Home | History | Annotate | Download | only in Utils
      1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the interface to tear out a code region, such as an
     11 // individual loop or a parallel section, into a new function, replacing it with
     12 // a call to the new function.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Transforms/Utils/CodeExtractor.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/SetVector.h"
     19 #include "llvm/ADT/StringExtras.h"
     20 #include "llvm/Analysis/LoopInfo.h"
     21 #include "llvm/Analysis/RegionInfo.h"
     22 #include "llvm/Analysis/RegionIterator.h"
     23 #include "llvm/IR/Constants.h"
     24 #include "llvm/IR/DerivedTypes.h"
     25 #include "llvm/IR/Dominators.h"
     26 #include "llvm/IR/Instructions.h"
     27 #include "llvm/IR/Intrinsics.h"
     28 #include "llvm/IR/LLVMContext.h"
     29 #include "llvm/IR/Module.h"
     30 #include "llvm/IR/Verifier.h"
     31 #include "llvm/Pass.h"
     32 #include "llvm/Support/CommandLine.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/Support/ErrorHandling.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     37 #include <algorithm>
     38 #include <set>
     39 using namespace llvm;
     40 
     41 #define DEBUG_TYPE "code-extractor"
     42 
     43 // Provide a command-line option to aggregate function arguments into a struct
     44 // for functions produced by the code extractor. This is useful when converting
     45 // extracted functions to pthread-based code, as only one argument (void*) can
     46 // be passed in to pthread_create().
     47 static cl::opt<bool>
     48 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
     49                  cl::desc("Aggregate arguments to code-extracted functions"));
     50 
     51 /// \brief Test whether a block is valid for extraction.
     52 static bool isBlockValidForExtraction(const BasicBlock &BB) {
     53   // Landing pads must be in the function where they were inserted for cleanup.
     54   if (BB.isLandingPad())
     55     return false;
     56 
     57   // Don't hoist code containing allocas, invokes, or vastarts.
     58   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
     59     if (isa<AllocaInst>(I) || isa<InvokeInst>(I))
     60       return false;
     61     if (const CallInst *CI = dyn_cast<CallInst>(I))
     62       if (const Function *F = CI->getCalledFunction())
     63         if (F->getIntrinsicID() == Intrinsic::vastart)
     64           return false;
     65   }
     66 
     67   return true;
     68 }
     69 
     70 /// \brief Build a set of blocks to extract if the input blocks are viable.
     71 template <typename IteratorT>
     72 static SetVector<BasicBlock *> buildExtractionBlockSet(IteratorT BBBegin,
     73                                                        IteratorT BBEnd) {
     74   SetVector<BasicBlock *> Result;
     75 
     76   assert(BBBegin != BBEnd);
     77 
     78   // Loop over the blocks, adding them to our set-vector, and aborting with an
     79   // empty set if we encounter invalid blocks.
     80   for (IteratorT I = BBBegin, E = BBEnd; I != E; ++I) {
     81     if (!Result.insert(*I))
     82       llvm_unreachable("Repeated basic blocks in extraction input");
     83 
     84     if (!isBlockValidForExtraction(**I)) {
     85       Result.clear();
     86       return Result;
     87     }
     88   }
     89 
     90 #ifndef NDEBUG
     91   for (SetVector<BasicBlock *>::iterator I = std::next(Result.begin()),
     92                                          E = Result.end();
     93        I != E; ++I)
     94     for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I);
     95          PI != PE; ++PI)
     96       assert(Result.count(*PI) &&
     97              "No blocks in this region may have entries from outside the region"
     98              " except for the first block!");
     99 #endif
    100 
    101   return Result;
    102 }
    103 
    104 /// \brief Helper to call buildExtractionBlockSet with an ArrayRef.
    105 static SetVector<BasicBlock *>
    106 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs) {
    107   return buildExtractionBlockSet(BBs.begin(), BBs.end());
    108 }
    109 
    110 /// \brief Helper to call buildExtractionBlockSet with a RegionNode.
    111 static SetVector<BasicBlock *>
    112 buildExtractionBlockSet(const RegionNode &RN) {
    113   if (!RN.isSubRegion())
    114     // Just a single BasicBlock.
    115     return buildExtractionBlockSet(RN.getNodeAs<BasicBlock>());
    116 
    117   const Region &R = *RN.getNodeAs<Region>();
    118 
    119   return buildExtractionBlockSet(R.block_begin(), R.block_end());
    120 }
    121 
    122 CodeExtractor::CodeExtractor(BasicBlock *BB, bool AggregateArgs)
    123   : DT(nullptr), AggregateArgs(AggregateArgs||AggregateArgsOpt),
    124     Blocks(buildExtractionBlockSet(BB)), NumExitBlocks(~0U) {}
    125 
    126 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
    127                              bool AggregateArgs)
    128   : DT(DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
    129     Blocks(buildExtractionBlockSet(BBs)), NumExitBlocks(~0U) {}
    130 
    131 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs)
    132   : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
    133     Blocks(buildExtractionBlockSet(L.getBlocks())), NumExitBlocks(~0U) {}
    134 
    135 CodeExtractor::CodeExtractor(DominatorTree &DT, const RegionNode &RN,
    136                              bool AggregateArgs)
    137   : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
    138     Blocks(buildExtractionBlockSet(RN)), NumExitBlocks(~0U) {}
    139 
    140 /// definedInRegion - Return true if the specified value is defined in the
    141 /// extracted region.
    142 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
    143   if (Instruction *I = dyn_cast<Instruction>(V))
    144     if (Blocks.count(I->getParent()))
    145       return true;
    146   return false;
    147 }
    148 
    149 /// definedInCaller - Return true if the specified value is defined in the
    150 /// function being code extracted, but not in the region being extracted.
    151 /// These values must be passed in as live-ins to the function.
    152 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
    153   if (isa<Argument>(V)) return true;
    154   if (Instruction *I = dyn_cast<Instruction>(V))
    155     if (!Blocks.count(I->getParent()))
    156       return true;
    157   return false;
    158 }
    159 
    160 void CodeExtractor::findInputsOutputs(ValueSet &Inputs,
    161                                       ValueSet &Outputs) const {
    162   for (SetVector<BasicBlock *>::const_iterator I = Blocks.begin(),
    163                                                E = Blocks.end();
    164        I != E; ++I) {
    165     BasicBlock *BB = *I;
    166 
    167     // If a used value is defined outside the region, it's an input.  If an
    168     // instruction is used outside the region, it's an output.
    169     for (BasicBlock::iterator II = BB->begin(), IE = BB->end();
    170          II != IE; ++II) {
    171       for (User::op_iterator OI = II->op_begin(), OE = II->op_end();
    172            OI != OE; ++OI)
    173         if (definedInCaller(Blocks, *OI))
    174           Inputs.insert(*OI);
    175 
    176       for (User *U : II->users())
    177         if (!definedInRegion(Blocks, U)) {
    178           Outputs.insert(II);
    179           break;
    180         }
    181     }
    182   }
    183 }
    184 
    185 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
    186 /// region, we need to split the entry block of the region so that the PHI node
    187 /// is easier to deal with.
    188 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
    189   unsigned NumPredsFromRegion = 0;
    190   unsigned NumPredsOutsideRegion = 0;
    191 
    192   if (Header != &Header->getParent()->getEntryBlock()) {
    193     PHINode *PN = dyn_cast<PHINode>(Header->begin());
    194     if (!PN) return;  // No PHI nodes.
    195 
    196     // If the header node contains any PHI nodes, check to see if there is more
    197     // than one entry from outside the region.  If so, we need to sever the
    198     // header block into two.
    199     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    200       if (Blocks.count(PN->getIncomingBlock(i)))
    201         ++NumPredsFromRegion;
    202       else
    203         ++NumPredsOutsideRegion;
    204 
    205     // If there is one (or fewer) predecessor from outside the region, we don't
    206     // need to do anything special.
    207     if (NumPredsOutsideRegion <= 1) return;
    208   }
    209 
    210   // Otherwise, we need to split the header block into two pieces: one
    211   // containing PHI nodes merging values from outside of the region, and a
    212   // second that contains all of the code for the block and merges back any
    213   // incoming values from inside of the region.
    214   BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI();
    215   BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
    216                                               Header->getName()+".ce");
    217 
    218   // We only want to code extract the second block now, and it becomes the new
    219   // header of the region.
    220   BasicBlock *OldPred = Header;
    221   Blocks.remove(OldPred);
    222   Blocks.insert(NewBB);
    223   Header = NewBB;
    224 
    225   // Okay, update dominator sets. The blocks that dominate the new one are the
    226   // blocks that dominate TIBB plus the new block itself.
    227   if (DT)
    228     DT->splitBlock(NewBB);
    229 
    230   // Okay, now we need to adjust the PHI nodes and any branches from within the
    231   // region to go to the new header block instead of the old header block.
    232   if (NumPredsFromRegion) {
    233     PHINode *PN = cast<PHINode>(OldPred->begin());
    234     // Loop over all of the predecessors of OldPred that are in the region,
    235     // changing them to branch to NewBB instead.
    236     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    237       if (Blocks.count(PN->getIncomingBlock(i))) {
    238         TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
    239         TI->replaceUsesOfWith(OldPred, NewBB);
    240       }
    241 
    242     // Okay, everything within the region is now branching to the right block, we
    243     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
    244     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
    245       PHINode *PN = cast<PHINode>(AfterPHIs);
    246       // Create a new PHI node in the new region, which has an incoming value
    247       // from OldPred of PN.
    248       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
    249                                        PN->getName()+".ce", NewBB->begin());
    250       NewPN->addIncoming(PN, OldPred);
    251 
    252       // Loop over all of the incoming value in PN, moving them to NewPN if they
    253       // are from the extracted region.
    254       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
    255         if (Blocks.count(PN->getIncomingBlock(i))) {
    256           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
    257           PN->removeIncomingValue(i);
    258           --i;
    259         }
    260       }
    261     }
    262   }
    263 }
    264 
    265 void CodeExtractor::splitReturnBlocks() {
    266   for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end();
    267        I != E; ++I)
    268     if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) {
    269       BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
    270       if (DT) {
    271         // Old dominates New. New node dominates all other nodes dominated
    272         // by Old.
    273         DomTreeNode *OldNode = DT->getNode(*I);
    274         SmallVector<DomTreeNode*, 8> Children;
    275         for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end();
    276              DI != DE; ++DI)
    277           Children.push_back(*DI);
    278 
    279         DomTreeNode *NewNode = DT->addNewBlock(New, *I);
    280 
    281         for (SmallVectorImpl<DomTreeNode *>::iterator I = Children.begin(),
    282                E = Children.end(); I != E; ++I)
    283           DT->changeImmediateDominator(*I, NewNode);
    284       }
    285     }
    286 }
    287 
    288 /// constructFunction - make a function based on inputs and outputs, as follows:
    289 /// f(in0, ..., inN, out0, ..., outN)
    290 ///
    291 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
    292                                            const ValueSet &outputs,
    293                                            BasicBlock *header,
    294                                            BasicBlock *newRootNode,
    295                                            BasicBlock *newHeader,
    296                                            Function *oldFunction,
    297                                            Module *M) {
    298   DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
    299   DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
    300 
    301   // This function returns unsigned, outputs will go back by reference.
    302   switch (NumExitBlocks) {
    303   case 0:
    304   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
    305   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
    306   default: RetTy = Type::getInt16Ty(header->getContext()); break;
    307   }
    308 
    309   std::vector<Type*> paramTy;
    310 
    311   // Add the types of the input values to the function's argument list
    312   for (ValueSet::const_iterator i = inputs.begin(), e = inputs.end();
    313        i != e; ++i) {
    314     const Value *value = *i;
    315     DEBUG(dbgs() << "value used in func: " << *value << "\n");
    316     paramTy.push_back(value->getType());
    317   }
    318 
    319   // Add the types of the output values to the function's argument list.
    320   for (ValueSet::const_iterator I = outputs.begin(), E = outputs.end();
    321        I != E; ++I) {
    322     DEBUG(dbgs() << "instr used in func: " << **I << "\n");
    323     if (AggregateArgs)
    324       paramTy.push_back((*I)->getType());
    325     else
    326       paramTy.push_back(PointerType::getUnqual((*I)->getType()));
    327   }
    328 
    329   DEBUG(dbgs() << "Function type: " << *RetTy << " f(");
    330   for (std::vector<Type*>::iterator i = paramTy.begin(),
    331          e = paramTy.end(); i != e; ++i)
    332     DEBUG(dbgs() << **i << ", ");
    333   DEBUG(dbgs() << ")\n");
    334 
    335   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
    336     PointerType *StructPtr =
    337            PointerType::getUnqual(StructType::get(M->getContext(), paramTy));
    338     paramTy.clear();
    339     paramTy.push_back(StructPtr);
    340   }
    341   FunctionType *funcType =
    342                   FunctionType::get(RetTy, paramTy, false);
    343 
    344   // Create the new function
    345   Function *newFunction = Function::Create(funcType,
    346                                            GlobalValue::InternalLinkage,
    347                                            oldFunction->getName() + "_" +
    348                                            header->getName(), M);
    349   // If the old function is no-throw, so is the new one.
    350   if (oldFunction->doesNotThrow())
    351     newFunction->setDoesNotThrow();
    352 
    353   newFunction->getBasicBlockList().push_back(newRootNode);
    354 
    355   // Create an iterator to name all of the arguments we inserted.
    356   Function::arg_iterator AI = newFunction->arg_begin();
    357 
    358   // Rewrite all users of the inputs in the extracted region to use the
    359   // arguments (or appropriate addressing into struct) instead.
    360   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
    361     Value *RewriteVal;
    362     if (AggregateArgs) {
    363       Value *Idx[2];
    364       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
    365       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
    366       TerminatorInst *TI = newFunction->begin()->getTerminator();
    367       GetElementPtrInst *GEP =
    368         GetElementPtrInst::Create(AI, Idx, "gep_" + inputs[i]->getName(), TI);
    369       RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
    370     } else
    371       RewriteVal = AI++;
    372 
    373     std::vector<User*> Users(inputs[i]->user_begin(), inputs[i]->user_end());
    374     for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
    375          use != useE; ++use)
    376       if (Instruction* inst = dyn_cast<Instruction>(*use))
    377         if (Blocks.count(inst->getParent()))
    378           inst->replaceUsesOfWith(inputs[i], RewriteVal);
    379   }
    380 
    381   // Set names for input and output arguments.
    382   if (!AggregateArgs) {
    383     AI = newFunction->arg_begin();
    384     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
    385       AI->setName(inputs[i]->getName());
    386     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
    387       AI->setName(outputs[i]->getName()+".out");
    388   }
    389 
    390   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
    391   // within the new function. This must be done before we lose track of which
    392   // blocks were originally in the code region.
    393   std::vector<User*> Users(header->user_begin(), header->user_end());
    394   for (unsigned i = 0, e = Users.size(); i != e; ++i)
    395     // The BasicBlock which contains the branch is not in the region
    396     // modify the branch target to a new block
    397     if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
    398       if (!Blocks.count(TI->getParent()) &&
    399           TI->getParent()->getParent() == oldFunction)
    400         TI->replaceUsesOfWith(header, newHeader);
    401 
    402   return newFunction;
    403 }
    404 
    405 /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
    406 /// that uses the value within the basic block, and return the predecessor
    407 /// block associated with that use, or return 0 if none is found.
    408 static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
    409   for (Use &U : Used->uses()) {
    410      PHINode *P = dyn_cast<PHINode>(U.getUser());
    411      if (P && P->getParent() == BB)
    412        return P->getIncomingBlock(U);
    413   }
    414 
    415   return nullptr;
    416 }
    417 
    418 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
    419 /// the call instruction, splitting any PHI nodes in the header block as
    420 /// necessary.
    421 void CodeExtractor::
    422 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
    423                            ValueSet &inputs, ValueSet &outputs) {
    424   // Emit a call to the new function, passing in: *pointer to struct (if
    425   // aggregating parameters), or plan inputs and allocated memory for outputs
    426   std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
    427 
    428   LLVMContext &Context = newFunction->getContext();
    429 
    430   // Add inputs as params, or to be filled into the struct
    431   for (ValueSet::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
    432     if (AggregateArgs)
    433       StructValues.push_back(*i);
    434     else
    435       params.push_back(*i);
    436 
    437   // Create allocas for the outputs
    438   for (ValueSet::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
    439     if (AggregateArgs) {
    440       StructValues.push_back(*i);
    441     } else {
    442       AllocaInst *alloca =
    443         new AllocaInst((*i)->getType(), nullptr, (*i)->getName()+".loc",
    444                        codeReplacer->getParent()->begin()->begin());
    445       ReloadOutputs.push_back(alloca);
    446       params.push_back(alloca);
    447     }
    448   }
    449 
    450   AllocaInst *Struct = nullptr;
    451   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
    452     std::vector<Type*> ArgTypes;
    453     for (ValueSet::iterator v = StructValues.begin(),
    454            ve = StructValues.end(); v != ve; ++v)
    455       ArgTypes.push_back((*v)->getType());
    456 
    457     // Allocate a struct at the beginning of this function
    458     Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
    459     Struct =
    460       new AllocaInst(StructArgTy, nullptr, "structArg",
    461                      codeReplacer->getParent()->begin()->begin());
    462     params.push_back(Struct);
    463 
    464     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
    465       Value *Idx[2];
    466       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
    467       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
    468       GetElementPtrInst *GEP =
    469         GetElementPtrInst::Create(Struct, Idx,
    470                                   "gep_" + StructValues[i]->getName());
    471       codeReplacer->getInstList().push_back(GEP);
    472       StoreInst *SI = new StoreInst(StructValues[i], GEP);
    473       codeReplacer->getInstList().push_back(SI);
    474     }
    475   }
    476 
    477   // Emit the call to the function
    478   CallInst *call = CallInst::Create(newFunction, params,
    479                                     NumExitBlocks > 1 ? "targetBlock" : "");
    480   codeReplacer->getInstList().push_back(call);
    481 
    482   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
    483   unsigned FirstOut = inputs.size();
    484   if (!AggregateArgs)
    485     std::advance(OutputArgBegin, inputs.size());
    486 
    487   // Reload the outputs passed in by reference
    488   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
    489     Value *Output = nullptr;
    490     if (AggregateArgs) {
    491       Value *Idx[2];
    492       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
    493       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
    494       GetElementPtrInst *GEP
    495         = GetElementPtrInst::Create(Struct, Idx,
    496                                     "gep_reload_" + outputs[i]->getName());
    497       codeReplacer->getInstList().push_back(GEP);
    498       Output = GEP;
    499     } else {
    500       Output = ReloadOutputs[i];
    501     }
    502     LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
    503     Reloads.push_back(load);
    504     codeReplacer->getInstList().push_back(load);
    505     std::vector<User*> Users(outputs[i]->user_begin(), outputs[i]->user_end());
    506     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
    507       Instruction *inst = cast<Instruction>(Users[u]);
    508       if (!Blocks.count(inst->getParent()))
    509         inst->replaceUsesOfWith(outputs[i], load);
    510     }
    511   }
    512 
    513   // Now we can emit a switch statement using the call as a value.
    514   SwitchInst *TheSwitch =
    515       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
    516                          codeReplacer, 0, codeReplacer);
    517 
    518   // Since there may be multiple exits from the original region, make the new
    519   // function return an unsigned, switch on that number.  This loop iterates
    520   // over all of the blocks in the extracted region, updating any terminator
    521   // instructions in the to-be-extracted region that branch to blocks that are
    522   // not in the region to be extracted.
    523   std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
    524 
    525   unsigned switchVal = 0;
    526   for (SetVector<BasicBlock*>::const_iterator i = Blocks.begin(),
    527          e = Blocks.end(); i != e; ++i) {
    528     TerminatorInst *TI = (*i)->getTerminator();
    529     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    530       if (!Blocks.count(TI->getSuccessor(i))) {
    531         BasicBlock *OldTarget = TI->getSuccessor(i);
    532         // add a new basic block which returns the appropriate value
    533         BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
    534         if (!NewTarget) {
    535           // If we don't already have an exit stub for this non-extracted
    536           // destination, create one now!
    537           NewTarget = BasicBlock::Create(Context,
    538                                          OldTarget->getName() + ".exitStub",
    539                                          newFunction);
    540           unsigned SuccNum = switchVal++;
    541 
    542           Value *brVal = nullptr;
    543           switch (NumExitBlocks) {
    544           case 0:
    545           case 1: break;  // No value needed.
    546           case 2:         // Conditional branch, return a bool
    547             brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
    548             break;
    549           default:
    550             brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
    551             break;
    552           }
    553 
    554           ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
    555 
    556           // Update the switch instruction.
    557           TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
    558                                               SuccNum),
    559                              OldTarget);
    560 
    561           // Restore values just before we exit
    562           Function::arg_iterator OAI = OutputArgBegin;
    563           for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
    564             // For an invoke, the normal destination is the only one that is
    565             // dominated by the result of the invocation
    566             BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
    567 
    568             bool DominatesDef = true;
    569 
    570             if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) {
    571               DefBlock = Invoke->getNormalDest();
    572 
    573               // Make sure we are looking at the original successor block, not
    574               // at a newly inserted exit block, which won't be in the dominator
    575               // info.
    576               for (std::map<BasicBlock*, BasicBlock*>::iterator I =
    577                      ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
    578                 if (DefBlock == I->second) {
    579                   DefBlock = I->first;
    580                   break;
    581                 }
    582 
    583               // In the extract block case, if the block we are extracting ends
    584               // with an invoke instruction, make sure that we don't emit a
    585               // store of the invoke value for the unwind block.
    586               if (!DT && DefBlock != OldTarget)
    587                 DominatesDef = false;
    588             }
    589 
    590             if (DT) {
    591               DominatesDef = DT->dominates(DefBlock, OldTarget);
    592 
    593               // If the output value is used by a phi in the target block,
    594               // then we need to test for dominance of the phi's predecessor
    595               // instead.  Unfortunately, this a little complicated since we
    596               // have already rewritten uses of the value to uses of the reload.
    597               BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out],
    598                                                           OldTarget);
    599               if (pred && DT && DT->dominates(DefBlock, pred))
    600                 DominatesDef = true;
    601             }
    602 
    603             if (DominatesDef) {
    604               if (AggregateArgs) {
    605                 Value *Idx[2];
    606                 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
    607                 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
    608                                           FirstOut+out);
    609                 GetElementPtrInst *GEP =
    610                   GetElementPtrInst::Create(OAI, Idx,
    611                                             "gep_" + outputs[out]->getName(),
    612                                             NTRet);
    613                 new StoreInst(outputs[out], GEP, NTRet);
    614               } else {
    615                 new StoreInst(outputs[out], OAI, NTRet);
    616               }
    617             }
    618             // Advance output iterator even if we don't emit a store
    619             if (!AggregateArgs) ++OAI;
    620           }
    621         }
    622 
    623         // rewrite the original branch instruction with this new target
    624         TI->setSuccessor(i, NewTarget);
    625       }
    626   }
    627 
    628   // Now that we've done the deed, simplify the switch instruction.
    629   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
    630   switch (NumExitBlocks) {
    631   case 0:
    632     // There are no successors (the block containing the switch itself), which
    633     // means that previously this was the last part of the function, and hence
    634     // this should be rewritten as a `ret'
    635 
    636     // Check if the function should return a value
    637     if (OldFnRetTy->isVoidTy()) {
    638       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
    639     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
    640       // return what we have
    641       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
    642     } else {
    643       // Otherwise we must have code extracted an unwind or something, just
    644       // return whatever we want.
    645       ReturnInst::Create(Context,
    646                          Constant::getNullValue(OldFnRetTy), TheSwitch);
    647     }
    648 
    649     TheSwitch->eraseFromParent();
    650     break;
    651   case 1:
    652     // Only a single destination, change the switch into an unconditional
    653     // branch.
    654     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
    655     TheSwitch->eraseFromParent();
    656     break;
    657   case 2:
    658     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
    659                        call, TheSwitch);
    660     TheSwitch->eraseFromParent();
    661     break;
    662   default:
    663     // Otherwise, make the default destination of the switch instruction be one
    664     // of the other successors.
    665     TheSwitch->setCondition(call);
    666     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
    667     // Remove redundant case
    668     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
    669     break;
    670   }
    671 }
    672 
    673 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
    674   Function *oldFunc = (*Blocks.begin())->getParent();
    675   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
    676   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
    677 
    678   for (SetVector<BasicBlock*>::const_iterator i = Blocks.begin(),
    679          e = Blocks.end(); i != e; ++i) {
    680     // Delete the basic block from the old function, and the list of blocks
    681     oldBlocks.remove(*i);
    682 
    683     // Insert this basic block into the new function
    684     newBlocks.push_back(*i);
    685   }
    686 }
    687 
    688 Function *CodeExtractor::extractCodeRegion() {
    689   if (!isEligible())
    690     return nullptr;
    691 
    692   ValueSet inputs, outputs;
    693 
    694   // Assumption: this is a single-entry code region, and the header is the first
    695   // block in the region.
    696   BasicBlock *header = *Blocks.begin();
    697 
    698   // If we have to split PHI nodes or the entry block, do so now.
    699   severSplitPHINodes(header);
    700 
    701   // If we have any return instructions in the region, split those blocks so
    702   // that the return is not in the region.
    703   splitReturnBlocks();
    704 
    705   Function *oldFunction = header->getParent();
    706 
    707   // This takes place of the original loop
    708   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
    709                                                 "codeRepl", oldFunction,
    710                                                 header);
    711 
    712   // The new function needs a root node because other nodes can branch to the
    713   // head of the region, but the entry node of a function cannot have preds.
    714   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
    715                                                "newFuncRoot");
    716   newFuncRoot->getInstList().push_back(BranchInst::Create(header));
    717 
    718   // Find inputs to, outputs from the code region.
    719   findInputsOutputs(inputs, outputs);
    720 
    721   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
    722   for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end();
    723        I != E; ++I)
    724     for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
    725       if (!Blocks.count(*SI))
    726         ExitBlocks.insert(*SI);
    727   NumExitBlocks = ExitBlocks.size();
    728 
    729   // Construct new function based on inputs/outputs & add allocas for all defs.
    730   Function *newFunction = constructFunction(inputs, outputs, header,
    731                                             newFuncRoot,
    732                                             codeReplacer, oldFunction,
    733                                             oldFunction->getParent());
    734 
    735   emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
    736 
    737   moveCodeToFunction(newFunction);
    738 
    739   // Loop over all of the PHI nodes in the header block, and change any
    740   // references to the old incoming edge to be the new incoming edge.
    741   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
    742     PHINode *PN = cast<PHINode>(I);
    743     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    744       if (!Blocks.count(PN->getIncomingBlock(i)))
    745         PN->setIncomingBlock(i, newFuncRoot);
    746   }
    747 
    748   // Look at all successors of the codeReplacer block.  If any of these blocks
    749   // had PHI nodes in them, we need to update the "from" block to be the code
    750   // replacer, not the original block in the extracted region.
    751   std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
    752                                  succ_end(codeReplacer));
    753   for (unsigned i = 0, e = Succs.size(); i != e; ++i)
    754     for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
    755       PHINode *PN = cast<PHINode>(I);
    756       std::set<BasicBlock*> ProcessedPreds;
    757       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    758         if (Blocks.count(PN->getIncomingBlock(i))) {
    759           if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
    760             PN->setIncomingBlock(i, codeReplacer);
    761           else {
    762             // There were multiple entries in the PHI for this block, now there
    763             // is only one, so remove the duplicated entries.
    764             PN->removeIncomingValue(i, false);
    765             --i; --e;
    766           }
    767         }
    768     }
    769 
    770   //cerr << "NEW FUNCTION: " << *newFunction;
    771   //  verifyFunction(*newFunction);
    772 
    773   //  cerr << "OLD FUNCTION: " << *oldFunction;
    774   //  verifyFunction(*oldFunction);
    775 
    776   DEBUG(if (verifyFunction(*newFunction))
    777         report_fatal_error("verifyFunction failed!"));
    778   return newFunction;
    779 }
    780