    872   Thread::DumpState(os, this, GetTid());
    873 }
    874 
    875 struct StackDumpVisitor : public StackVisitor {
    876   StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
    877       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
    878       : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
    879         last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) {
    880   }
    881 
    882   virtual ~StackDumpVisitor() {
    883     if (frame_count == 0) {
    884       os << "  (no managed stack frames)\n";
    885     }
    886   }
    887 
    888   bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    889     mirror::ArtMethod* m = GetMethod();
    890     if (m->IsRuntimeMethod()) {
    891       return true;
    892     }
    893     const int kMaxRepetition = 3;
    894     mirror::Class* c = m->GetDeclaringClass();
    895     mirror::DexCache* dex_cache = c->GetDexCache();
    896     int line_number = -1;
    897     if (dex_cache != nullptr) {  // be tolerant of bad input
    898       const DexFile& dex_file = *dex_cache->GetDexFile();
    899       line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false));
    900     }
    901     if (line_number == last_line_number && last_method == m) {
    902       ++repetition_count;
    903     } else {
    904       if (repetition_count >= kMaxRepetition) {
    905         os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
    906       }
    907       repetition_count = 0;
    908       last_line_number = line_number;
    909       last_method = m;
    910     }
    911     if (repetition_count < kMaxRepetition) {
    912       os << "  at " << PrettyMethod(m, false);
    913       if (m->IsNative()) {
    914         os << "(Native method)";
    915       } else {
    916         const char* source_file(m->GetDeclaringClassSourceFile());
    917         os << "(" << (source_file != nullptr ? source_file : "unavailable")
    918            << ":" << line_number << ")";
    919       }
    920       os << "\n";
    921       if (frame_count == 0) {
    922         Monitor::DescribeWait(os, thread);
    923       }
    924       if (can_allocate) {
    925         // Visit locks, but do not abort on errors. This would trigger a nested abort.
    926         Monitor::VisitLocks(this, DumpLockedObject, &os, false);
    927       }
    928     }
    929 
    930     ++frame_count;
    931     return true;
    932   }
    933 
    934   static void DumpLockedObject(mirror::Object* o, void* context)
    935       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    936     std::ostream& os = *reinterpret_cast<std::ostream*>(context);
    937     os << "  - locked ";
    938     if (o == nullptr) {
    939       os << "an unknown object";
    940     } else {
    941       if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
    942           Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
    943         // Getting the identity hashcode here would result in lock inflation and suspension of the
    944         // current thread, which isn't safe if this is the only runnable thread.
    945         os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
    946                            PrettyTypeOf(o).c_str());
    947       } else {
    948         os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), PrettyTypeOf(o).c_str());
    949       }
    950     }
    951     os << "\n";
    952   }
    953 
    954   std::ostream& os;
    955   const Thread* thread;
    956   const bool can_allocate;
    957   mirror::ArtMethod* last_method;
    958   int last_line_number;
    959   int repetition_count;
    960   int frame_count;
    961 };
    962 
    963 static bool ShouldShowNativeStack(const Thread* thread)
    964     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
    965   ThreadState state = thread->GetState();
    966 
    967   // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
    968   if (state > kWaiting && state < kStarting) {
    969     return true;
    970   }
    971 
    972   // In an Object.wait variant or Thread.sleep? That's not interesting.
    973   if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
    974     return false;
    975   }
    976 
    977   // Threads with no managed stack frames should be shown.
    978   const ManagedStack* managed_stack = thread->GetManagedStack();
    979   if (managed_stack == NULL || (managed_stack->GetTopQuickFrame() == NULL &&
    980       managed_stack->GetTopShadowFrame() == NULL)) {
    981     return true;
    982   }
    983 
    984   // In some other native method? That's interesting.
    985   // We don't just check kNative because native methods will be in state kSuspended if they're
    986   // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
    987   // thread-startup states if it's early enough in their life cycle (http://b/7432159).
    988   mirror::ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
    989   return current_method != nullptr && current_method->IsNative();
    990 }
    991 
    992 void Thread::DumpJavaStack(std::ostream& os) const {
    993   // Dumping the Java stack involves the verifier for locks. The verifier operates under the
    994   // assumption that there is no exception pending on entry. Thus, stash any pending exception.
    995   // TODO: Find a way to avoid const_cast.
    996   StackHandleScope<3> scope(const_cast<Thread*>(this));
    997   Handle<mirror::Throwable> exc;
    998   Handle<mirror::Object> throw_location_this_object;
    999   Handle<mirror::ArtMethod> throw_location_method;
   1000   uint32_t throw_location_dex_pc;
   1001   bool have_exception = false;
   1002   if (IsExceptionPending()) {
   1003     ThrowLocation exc_location;
   1004     exc = scope.NewHandle(GetException(&exc_location));
   1005     throw_location_this_object = scope.NewHandle(exc_location.GetThis());
   1006     throw_location_method = scope.NewHandle(exc_location.GetMethod());
   1007     throw_location_dex_pc = exc_location.GetDexPc();
   1008     const_cast<Thread*>(this)->ClearException();
   1009     have_exception = true;
   1010   }
   1011 
   1012   std::unique_ptr<Context> context(Context::Create());
   1013   StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
   1014                           !tls32_.throwing_OutOfMemoryError);
   1015   dumper.WalkStack();
   1016 
   1017   if (have_exception) {
   1018     ThrowLocation exc_location(throw_location_this_object.Get(),
   1019                                throw_location_method.Get(),
   1020                                throw_location_dex_pc);
   1021     const_cast<Thread*>(this)->SetException(exc_location, exc.Get());
   1022   }
   1023 }
   1024 
   1025 void Thread::DumpStack(std::ostream& os) const {
   1026   // TODO: we call this code when dying but may not have suspended the thread ourself. The
   1027   //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
   1028   //       the race with the thread_suspend_count_lock_).
   1029   bool dump_for_abort = (gAborting > 0);
   1030   bool safe_to_dump = (this == Thread::Current() || IsSuspended());
   1031   if (!kIsDebugBuild) {
   1032     // We always want to dump the stack for an abort, however, there is no point dumping another
   1033     // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
   1034     safe_to_dump = (safe_to_dump || dump_for_abort);
   1035   }
   1036   if (safe_to_dump) {
   1037     // If we're currently in native code, dump that stack before dumping the managed stack.
   1038     if (dump_for_abort || ShouldShowNativeStack(this)) {
   1039       DumpKernelStack(os, GetTid(), "  kernel: ", false);
   1040       DumpNativeStack(os, GetTid(), "  native: ", GetCurrentMethod(nullptr, !dump_for_abort));
   1041     }
   1042     DumpJavaStack(os);
   1043   } else {
   1044     os << "Not able to dump stack of thread that isn't suspended";
   1045   }
   1046 }
   1047 
   1048 void Thread::ThreadExitCallback(void* arg) {
   1049   Thread* self = reinterpret_cast<Thread*>(arg);
   1050   if (self->tls32_.thread_exit_check_count == 0) {
   1051     LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
   1052         "going to use a pthread_key_create destructor?): " << *self;
   1053     CHECK(is_started_);
   1054     CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
   1055     self->tls32_.thread_exit_check_count = 1;
   1056   } else {
   1057     LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
   1058   }
   1059 }
   1060 
   1061 void Thread::Startup() {
   1062   CHECK(!is_started_);
   1063   is_started_ = true;
   1064   {
   1065     // MutexLock to keep annotalysis happy.
   1066     //
   1067     // Note we use nullptr for the thread because Thread::Current can
   1068     // return garbage since (is_started_ == true) and
   1069     // Thread::pthread_key_self_ is not yet initialized.
   1070     // This was seen on glibc.
   1071     MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
   1072     resume_cond_ = new ConditionVariable("Thread resumption condition variable",
   1073                                          *Locks::thread_suspend_count_lock_);
   1074   }
   1075 
   1076   // Allocate a TLS slot.
   1077   CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
   1078 
   1079   // Double-check the TLS slot allocation.
   1080   if (pthread_getspecific(pthread_key_self_) != nullptr) {
   1081     LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
   1082   }
   1083 }
   1084 
   1085 void Thread::FinishStartup() {
   1086   Runtime* runtime = Runtime::Current();
   1087   CHECK(runtime->IsStarted());
   1088 
   1089   // Finish attaching the main thread.
   1090   ScopedObjectAccess soa(Thread::Current());
   1091   Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
   1092 
   1093   Runtime::Current()->GetClassLinker()->RunRootClinits();
   1094 }
   1095 
   1096 void Thread::Shutdown() {
   1097   CHECK(is_started_);
   1098   is_started_ = false;
   1099   CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
   1100   MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
   1101   if (resume_cond_ != nullptr) {
   1102     delete resume_cond_;
   1103     resume_cond_ = nullptr;
   1104   }
   1105 }
   1106 
   1107 Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) {
   1108   wait_mutex_ = new Mutex("a thread wait mutex");
   1109   wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
   1110   tlsPtr_.debug_invoke_req = new DebugInvokeReq;
   1111   tlsPtr_.single_step_control = new SingleStepControl;
   1112   tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
   1113   tlsPtr_.name = new std::string(kThreadNameDuringStartup);
   1114   tlsPtr_.nested_signal_state = static_cast<jmp_buf*>(malloc(sizeof(jmp_buf)));
   1115 
   1116   CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
   1117   tls32_.state_and_flags.as_struct.flags = 0;
   1118   tls32_.state_and_flags.as_struct.state = kNative;
   1119   memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
   1120   std::fill(tlsPtr_.rosalloc_runs,
   1121             tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBrackets,
   1122             gc::allocator::RosAlloc::GetDedicatedFullRun());
   1123   for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
   1124     tlsPtr_.checkpoint_functions[i] = nullptr;
   1125   }
   1126 }
   1127 
   1128 bool Thread::IsStillStarting() const {
   1129   // You might think you can check whether the state is kStarting, but for much of thread startup,
   1130   // the thread is in kNative; it might also be in kVmWait.
   1131   // You might think you can check whether the peer is nullptr, but the peer is actually created and
   1132   // assigned fairly early on, and needs to be.
   1133   // It turns out that the last thing to change is the thread name; that's a good proxy for "has
   1134   // this thread _ever_ entered kRunnable".
   1135   return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
   1136       (*tlsPtr_.name == kThreadNameDuringStartup);
   1137 }
   1138 
   1139 void Thread::AssertNoPendingException() const {
   1140   if (UNLIKELY(IsExceptionPending())) {
   1141     ScopedObjectAccess soa(Thread::Current());
   1142     mirror::Throwable* exception = GetException(nullptr);
   1143     LOG(FATAL) << "No pending exception expected: " << exception->Dump();
   1144   }
   1145 }
   1146 
   1147 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
   1148   if (UNLIKELY(IsExceptionPending())) {
   1149     ScopedObjectAccess soa(Thread::Current());
   1150     mirror::Throwable* exception = GetException(nullptr);
   1151     LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
   1152         << exception->Dump();
   1153   }
   1154 }
   1155 
   1156 static void MonitorExitVisitor(mirror::Object** object, void* arg, const RootInfo& /*root_info*/)
   1157     NO_THREAD_SAFETY_ANALYSIS {
   1158   Thread* self = reinterpret_cast<Thread*>(arg);
   1159   mirror::Object* entered_monitor = *object;
   1160   if (self->HoldsLock(entered_monitor)) {
   1161     LOG(WARNING) << "Calling MonitorExit on object "
   1162                  << object << " (" << PrettyTypeOf(entered_monitor) << ")"
   1163                  << " left locked by native thread "
   1164                  << *Thread::Current() << " which is detaching";
   1165     entered_monitor->MonitorExit(self);
   1166   }
   1167 }
   1168 
   1169 void Thread::Destroy() {
   1170   Thread* self = this;
   1171   DCHECK_EQ(self, Thread::Current());
   1172 
   1173   if (tlsPtr_.opeer != nullptr) {
   1174     ScopedObjectAccess soa(self);
   1175     // We may need to call user-supplied managed code, do this before final clean-up.
   1176     HandleUncaughtExceptions(soa);
   1177     RemoveFromThreadGroup(soa);
   1178 
   1179     // this.nativePeer = 0;
   1180     if (Runtime::Current()->IsActiveTransaction()) {
   1181       soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
   1182           ->SetLong<true>(tlsPtr_.opeer, 0);
   1183     } else {
   1184       soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
   1185           ->SetLong<false>(tlsPtr_.opeer, 0);
   1186     }
   1187     Dbg::PostThreadDeath(self);
   1188 
   1189     // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
   1190     // who is waiting.
   1191     mirror::Object* lock =
   1192         soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
   1193     // (This conditional is only needed for tests, where Thread.lock won't have been set.)
   1194     if (lock != nullptr) {
   1195       StackHandleScope<1> hs(self);
   1196       Handle<mirror::Object> h_obj(hs.NewHandle(lock));
   1197       ObjectLock<mirror::Object> locker(self, h_obj);
   1198       locker.NotifyAll();
   1199     }
   1200   }
   1201 
   1202   // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
   1203   if (tlsPtr_.jni_env != nullptr) {
   1204     tlsPtr_.jni_env->monitors.VisitRoots(MonitorExitVisitor, self, RootInfo(kRootVMInternal));
   1205   }
   1206 }
   1207 
   1208 Thread::~Thread() {
   1209   if (tlsPtr_.jni_env != nullptr && tlsPtr_.jpeer != nullptr) {
   1210     // If pthread_create fails we don't have a jni env here.
   1211     tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
   1212     tlsPtr_.jpeer = nullptr;
   1213   }
   1214   tlsPtr_.opeer = nullptr;
   1215 
   1216   bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
   1217   if (initialized) {
   1218     delete tlsPtr_.jni_env;
   1219     tlsPtr_.jni_env = nullptr;
   1220   }
   1221   CHECK_NE(GetState(), kRunnable);
   1222   CHECK_NE(ReadFlag(kCheckpointRequest), true);
   1223   CHECK(tlsPtr_.checkpoint_functions[0] == nullptr);
   1224   CHECK(tlsPtr_.checkpoint_functions[1] == nullptr);
   1225   CHECK(tlsPtr_.checkpoint_functions[2] == nullptr);
   1226 
   1227   // We may be deleting a still born thread.
   1228   SetStateUnsafe(kTerminated);
   1229 
   1230   delete wait_cond_;
   1231   delete wait_mutex_;
   1232 
   1233   if (tlsPtr_.long_jump_context != nullptr) {
   1234     delete tlsPtr_.long_jump_context;
   1235   }
   1236 
   1237   if (initialized) {
   1238     CleanupCpu();
   1239   }
   1240 
   1241   delete tlsPtr_.debug_invoke_req;
   1242   delete tlsPtr_.single_step_control;
   1243   delete tlsPtr_.instrumentation_stack;
   1244   delete tlsPtr_.name;
   1245   delete tlsPtr_.stack_trace_sample;
   1246   free(tlsPtr_.nested_signal_state);
   1247 
   1248   Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
   1249 
   1250   TearDownAlternateSignalStack();
   1251 }
   1252 
   1253 void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
   1254   if (!IsExceptionPending()) {
   1255     return;
   1256   }
   1257   ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
   1258   ScopedThreadStateChange tsc(this, kNative);
   1259 
   1260   // Get and clear the exception.
   1261   ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
   1262   tlsPtr_.jni_env->ExceptionClear();
   1263 
   1264   // If the thread has its own handler, use that.
   1265   ScopedLocalRef<jobject> handler(tlsPtr_.jni_env,
   1266                                   tlsPtr_.jni_env->GetObjectField(peer.get(),
   1267                                       WellKnownClasses::java_lang_Thread_uncaughtHandler));
   1268   if (handler.get() == nullptr) {
   1269     // Otherwise use the thread group's default handler.
   1270     handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(),
   1271                                                   WellKnownClasses::java_lang_Thread_group));
   1272   }
   1273 
   1274   // Call the handler.
   1275   tlsPtr_.jni_env->CallVoidMethod(handler.get(),
   1276       WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
   1277       peer.get(), exception.get());
   1278 
   1279   // If the handler threw, clear that exception too.
   1280   tlsPtr_.jni_env->ExceptionClear();
   1281 }
   1282 
   1283 void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
   1284   // this.group.removeThread(this);
   1285   // group can be null if we're in the compiler or a test.
   1286   mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)
   1287       ->GetObject(tlsPtr_.opeer);
   1288   if (ogroup != nullptr) {
   1289     ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
   1290     ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
   1291     ScopedThreadStateChange tsc(soa.Self(), kNative);
   1292     tlsPtr_.jni_env->CallVoidMethod(group.get(),
   1293                                     WellKnownClasses::java_lang_ThreadGroup_removeThread,
   1294                                     peer.get());
   1295   }
   1296 }
   1297 
   1298 size_t Thread::NumHandleReferences() {
   1299   size_t count = 0;
   1300   for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
   1301     count += cur->NumberOfReferences();
   1302   }
   1303   return count;
   1304 }
   1305 
   1306 bool Thread::HandleScopeContains(jobject obj) const {
   1307   StackReference<mirror::Object>* hs_entry =
   1308       reinterpret_cast<StackReference<mirror::Object>*>(obj);
   1309   for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
   1310     if (cur->Contains(hs_entry)) {
   1311       return true;
   1312     }
   1313   }
   1314   // JNI code invoked from portable code uses shadow frames rather than the handle scope.
   1315   return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
   1316 }
   1317 
   1318 void Thread::HandleScopeVisitRoots(RootCallback* visitor, void* arg, uint32_t thread_id) {
   1319   for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
   1320     size_t num_refs = cur->NumberOfReferences();
   1321     for (size_t j = 0; j < num_refs; ++j) {
   1322       mirror::Object* object = cur->GetReference(j);
   1323       if (object != nullptr) {
   1324         mirror::Object* old_obj = object;
   1325         visitor(&object, arg, RootInfo(kRootNativeStack, thread_id));
   1326         if (old_obj != object) {
   1327           cur->SetReference(j, object);
   1328         }
   1329       }
   1330     }
   1331   }
   1332 }
   1333 
   1334 mirror::Object* Thread::DecodeJObject(jobject obj) const {
   1335   Locks::mutator_lock_->AssertSharedHeld(this);
   1336   if (obj == nullptr) {
   1337     return nullptr;
   1338   }
   1339   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
   1340   IndirectRefKind kind = GetIndirectRefKind(ref);
   1341   mirror::Object* result;
   1342   // The "kinds" below are sorted by the frequency we expect to encounter them.
   1343   if (kind == kLocal) {
   1344     IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
   1345     // Local references do not need a read barrier.
   1346     result = locals.Get<kWithoutReadBarrier>(ref);
   1347   } else if (kind == kHandleScopeOrInvalid) {
   1348     // TODO: make stack indirect reference table lookup more efficient.
   1349     // Check if this is a local reference in the handle scope.
   1350     if (LIKELY(HandleScopeContains(obj))) {
   1351       // Read from handle scope.
   1352       result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
   1353       VerifyObject(result);
   1354     } else {
   1355       result = kInvalidIndirectRefObject;
   1356     }
   1357   } else if (kind == kGlobal) {
   1358     JavaVMExt* const vm = Runtime::Current()->GetJavaVM();
   1359     result = vm->globals.SynchronizedGet(const_cast<Thread*>(this), &vm->globals_lock, ref);
   1360   } else {
   1361     DCHECK_EQ(kind, kWeakGlobal);
   1362     result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
   1363     if (result == kClearedJniWeakGlobal) {
   1364       // This is a special case where it's okay to return nullptr.
   1365       return nullptr;
   1366     }
   1367   }
   1368 
   1369   if (UNLIKELY(result == nullptr)) {
   1370     JniAbortF(nullptr, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
   1371   }
   1372   return result;
   1373 }
   1374 
   1375 // Implements java.lang.Thread.interrupted.
   1376 bool Thread::Interrupted() {
   1377   MutexLock mu(Thread::Current(), *wait_mutex_);
   1378   bool interrupted = IsInterruptedLocked();
   1379   SetInterruptedLocked(false);
   1380   return interrupted;
   1381 }
   1382 
   1383 // Implements java.lang.Thread.isInterrupted.
   1384 bool Thread::IsInterrupted() {
   1385   MutexLock mu(Thread::Current(), *wait_mutex_);
   1386   return IsInterruptedLocked();
   1387 }
   1388 
   1389 void Thread::Interrupt(Thread* self) {
   1390   MutexLock mu(self, *wait_mutex_);
   1391   if (interrupted_) {
   1392     return;
   1393   }
   1394   interrupted_ = true;
   1395   NotifyLocked(self);
   1396 }
   1397 
   1398 void Thread::Notify() {
   1399   Thread* self = Thread::Current();
   1400   MutexLock mu(self, *wait_mutex_);
   1401   NotifyLocked(self);
   1402 }
   1403 
   1404 void Thread::NotifyLocked(Thread* self) {
   1405   if (wait_monitor_ != nullptr) {
   1406     wait_cond_->Signal(self);
   1407   }
   1408 }
   1409 
   1410 class CountStackDepthVisitor : public StackVisitor {
   1411  public:
   1412   explicit CountStackDepthVisitor(Thread* thread)
   1413       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
   1414       : StackVisitor(thread, nullptr),
   1415         depth_(0), skip_depth_(0), skipping_(true) {}
   1416 
   1417   bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   1418     // We want to skip frames up to and including the exception's constructor.
   1419     // Note we also skip the frame if it doesn't have a method (namely the callee
   1420     // save frame)
   1421     mirror::ArtMethod* m = GetMethod();
   1422     if (skipping_ && !m->IsRuntimeMethod() &&
   1423         !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
   1424       skipping_ = false;
   1425     }
   1426     if (!skipping_) {
   1427       if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
   1428         ++depth_;
   1429       }
   1430     } else {
   1431       ++skip_depth_;
   1432     }
   1433     return true;
   1434   }
   1435 
   1436   int GetDepth() const {
   1437     return depth_;
   1438   }
   1439 
   1440   int GetSkipDepth() const {
   1441     return skip_depth_;
   1442   }
   1443 
   1444  private:
   1445   uint32_t depth_;
   1446   uint32_t skip_depth_;
   1447   bool skipping_;
   1448 };
   1449 
   1450 template<bool kTransactionActive>
   1451 class BuildInternalStackTraceVisitor : public StackVisitor {
   1452  public:
   1453   explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
   1454       : StackVisitor(thread, nullptr), self_(self),
   1455         skip_depth_(skip_depth), count_(0), dex_pc_trace_(nullptr), method_trace_(nullptr) {}
   1456 
   1457   bool Init(int depth)
   1458       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   1459     // Allocate method trace with an extra slot that will hold the PC trace
   1460     StackHandleScope<1> hs(self_);
   1461     ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   1462     Handle<mirror::ObjectArray<mirror::Object>> method_trace(
   1463         hs.NewHandle(class_linker->AllocObjectArray<mirror::Object>(self_, depth + 1)));
   1464     if (method_trace.Get() == nullptr) {
   1465       return false;
   1466     }
   1467     mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
   1468     if (dex_pc_trace == nullptr) {
   1469       return false;
   1470     }
   1471     // Save PC trace in last element of method trace, also places it into the
   1472     // object graph.
   1473     // We are called from native: use non-transactional mode.
   1474     method_trace->Set<kTransactionActive>(depth, dex_pc_trace);
   1475     // Set the Object*s and assert that no thread suspension is now possible.
   1476     const char* last_no_suspend_cause =
   1477         self_->StartAssertNoThreadSuspension("Building internal stack trace");
   1478     CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
   1479     method_trace_ = method_trace.Get();
   1480     dex_pc_trace_ = dex_pc_trace;
   1481     return true;
   1482   }
   1483 
   1484   virtual ~BuildInternalStackTraceVisitor() {
   1485     if (method_trace_ != nullptr) {
   1486       self_->EndAssertNoThreadSuspension(nullptr);
   1487     }
   1488   }
   1489 
   1490   bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   1491     if (method_trace_ == nullptr || dex_pc_trace_ == nullptr) {
   1492       return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
   1493     }
   1494     if (skip_depth_ > 0) {
   1495       skip_depth_--;
   1496       return true;
   1497     }
   1498     mirror::ArtMethod* m = GetMethod();
   1499     if (m->IsRuntimeMethod()) {
   1500       return true;  // Ignore runtime frames (in particular callee save).
   1501     }
   1502     method_trace_->Set<kTransactionActive>(count_, m);
   1503     dex_pc_trace_->Set<kTransactionActive>(count_,
   1504         m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
   1505     ++count_;
   1506     return true;
   1507   }
   1508 
   1509   mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
   1510     return method_trace_;
   1511   }
   1512 
   1513  private:
   1514   Thread* const self_;
   1515   // How many more frames to skip.
   1516   int32_t skip_depth_;
   1517   // Current position down stack trace.
   1518   uint32_t count_;
   1519   // Array of dex PC values.
   1520   mirror::IntArray* dex_pc_trace_;
   1521   // An array of the methods on the stack, the last entry is a reference to the PC trace.
   1522   mirror::ObjectArray<mirror::Object>* method_trace_;
   1523 };
   1524 
   1525 template<bool kTransactionActive>
   1526 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
   1527   // Compute depth of stack
   1528   CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
   1529   count_visitor.WalkStack();
   1530   int32_t depth = count_visitor.GetDepth();
   1531   int32_t skip_depth = count_visitor.GetSkipDepth();
   1532 
   1533   // Build internal stack trace.
   1534   BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
   1535                                                                          const_cast<Thread*>(this),
   1536                                                                          skip_depth);
   1537   if (!build_trace_visitor.Init(depth)) {
   1538     return nullptr;  // Allocation failed.
   1539   }
   1540   build_trace_visitor.WalkStack();
   1541   mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
   1542   if (kIsDebugBuild) {
   1543     for (int32_t i = 0; i < trace->GetLength(); ++i) {
   1544       CHECK(trace->Get(i) != nullptr);
   1545     }
   1546   }
   1547   return soa.AddLocalReference<jobjectArray>(trace);
   1548 }
   1549 template jobject Thread::CreateInternalStackTrace<false>(
   1550     const ScopedObjectAccessAlreadyRunnable& soa) const;
   1551 template jobject Thread::CreateInternalStackTrace<true>(
   1552     const ScopedObjectAccessAlreadyRunnable& soa) const;
   1553 
   1554 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
   1555     const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array,
   1556     int* stack_depth) {
   1557   // Decode the internal stack trace into the depth, method trace and PC trace
   1558   int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1;
   1559 
   1560   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   1561 
   1562   jobjectArray result;
   1563 
   1564   if (output_array != nullptr) {
   1565     // Reuse the array we were given.
   1566     result = output_array;
   1567     // ...adjusting the number of frames we'll write to not exceed the array length.
   1568     const int32_t traces_length =
   1569         soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
   1570     depth = std::min(depth, traces_length);
   1571   } else {
   1572     // Create java_trace array and place in local reference table
   1573     mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
   1574         class_linker->AllocStackTraceElementArray(soa.Self(), depth);
   1575     if (java_traces == nullptr) {
   1576       return nullptr;
   1577     }
   1578     result = soa.AddLocalReference<jobjectArray>(java_traces);
   1579   }
   1580 
   1581   if (stack_depth != nullptr) {
   1582     *stack_depth = depth;
   1583   }
   1584 
   1585   for (int32_t i = 0; i < depth; ++i) {
   1586     mirror::ObjectArray<mirror::Object>* method_trace =
   1587           soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
   1588     // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
   1589     mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i));
   1590     int32_t line_number;
   1591     StackHandleScope<3> hs(soa.Self());
   1592     auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
   1593     auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
   1594     if (method->IsProxyMethod()) {
   1595       line_number = -1;
   1596       class_name_object.Assign(method->GetDeclaringClass()->GetName());
   1597       // source_name_object intentionally left null for proxy methods
   1598     } else {
   1599       mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
   1600       uint32_t dex_pc = pc_trace->Get(i);
   1601       line_number = method->GetLineNumFromDexPC(dex_pc);
   1602       // Allocate element, potentially triggering GC
   1603       // TODO: reuse class_name_object via Class::name_?
   1604       const char* descriptor = method->GetDeclaringClassDescriptor();
   1605       CHECK(descriptor != nullptr);
   1606       std::string class_name(PrettyDescriptor(descriptor));
   1607       class_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
   1608       if (class_name_object.Get() == nullptr) {
   1609         return nullptr;
   1610       }
   1611       const char* source_file = method->GetDeclaringClassSourceFile();
   1612       if (source_file != nullptr) {
   1613         source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
   1614         if (source_name_object.Get() == nullptr) {
   1615           return nullptr;
   1616         }
   1617       }
   1618     }
   1619     const char* method_name = method->GetName();
   1620     CHECK(method_name != nullptr);
   1621     Handle<mirror::String> method_name_object(
   1622         hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
   1623     if (method_name_object.Get() == nullptr) {
   1624       return nullptr;
   1625     }
   1626     mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
   1627         soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
   1628     if (obj == nullptr) {
   1629       return nullptr;
   1630     }
   1631     // We are called from native: use non-transactional mode.
   1632     soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
   1633   }
   1634   return result;
   1635 }
   1636 
   1637 void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
   1638                                 const char* exception_class_descriptor, const char* fmt, ...) {
   1639   va_list args;
   1640   va_start(args, fmt);
   1641   ThrowNewExceptionV(throw_location, exception_class_descriptor,
   1642                      fmt, args);
   1643   va_end(args);
   1644 }
   1645 
   1646 void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
   1647                                 const char* exception_class_descriptor,
   1648                                 const char* fmt, va_list ap) {
   1649   std::string msg;
   1650   StringAppendV(&msg, fmt, ap);
   1651   ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
   1652 }
   1653 
   1654 void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
   1655                                const char* msg) {
   1656   // Callers should either clear or call ThrowNewWrappedException.
   1657   AssertNoPendingExceptionForNewException(msg);
   1658   ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
   1659 }
   1660 
   1661 void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
   1662                                       const char* exception_class_descriptor,
   1663                                       const char* msg) {
   1664   DCHECK_EQ(this, Thread::Current());
   1665   ScopedObjectAccessUnchecked soa(this);
   1666   StackHandleScope<5> hs(soa.Self());
   1667   // Ensure we don't forget arguments over object allocation.
   1668   Handle<mirror::Object> saved_throw_this(hs.NewHandle(throw_location.GetThis()));
   1669   Handle<mirror::ArtMethod> saved_throw_method(hs.NewHandle(throw_location.GetMethod()));
   1670   // Ignore the cause throw location. TODO: should we report this as a re-throw?
   1671   ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException(nullptr)));
   1672   bool is_exception_reported = IsExceptionReportedToInstrumentation();
   1673   ClearException();
   1674   Runtime* runtime = Runtime::Current();
   1675 
   1676   mirror::ClassLoader* cl = nullptr;
   1677   if (saved_throw_method.Get() != nullptr) {
   1678     cl = saved_throw_method.Get()->GetDeclaringClass()->GetClassLoader();
   1679   }
   1680   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(cl));
   1681   Handle<mirror::Class> exception_class(
   1682       hs.NewHandle(runtime->GetClassLinker()->FindClass(this, exception_class_descriptor,
   1683                                                         class_loader)));
   1684   if (UNLIKELY(exception_class.Get() == nullptr)) {
   1685     CHECK(IsExceptionPending());
   1686     LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
   1687     return;
   1688   }
   1689 
   1690   if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class, true, true))) {
   1691     DCHECK(IsExceptionPending());
   1692     return;
   1693   }
   1694   DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
   1695   Handle<mirror::Throwable> exception(
   1696       hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this))));
   1697 
   1698   // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
   1699   if (exception.Get() == nullptr) {
   1700     ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
   1701                                          throw_location.GetDexPc());
   1702     SetException(gc_safe_throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
   1703     SetExceptionReportedToInstrumentation(is_exception_reported);
   1704     return;
   1705   }
   1706 
   1707   // Choose an appropriate constructor and set up the arguments.
   1708   const char* signature;
   1709   ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
   1710   if (msg != nullptr) {
   1711     // Ensure we remember this and the method over the String allocation.
   1712     msg_string.reset(
   1713         soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
   1714     if (UNLIKELY(msg_string.get() == nullptr)) {
   1715       CHECK(IsExceptionPending());  // OOME.
   1716       return;
   1717     }
   1718     if (cause.get() == nullptr) {
   1719       signature = "(Ljava/lang/String;)V";
   1720     } else {
   1721       signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
   1722     }
   1723   } else {
   1724     if (cause.get() == nullptr) {
   1725       signature = "()V";
   1726     } else {
   1727       signature = "(Ljava/lang/Throwable;)V";
   1728     }
   1729   }
   1730   mirror::ArtMethod* exception_init_method =
   1731       exception_class->FindDeclaredDirectMethod("<init>", signature);
   1732 
   1733   CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
   1734       << PrettyDescriptor(exception_class_descriptor);
   1735 
   1736   if (UNLIKELY(!runtime->IsStarted())) {
   1737     // Something is trying to throw an exception without a started runtime, which is the common
   1738     // case in the compiler. We won't be able to invoke the constructor of the exception, so set
   1739     // the exception fields directly.
   1740     if (msg != nullptr) {
   1741       exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get())));
   1742     }
   1743     if (cause.get() != nullptr) {
   1744       exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get())));
   1745     }
   1746     ScopedLocalRef<jobject> trace(GetJniEnv(),
   1747                                   Runtime::Current()->IsActiveTransaction()
   1748                                       ? CreateInternalStackTrace<true>(soa)
   1749                                       : CreateInternalStackTrace<false>(soa));
   1750     if (trace.get() != nullptr) {
   1751       exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get())));
   1752     }
   1753     ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
   1754                                          throw_location.GetDexPc());
   1755     SetException(gc_safe_throw_location, exception.Get());
   1756     SetExceptionReportedToInstrumentation(is_exception_reported);
   1757   } else {
   1758     jvalue jv_args[2];
   1759     size_t i = 0;
   1760 
   1761     if (msg != nullptr) {
   1762       jv_args[i].l = msg_string.get();
   1763       ++i;
   1764     }
   1765     if (cause.get() != nullptr) {
   1766       jv_args[i].l = cause.get();
   1767       ++i;
   1768     }
   1769     InvokeWithJValues(soa, exception.Get(), soa.EncodeMethod(exception_init_method), jv_args);
   1770     if (LIKELY(!IsExceptionPending())) {
   1771       ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
   1772                                            throw_location.GetDexPc());
   1773       SetException(gc_safe_throw_location, exception.Get());
   1774       SetExceptionReportedToInstrumentation(is_exception_reported);
   1775     }
   1776   }
   1777 }
   1778 
   1779 void Thread::ThrowOutOfMemoryError(const char* msg) {
   1780   LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
   1781       msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
   1782   ThrowLocation throw_location = GetCurrentLocationForThrow();
   1783   if (!tls32_.throwing_OutOfMemoryError) {
   1784     tls32_.throwing_OutOfMemoryError = true;
   1785     ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
   1786     tls32_.throwing_OutOfMemoryError = false;
   1787   } else {
   1788     Dump(LOG(ERROR));  // The pre-allocated OOME has no stack, so help out and log one.
   1789     SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
   1790   }
   1791 }
   1792 
   1793 Thread* Thread::CurrentFromGdb() {
   1794   return Thread::Current();
   1795 }
   1796 
   1797 void Thread::DumpFromGdb() const {
   1798   std::ostringstream ss;
   1799   Dump(ss);
   1800   std::string str(ss.str());
   1801   // log to stderr for debugging command line processes
   1802   std::cerr << str;
   1803 #ifdef HAVE_ANDROID_OS
   1804   // log to logcat for debugging frameworks processes
   1805   LOG(INFO) << str;
   1806 #endif
   1807 }
   1808 
   1809 // Explicitly instantiate 32 and 64bit thread offset dumping support.
   1810 template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset);
   1811 template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset);
   1812 
   1813 template<size_t ptr_size>
   1814 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
   1815 #define DO_THREAD_OFFSET(x, y) \
   1816     if (offset == x.Uint32Value()) { \
   1817       os << y; \
   1818       return; \
   1819     }
   1820   DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
   1821   DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
   1822   DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
   1823   DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
   1824   DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
   1825   DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
   1826   DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
   1827   DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
   1828   DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
   1829   DO_THREAD_OFFSET(TopOfManagedStackPcOffset<ptr_size>(), "top_quick_frame_pc")
   1830   DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
   1831   DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
   1832   DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
   1833 #undef DO_THREAD_OFFSET
   1834 
   1835 #define INTERPRETER_ENTRY_POINT_INFO(x) \
   1836     if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
   1837       os << #x; \
   1838       return; \
   1839     }
   1840   INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge)
   1841   INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge)
   1842 #undef INTERPRETER_ENTRY_POINT_INFO
   1843 
   1844 #define JNI_ENTRY_POINT_INFO(x) \
   1845     if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
   1846       os << #x; \
   1847       return; \
   1848     }
   1849   JNI_ENTRY_POINT_INFO(pDlsymLookup)
   1850 #undef JNI_ENTRY_POINT_INFO
   1851 
   1852 #define PORTABLE_ENTRY_POINT_INFO(x) \
   1853     if (PORTABLE_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
   1854       os << #x; \
   1855       return; \
   1856     }
   1857   PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline)
   1858   PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline)
   1859   PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge)
   1860 #undef PORTABLE_ENTRY_POINT_INFO
   1861 
   1862 #define QUICK_ENTRY_POINT_INFO(x) \
   1863     if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
   1864       os << #x; \
   1865       return; \
   1866     }
   1867   QUICK_ENTRY_POINT_INFO(pAllocArray)
   1868   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
   1869   QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck)
   1870   QUICK_ENTRY_POINT_INFO(pAllocObject)
   1871   QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
   1872   QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
   1873   QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck)
   1874   QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray)
   1875   QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck)
   1876   QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
   1877   QUICK_ENTRY_POINT_INFO(pCheckCast)
   1878   QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
   1879   QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
   1880   QUICK_ENTRY_POINT_INFO(pInitializeType)
   1881   QUICK_ENTRY_POINT_INFO(pResolveString)
   1882   QUICK_ENTRY_POINT_INFO(pSet32Instance)
   1883   QUICK_ENTRY_POINT_INFO(pSet32Static)
   1884   QUICK_ENTRY_POINT_INFO(pSet64Instance)
   1885   QUICK_ENTRY_POINT_INFO(pSet64Static)
   1886   QUICK_ENTRY_POINT_INFO(pSetObjInstance)
   1887   QUICK_ENTRY_POINT_INFO(pSetObjStatic)
   1888   QUICK_ENTRY_POINT_INFO(pGet32Instance)
   1889   QUICK_ENTRY_POINT_INFO(pGet32Static)
   1890   QUICK_ENTRY_POINT_INFO(pGet64Instance)
   1891   QUICK_ENTRY_POINT_INFO(pGet64Static)
   1892   QUICK_ENTRY_POINT_INFO(pGetObjInstance)
   1893   QUICK_ENTRY_POINT_INFO(pGetObjStatic)
   1894   QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck)
   1895   QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck)
   1896   QUICK_ENTRY_POINT_INFO(pAputObject)
   1897   QUICK_ENTRY_POINT_INFO(pHandleFillArrayData)
   1898   QUICK_ENTRY_POINT_INFO(pJniMethodStart)
   1899   QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
   1900   QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
   1901   QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
   1902   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
   1903   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
   1904   QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
   1905   QUICK_ENTRY_POINT_INFO(pLockObject)
   1906   QUICK_ENTRY_POINT_INFO(pUnlockObject)
   1907   QUICK_ENTRY_POINT_INFO(pCmpgDouble)
   1908   QUICK_ENTRY_POINT_INFO(pCmpgFloat)
   1909   QUICK_ENTRY_POINT_INFO(pCmplDouble)
   1910   QUICK_ENTRY_POINT_INFO(pCmplFloat)
   1911   QUICK_ENTRY_POINT_INFO(pFmod)
   1912   QUICK_ENTRY_POINT_INFO(pL2d)
   1913   QUICK_ENTRY_POINT_INFO(pFmodf)
   1914   QUICK_ENTRY_POINT_INFO(pL2f)
   1915   QUICK_ENTRY_POINT_INFO(pD2iz)
   1916   QUICK_ENTRY_POINT_INFO(pF2iz)
   1917   QUICK_ENTRY_POINT_INFO(pIdivmod)
   1918   QUICK_ENTRY_POINT_INFO(pD2l)
   1919   QUICK_ENTRY_POINT_INFO(pF2l)
   1920   QUICK_ENTRY_POINT_INFO(pLdiv)
   1921   QUICK_ENTRY_POINT_INFO(pLmod)
   1922   QUICK_ENTRY_POINT_INFO(pLmul)
   1923   QUICK_ENTRY_POINT_INFO(pShlLong)
   1924   QUICK_ENTRY_POINT_INFO(pShrLong)
   1925   QUICK_ENTRY_POINT_INFO(pUshrLong)
   1926   QUICK_ENTRY_POINT_INFO(pIndexOf)
   1927   QUICK_ENTRY_POINT_INFO(pStringCompareTo)
   1928   QUICK_ENTRY_POINT_INFO(pMemcpy)
   1929   QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
   1930   QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
   1931   QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
   1932   QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
   1933   QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
   1934   QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
   1935   QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
   1936   QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
   1937   QUICK_ENTRY_POINT_INFO(pTestSuspend)
   1938   QUICK_ENTRY_POINT_INFO(pDeliverException)
   1939   QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
   1940   QUICK_ENTRY_POINT_INFO(pThrowDivZero)
   1941   QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod)
   1942   QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
   1943   QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
   1944   QUICK_ENTRY_POINT_INFO(pA64Load)
   1945   QUICK_ENTRY_POINT_INFO(pA64Store)
   1946 #undef QUICK_ENTRY_POINT_INFO
   1947 
   1948   os << offset;
   1949 }
   1950 
   1951 void Thread::QuickDeliverException() {
   1952   // Get exception from thread.
   1953   ThrowLocation throw_location;
   1954   mirror::Throwable* exception = GetException(&throw_location);
   1955   CHECK(exception != nullptr);
   1956   // Don't leave exception visible while we try to find the handler, which may cause class
   1957   // resolution.
   1958   bool is_exception_reported = IsExceptionReportedToInstrumentation();
   1959   ClearException();
   1960   bool is_deoptimization = (exception == GetDeoptimizationException());
   1961   QuickExceptionHandler exception_handler(this, is_deoptimization);
   1962   if (is_deoptimization) {
   1963     exception_handler.DeoptimizeStack();
   1964   } else {
   1965     exception_handler.FindCatch(throw_location, exception, is_exception_reported);
   1966   }
   1967   exception_handler.UpdateInstrumentationStack();
   1968   exception_handler.DoLongJump();
   1969   LOG(FATAL) << "UNREACHABLE";
   1970 }
   1971 
   1972 Context* Thread::GetLongJumpContext() {
   1973   Context* result = tlsPtr_.long_jump_context;
   1974   if (result == nullptr) {
   1975     result = Context::Create();
   1976   } else {
   1977     tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
   1978     result->Reset();
   1979   }
   1980   return result;
   1981 }
   1982 
   1983 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
   1984 //       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
   1985 struct CurrentMethodVisitor FINAL : public StackVisitor {
   1986   CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error)
   1987       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
   1988       : StackVisitor(thread, context), this_object_(nullptr), method_(nullptr), dex_pc_(0),
   1989         abort_on_error_(abort_on_error) {}
   1990   bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   1991     mirror::ArtMethod* m = GetMethod();
   1992     if (m->IsRuntimeMethod()) {
   1993       // Continue if this is a runtime method.
   1994       return true;
   1995     }
   1996     if (context_ != nullptr) {
   1997       this_object_ = GetThisObject();
   1998     }
   1999     method_ = m;
   2000     dex_pc_ = GetDexPc(abort_on_error_);
   2001     return false;
   2002   }
   2003   mirror::Object* this_object_;
   2004   mirror::ArtMethod* method_;
   2005   uint32_t dex_pc_;
   2006   const bool abort_on_error_;
   2007 };
   2008 
   2009 mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const {
   2010   CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error);
   2011   visitor.WalkStack(false);
   2012   if (dex_pc != nullptr) {
   2013     *dex_pc = visitor.dex_pc_;
   2014   }
   2015   return visitor.method_;
   2016 }
   2017 
   2018 ThrowLocation Thread::GetCurrentLocationForThrow() {
   2019   Context* context = GetLongJumpContext();
   2020   CurrentMethodVisitor visitor(this, context, true);
   2021   visitor.WalkStack(false);
   2022   ReleaseLongJumpContext(context);
   2023   return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
   2024 }
   2025 
   2026 bool Thread::HoldsLock(mirror::Object* object) const {
   2027   if (object == nullptr) {
   2028     return false;
   2029   }
   2030   return object->GetLockOwnerThreadId() == GetThreadId();
   2031 }
   2032 
   2033 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
   2034 template <typename RootVisitor>
   2035 class ReferenceMapVisitor : public StackVisitor {
   2036  public:
   2037   ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
   2038       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
   2039       : StackVisitor(thread, context), visitor_(visitor) {}
   2040 
   2041   bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   2042     if (false) {
   2043       LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
   2044                 << StringPrintf("@ PC:%04x", GetDexPc());
   2045     }
   2046     ShadowFrame* shadow_frame = GetCurrentShadowFrame();
   2047     if (shadow_frame != nullptr) {
   2048       VisitShadowFrame(shadow_frame);
   2049     } else {
   2050       VisitQuickFrame();
   2051     }
   2052     return true;
   2053   }
   2054 
   2055   void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   2056     mirror::ArtMethod** method_addr = shadow_frame->GetMethodAddress();
   2057     visitor_(reinterpret_cast<mirror::Object**>(method_addr), 0 /*ignored*/, this);
   2058     mirror::ArtMethod* m = *method_addr;
   2059     DCHECK(m != nullptr);
   2060     size_t num_regs = shadow_frame->NumberOfVRegs();
   2061     if (m->IsNative() || shadow_frame->HasReferenceArray()) {
   2062       // handle scope for JNI or References for interpreter.
   2063       for (size_t reg = 0; reg < num_regs; ++reg) {
   2064         mirror::Object* ref = shadow_frame->GetVRegReference(reg);
   2065         if (ref != nullptr) {
   2066           mirror::Object* new_ref = ref;
   2067           visitor_(&new_ref, reg, this);
   2068           if (new_ref != ref) {
   2069             shadow_frame->SetVRegReference(reg, new_ref);
   2070           }
   2071         }
   2072       }
   2073     } else {
   2074       // Java method.
   2075       // Portable path use DexGcMap and store in Method.native_gc_map_.
   2076       const uint8_t* gc_map = m->GetNativeGcMap(sizeof(void*));
   2077       CHECK(gc_map != nullptr) << PrettyMethod(m);
   2078       verifier::DexPcToReferenceMap dex_gc_map(gc_map);
   2079       uint32_t dex_pc = shadow_frame->GetDexPC();
   2080       const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
   2081       DCHECK(reg_bitmap != nullptr);
   2082       num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
   2083       for (size_t reg = 0; reg < num_regs; ++reg) {
   2084         if (TestBitmap(reg, reg_bitmap)) {
   2085           mirror::Object* ref = shadow_frame->GetVRegReference(reg);
   2086           if (ref != nullptr) {
   2087             mirror::Object* new_ref = ref;
   2088             visitor_(&new_ref, reg, this);
   2089             if (new_ref != ref) {
   2090               shadow_frame->SetVRegReference(reg, new_ref);
   2091             }
   2092           }
   2093         }
   2094       }
   2095     }
   2096   }
   2097 
   2098  private:
   2099   void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   2100     StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
   2101     mirror::ArtMethod* m = cur_quick_frame->AsMirrorPtr();
   2102     mirror::ArtMethod* old_method = m;
   2103     visitor_(reinterpret_cast<mirror::Object**>(&m), 0 /*ignored*/, this);
   2104     if (m != old_method) {
   2105       cur_quick_frame->Assign(m);
   2106     }
   2107 
   2108     // Process register map (which native and runtime methods don't have)
   2109     if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
   2110       const uint8_t* native_gc_map = m->GetNativeGcMap(sizeof(void*));
   2111       CHECK(native_gc_map != nullptr) << PrettyMethod(m);
   2112       const DexFile::CodeItem* code_item = m->GetCodeItem();
   2113       DCHECK(code_item != nullptr) << PrettyMethod(m);  // Can't be nullptr or how would we compile its instructions?
   2114       NativePcOffsetToReferenceMap map(native_gc_map);
   2115       size_t num_regs = std::min(map.RegWidth() * 8,
   2116                                  static_cast<size_t>(code_item->registers_size_));
   2117       if (num_regs > 0) {
   2118         Runtime* runtime = Runtime::Current();
   2119         const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m, sizeof(void*));
   2120         uintptr_t native_pc_offset = m->NativePcOffset(GetCurrentQuickFramePc(), entry_point);
   2121         const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset);
   2122         DCHECK(reg_bitmap != nullptr);
   2123         const void* code_pointer = mirror::ArtMethod::EntryPointToCodePointer(entry_point);
   2124         const VmapTable vmap_table(m->GetVmapTable(code_pointer, sizeof(void*)));
   2125         QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo(code_pointer);
   2126         // For all dex registers in the bitmap
   2127         StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
   2128         DCHECK(cur_quick_frame != nullptr);
   2129         for (size_t reg = 0; reg < num_regs; ++reg) {
   2130           // Does this register hold a reference?
   2131           if (TestBitmap(reg, reg_bitmap)) {
   2132             uint32_t vmap_offset;
   2133             if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
   2134               int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset,
   2135                                                         kReferenceVReg);
   2136               // This is sound as spilled GPRs will be word sized (ie 32 or 64bit).
   2137               mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg));
   2138               if (*ref_addr != nullptr) {
   2139                 visitor_(ref_addr, reg, this);
   2140               }
   2141             } else {
   2142               StackReference<mirror::Object>* ref_addr =
   2143                   reinterpret_cast<StackReference<mirror::Object>*>(
   2144                       GetVRegAddr(cur_quick_frame, code_item, frame_info.CoreSpillMask(),
   2145                                   frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg));
   2146               mirror::Object* ref = ref_addr->AsMirrorPtr();
   2147               if (ref != nullptr) {
   2148                 mirror::Object* new_ref = ref;
   2149                 visitor_(&new_ref, reg, this);
   2150                 if (ref != new_ref) {
   2151                   ref_addr->Assign(new_ref);
   2152                 }
   2153               }
   2154             }
   2155           }
   2156         }
   2157       }
   2158     }
   2159   }
   2160 
   2161   static bool TestBitmap(size_t reg, const uint8_t* reg_vector) {
   2162     return ((reg_vector[reg / kBitsPerByte] >> (reg % kBitsPerByte)) & 0x01) != 0;
   2163   }
   2164 
   2165   // Visitor for when we visit a root.
   2166   const RootVisitor& visitor_;
   2167 };
   2168 
   2169 class RootCallbackVisitor {
   2170  public:
   2171   RootCallbackVisitor(RootCallback* callback, void* arg, uint32_t tid)
   2172      : callback_(callback), arg_(arg), tid_(tid) {}
   2173 
   2174   void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const {
   2175     callback_(obj, arg_, JavaFrameRootInfo(tid_, stack_visitor, vreg));
   2176   }
   2177 
   2178  private:
   2179   RootCallback* const callback_;
   2180   void* const arg_;
   2181   const uint32_t tid_;
   2182 };
   2183 
   2184 void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) {
   2185   VerifyObject(class_loader_override);
   2186   tlsPtr_.class_loader_override = class_loader_override;
   2187 }
   2188 
   2189 void Thread::VisitRoots(RootCallback* visitor, void* arg) {
   2190   uint32_t thread_id = GetThreadId();
   2191   if (tlsPtr_.opeer != nullptr) {
   2192     visitor(&tlsPtr_.opeer, arg, RootInfo(kRootThreadObject, thread_id));
   2193   }
   2194   if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
   2195     visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception), arg,
   2196             RootInfo(kRootNativeStack, thread_id));
   2197   }
   2198   tlsPtr_.throw_location.VisitRoots(visitor, arg);
   2199   if (tlsPtr_.class_loader_override != nullptr) {
   2200     visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.class_loader_override), arg,
   2201             RootInfo(kRootNativeStack, thread_id));
   2202   }
   2203   if (tlsPtr_.monitor_enter_object != nullptr) {
   2204     visitor(&tlsPtr_.monitor_enter_object, arg, RootInfo(kRootNativeStack, thread_id));
   2205   }
   2206   tlsPtr_.jni_env->locals.VisitRoots(visitor, arg, RootInfo(kRootJNILocal, thread_id));
   2207   tlsPtr_.jni_env->monitors.VisitRoots(visitor, arg, RootInfo(kRootJNIMonitor, thread_id));
   2208   HandleScopeVisitRoots(visitor, arg, thread_id);
   2209   if (tlsPtr_.debug_invoke_req != nullptr) {
   2210     tlsPtr_.debug_invoke_req->VisitRoots(visitor, arg, RootInfo(kRootDebugger, thread_id));
   2211   }
   2212   if (tlsPtr_.single_step_control != nullptr) {
   2213     tlsPtr_.single_step_control->VisitRoots(visitor, arg, RootInfo(kRootDebugger, thread_id));
   2214   }
   2215   if (tlsPtr_.deoptimization_shadow_frame != nullptr) {
   2216     RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
   2217     ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
   2218     for (ShadowFrame* shadow_frame = tlsPtr_.deoptimization_shadow_frame; shadow_frame != nullptr;
   2219         shadow_frame = shadow_frame->GetLink()) {
   2220       mapper.VisitShadowFrame(shadow_frame);
   2221     }
   2222   }
   2223   if (tlsPtr_.shadow_frame_under_construction != nullptr) {
   2224     RootCallbackVisitor visitor_to_callback(visitor, arg, thread_id);
   2225     ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitor_to_callback);
   2226     for (ShadowFrame* shadow_frame = tlsPtr_.shadow_frame_under_construction;
   2227         shadow_frame != nullptr;
   2228         shadow_frame = shadow_frame->GetLink()) {
   2229       mapper.VisitShadowFrame(shadow_frame);
   2230     }
   2231   }
   2232   // Visit roots on this thread's stack
   2233   Context* context = GetLongJumpContext();
   2234   RootCallbackVisitor visitor_to_callback(visitor, arg, thread_id);
   2235   ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitor_to_callback);
   2236   mapper.WalkStack();
   2237   ReleaseLongJumpContext(context);
   2238   for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
   2239     if (frame.this_object_ != nullptr) {
   2240       visitor(&frame.this_object_, arg, RootInfo(kRootVMInternal, thread_id));
   2241     }
   2242     DCHECK(frame.method_ != nullptr);
   2243     visitor(reinterpret_cast<mirror::Object**>(&frame.method_), arg,
   2244             RootInfo(kRootVMInternal, thread_id));
   2245   }
   2246 }
   2247 
   2248 static void VerifyRoot(mirror::Object** root, void* /*arg*/, const RootInfo& /*root_info*/)
   2249     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   2250   VerifyObject(*root);
   2251 }
   2252 
   2253 void Thread::VerifyStackImpl() {
   2254   std::unique_ptr<Context> context(Context::Create());
   2255   RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap(), GetThreadId());
   2256   ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
   2257   mapper.WalkStack();
   2258 }
   2259 
   2260 // Set the stack end to that to be used during a stack overflow
   2261 void Thread::SetStackEndForStackOverflow() {
   2262   // During stack overflow we allow use of the full stack.
   2263   if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
   2264     // However, we seem to have already extended to use the full stack.
   2265     LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
   2266                << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
   2267     DumpStack(LOG(ERROR));
   2268     LOG(FATAL) << "Recursive stack overflow.";
   2269   }
   2270 
   2271   tlsPtr_.stack_end = tlsPtr_.stack_begin;
   2272 
   2273   // Remove the stack overflow protection if is it set up.
   2274   bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
   2275   if (implicit_stack_check) {
   2276     if (!UnprotectStack()) {
   2277       LOG(ERROR) << "Unable to remove stack protection for stack overflow";
   2278     }
   2279   }
   2280 }
   2281 
   2282 void Thread::SetTlab(byte* start, byte* end) {
   2283   DCHECK_LE(start, end);
   2284   tlsPtr_.thread_local_start = start;
   2285   tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
   2286   tlsPtr_.thread_local_end = end;
   2287   tlsPtr_.thread_local_objects = 0;
   2288 }
   2289 
   2290 bool Thread::HasTlab() const {
   2291   bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
   2292   if (has_tlab) {
   2293     DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
   2294   } else {
   2295     DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
   2296   }
   2297   return has_tlab;
   2298 }
   2299 
   2300 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
   2301   thread.ShortDump(os);
   2302   return os;
   2303 }
   2304 
   2305 void Thread::ProtectStack() {
   2306   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
   2307   VLOG(threads) << "Protecting stack at " << pregion;
   2308   if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
   2309     LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
   2310         "Reason: "
   2311         << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
   2312   }
   2313 }
   2314 
   2315 bool Thread::UnprotectStack() {
   2316   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
   2317   VLOG(threads) << "Unprotecting stack at " << pregion;
   2318   return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
   2319 }
   2320 
   2321 
   2322 }  // namespace art
   2323