Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the declaration of the MachineInstr class, which is the
     11 // basic representation for all target dependent machine instructions used by
     12 // the back end.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
     17 #define LLVM_CODEGEN_MACHINEINSTR_H
     18 
     19 #include "llvm/ADT/ArrayRef.h"
     20 #include "llvm/ADT/DenseMapInfo.h"
     21 #include "llvm/ADT/STLExtras.h"
     22 #include "llvm/ADT/StringRef.h"
     23 #include "llvm/ADT/ilist.h"
     24 #include "llvm/ADT/ilist_node.h"
     25 #include "llvm/ADT/iterator_range.h"
     26 #include "llvm/CodeGen/MachineOperand.h"
     27 #include "llvm/IR/DebugInfo.h"
     28 #include "llvm/IR/DebugLoc.h"
     29 #include "llvm/IR/InlineAsm.h"
     30 #include "llvm/MC/MCInstrDesc.h"
     31 #include "llvm/Support/ArrayRecycler.h"
     32 #include "llvm/Target/TargetOpcodes.h"
     33 
     34 namespace llvm {
     35 
     36 template <typename T> class SmallVectorImpl;
     37 class AliasAnalysis;
     38 class TargetInstrInfo;
     39 class TargetRegisterClass;
     40 class TargetRegisterInfo;
     41 class MachineFunction;
     42 class MachineMemOperand;
     43 
     44 //===----------------------------------------------------------------------===//
     45 /// MachineInstr - Representation of each machine instruction.
     46 ///
     47 /// This class isn't a POD type, but it must have a trivial destructor. When a
     48 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
     49 /// without having their destructor called.
     50 ///
     51 class MachineInstr : public ilist_node<MachineInstr> {
     52 public:
     53   typedef MachineMemOperand **mmo_iterator;
     54 
     55   /// Flags to specify different kinds of comments to output in
     56   /// assembly code.  These flags carry semantic information not
     57   /// otherwise easily derivable from the IR text.
     58   ///
     59   enum CommentFlag {
     60     ReloadReuse = 0x1
     61   };
     62 
     63   enum MIFlag {
     64     NoFlags      = 0,
     65     FrameSetup   = 1 << 0,              // Instruction is used as a part of
     66                                         // function frame setup code.
     67     BundledPred  = 1 << 1,              // Instruction has bundled predecessors.
     68     BundledSucc  = 1 << 2               // Instruction has bundled successors.
     69   };
     70 private:
     71   const MCInstrDesc *MCID;              // Instruction descriptor.
     72   MachineBasicBlock *Parent;            // Pointer to the owning basic block.
     73 
     74   // Operands are allocated by an ArrayRecycler.
     75   MachineOperand *Operands;             // Pointer to the first operand.
     76   unsigned NumOperands;                 // Number of operands on instruction.
     77   typedef ArrayRecycler<MachineOperand>::Capacity OperandCapacity;
     78   OperandCapacity CapOperands;          // Capacity of the Operands array.
     79 
     80   uint8_t Flags;                        // Various bits of additional
     81                                         // information about machine
     82                                         // instruction.
     83 
     84   uint8_t AsmPrinterFlags;              // Various bits of information used by
     85                                         // the AsmPrinter to emit helpful
     86                                         // comments.  This is *not* semantic
     87                                         // information.  Do not use this for
     88                                         // anything other than to convey comment
     89                                         // information to AsmPrinter.
     90 
     91   uint8_t NumMemRefs;                   // Information on memory references.
     92   mmo_iterator MemRefs;
     93 
     94   DebugLoc debugLoc;                    // Source line information.
     95 
     96   MachineInstr(const MachineInstr&) LLVM_DELETED_FUNCTION;
     97   void operator=(const MachineInstr&) LLVM_DELETED_FUNCTION;
     98   // Use MachineFunction::DeleteMachineInstr() instead.
     99   ~MachineInstr() LLVM_DELETED_FUNCTION;
    100 
    101   // Intrusive list support
    102   friend struct ilist_traits<MachineInstr>;
    103   friend struct ilist_traits<MachineBasicBlock>;
    104   void setParent(MachineBasicBlock *P) { Parent = P; }
    105 
    106   /// MachineInstr ctor - This constructor creates a copy of the given
    107   /// MachineInstr in the given MachineFunction.
    108   MachineInstr(MachineFunction &, const MachineInstr &);
    109 
    110   /// MachineInstr ctor - This constructor create a MachineInstr and add the
    111   /// implicit operands.  It reserves space for number of operands specified by
    112   /// MCInstrDesc.  An explicit DebugLoc is supplied.
    113   MachineInstr(MachineFunction&, const MCInstrDesc &MCID,
    114                const DebugLoc dl, bool NoImp = false);
    115 
    116   // MachineInstrs are pool-allocated and owned by MachineFunction.
    117   friend class MachineFunction;
    118 
    119 public:
    120   const MachineBasicBlock* getParent() const { return Parent; }
    121   MachineBasicBlock* getParent() { return Parent; }
    122 
    123   /// getAsmPrinterFlags - Return the asm printer flags bitvector.
    124   ///
    125   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
    126 
    127   /// clearAsmPrinterFlags - clear the AsmPrinter bitvector
    128   ///
    129   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
    130 
    131   /// getAsmPrinterFlag - Return whether an AsmPrinter flag is set.
    132   ///
    133   bool getAsmPrinterFlag(CommentFlag Flag) const {
    134     return AsmPrinterFlags & Flag;
    135   }
    136 
    137   /// setAsmPrinterFlag - Set a flag for the AsmPrinter.
    138   ///
    139   void setAsmPrinterFlag(CommentFlag Flag) {
    140     AsmPrinterFlags |= (uint8_t)Flag;
    141   }
    142 
    143   /// clearAsmPrinterFlag - clear specific AsmPrinter flags
    144   ///
    145   void clearAsmPrinterFlag(CommentFlag Flag) {
    146     AsmPrinterFlags &= ~Flag;
    147   }
    148 
    149   /// getFlags - Return the MI flags bitvector.
    150   uint8_t getFlags() const {
    151     return Flags;
    152   }
    153 
    154   /// getFlag - Return whether an MI flag is set.
    155   bool getFlag(MIFlag Flag) const {
    156     return Flags & Flag;
    157   }
    158 
    159   /// setFlag - Set a MI flag.
    160   void setFlag(MIFlag Flag) {
    161     Flags |= (uint8_t)Flag;
    162   }
    163 
    164   void setFlags(unsigned flags) {
    165     // Filter out the automatically maintained flags.
    166     unsigned Mask = BundledPred | BundledSucc;
    167     Flags = (Flags & Mask) | (flags & ~Mask);
    168   }
    169 
    170   /// clearFlag - Clear a MI flag.
    171   void clearFlag(MIFlag Flag) {
    172     Flags &= ~((uint8_t)Flag);
    173   }
    174 
    175   /// isInsideBundle - Return true if MI is in a bundle (but not the first MI
    176   /// in a bundle).
    177   ///
    178   /// A bundle looks like this before it's finalized:
    179   ///   ----------------
    180   ///   |      MI      |
    181   ///   ----------------
    182   ///          |
    183   ///   ----------------
    184   ///   |      MI    * |
    185   ///   ----------------
    186   ///          |
    187   ///   ----------------
    188   ///   |      MI    * |
    189   ///   ----------------
    190   /// In this case, the first MI starts a bundle but is not inside a bundle, the
    191   /// next 2 MIs are considered "inside" the bundle.
    192   ///
    193   /// After a bundle is finalized, it looks like this:
    194   ///   ----------------
    195   ///   |    Bundle    |
    196   ///   ----------------
    197   ///          |
    198   ///   ----------------
    199   ///   |      MI    * |
    200   ///   ----------------
    201   ///          |
    202   ///   ----------------
    203   ///   |      MI    * |
    204   ///   ----------------
    205   ///          |
    206   ///   ----------------
    207   ///   |      MI    * |
    208   ///   ----------------
    209   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
    210   /// a bundle, but the next three MIs are.
    211   bool isInsideBundle() const {
    212     return getFlag(BundledPred);
    213   }
    214 
    215   /// isBundled - Return true if this instruction part of a bundle. This is true
    216   /// if either itself or its following instruction is marked "InsideBundle".
    217   bool isBundled() const {
    218     return isBundledWithPred() || isBundledWithSucc();
    219   }
    220 
    221   /// Return true if this instruction is part of a bundle, and it is not the
    222   /// first instruction in the bundle.
    223   bool isBundledWithPred() const { return getFlag(BundledPred); }
    224 
    225   /// Return true if this instruction is part of a bundle, and it is not the
    226   /// last instruction in the bundle.
    227   bool isBundledWithSucc() const { return getFlag(BundledSucc); }
    228 
    229   /// Bundle this instruction with its predecessor. This can be an unbundled
    230   /// instruction, or it can be the first instruction in a bundle.
    231   void bundleWithPred();
    232 
    233   /// Bundle this instruction with its successor. This can be an unbundled
    234   /// instruction, or it can be the last instruction in a bundle.
    235   void bundleWithSucc();
    236 
    237   /// Break bundle above this instruction.
    238   void unbundleFromPred();
    239 
    240   /// Break bundle below this instruction.
    241   void unbundleFromSucc();
    242 
    243   /// getDebugLoc - Returns the debug location id of this MachineInstr.
    244   ///
    245   DebugLoc getDebugLoc() const { return debugLoc; }
    246 
    247   /// getDebugVariable() - Return the debug variable referenced by
    248   /// this DBG_VALUE instruction.
    249   DIVariable getDebugVariable() const {
    250     assert(isDebugValue() && "not a DBG_VALUE");
    251     const MDNode *Var = getOperand(getNumOperands() - 1).getMetadata();
    252     return DIVariable(Var);
    253   }
    254 
    255   /// emitError - Emit an error referring to the source location of this
    256   /// instruction. This should only be used for inline assembly that is somehow
    257   /// impossible to compile. Other errors should have been handled much
    258   /// earlier.
    259   ///
    260   /// If this method returns, the caller should try to recover from the error.
    261   ///
    262   void emitError(StringRef Msg) const;
    263 
    264   /// getDesc - Returns the target instruction descriptor of this
    265   /// MachineInstr.
    266   const MCInstrDesc &getDesc() const { return *MCID; }
    267 
    268   /// getOpcode - Returns the opcode of this MachineInstr.
    269   ///
    270   int getOpcode() const { return MCID->Opcode; }
    271 
    272   /// Access to explicit operands of the instruction.
    273   ///
    274   unsigned getNumOperands() const { return NumOperands; }
    275 
    276   const MachineOperand& getOperand(unsigned i) const {
    277     assert(i < getNumOperands() && "getOperand() out of range!");
    278     return Operands[i];
    279   }
    280   MachineOperand& getOperand(unsigned i) {
    281     assert(i < getNumOperands() && "getOperand() out of range!");
    282     return Operands[i];
    283   }
    284 
    285   /// getNumExplicitOperands - Returns the number of non-implicit operands.
    286   ///
    287   unsigned getNumExplicitOperands() const;
    288 
    289   /// iterator/begin/end - Iterate over all operands of a machine instruction.
    290   typedef MachineOperand *mop_iterator;
    291   typedef const MachineOperand *const_mop_iterator;
    292 
    293   mop_iterator operands_begin() { return Operands; }
    294   mop_iterator operands_end() { return Operands + NumOperands; }
    295 
    296   const_mop_iterator operands_begin() const { return Operands; }
    297   const_mop_iterator operands_end() const { return Operands + NumOperands; }
    298 
    299   iterator_range<mop_iterator> operands() {
    300     return iterator_range<mop_iterator>(operands_begin(), operands_end());
    301   }
    302   iterator_range<const_mop_iterator> operands() const {
    303     return iterator_range<const_mop_iterator>(operands_begin(), operands_end());
    304   }
    305   iterator_range<mop_iterator> explicit_operands() {
    306     return iterator_range<mop_iterator>(
    307         operands_begin(), operands_begin() + getNumExplicitOperands());
    308   }
    309   iterator_range<const_mop_iterator> explicit_operands() const {
    310     return iterator_range<const_mop_iterator>(
    311         operands_begin(), operands_begin() + getNumExplicitOperands());
    312   }
    313   iterator_range<mop_iterator> implicit_operands() {
    314     return iterator_range<mop_iterator>(explicit_operands().end(),
    315                                         operands_end());
    316   }
    317   iterator_range<const_mop_iterator> implicit_operands() const {
    318     return iterator_range<const_mop_iterator>(explicit_operands().end(),
    319                                               operands_end());
    320   }
    321   iterator_range<mop_iterator> defs() {
    322     return iterator_range<mop_iterator>(
    323         operands_begin(), operands_begin() + getDesc().getNumDefs());
    324   }
    325   iterator_range<const_mop_iterator> defs() const {
    326     return iterator_range<const_mop_iterator>(
    327         operands_begin(), operands_begin() + getDesc().getNumDefs());
    328   }
    329   iterator_range<mop_iterator> uses() {
    330     return iterator_range<mop_iterator>(
    331         operands_begin() + getDesc().getNumDefs(), operands_end());
    332   }
    333   iterator_range<const_mop_iterator> uses() const {
    334     return iterator_range<const_mop_iterator>(
    335         operands_begin() + getDesc().getNumDefs(), operands_end());
    336   }
    337 
    338   /// Access to memory operands of the instruction
    339   mmo_iterator memoperands_begin() const { return MemRefs; }
    340   mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
    341   bool memoperands_empty() const { return NumMemRefs == 0; }
    342 
    343   iterator_range<mmo_iterator>  memoperands() {
    344     return iterator_range<mmo_iterator>(memoperands_begin(), memoperands_end());
    345   }
    346   iterator_range<mmo_iterator> memoperands() const {
    347     return iterator_range<mmo_iterator>(memoperands_begin(), memoperands_end());
    348   }
    349 
    350   /// hasOneMemOperand - Return true if this instruction has exactly one
    351   /// MachineMemOperand.
    352   bool hasOneMemOperand() const {
    353     return NumMemRefs == 1;
    354   }
    355 
    356   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
    357   /// queries but they are bundle aware.
    358 
    359   enum QueryType {
    360     IgnoreBundle,    // Ignore bundles
    361     AnyInBundle,     // Return true if any instruction in bundle has property
    362     AllInBundle      // Return true if all instructions in bundle have property
    363   };
    364 
    365   /// hasProperty - Return true if the instruction (or in the case of a bundle,
    366   /// the instructions inside the bundle) has the specified property.
    367   /// The first argument is the property being queried.
    368   /// The second argument indicates whether the query should look inside
    369   /// instruction bundles.
    370   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
    371     // Inline the fast path for unbundled or bundle-internal instructions.
    372     if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
    373       return getDesc().getFlags() & (1 << MCFlag);
    374 
    375     // If this is the first instruction in a bundle, take the slow path.
    376     return hasPropertyInBundle(1 << MCFlag, Type);
    377   }
    378 
    379   /// isVariadic - Return true if this instruction can have a variable number of
    380   /// operands.  In this case, the variable operands will be after the normal
    381   /// operands but before the implicit definitions and uses (if any are
    382   /// present).
    383   bool isVariadic(QueryType Type = IgnoreBundle) const {
    384     return hasProperty(MCID::Variadic, Type);
    385   }
    386 
    387   /// hasOptionalDef - Set if this instruction has an optional definition, e.g.
    388   /// ARM instructions which can set condition code if 's' bit is set.
    389   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
    390     return hasProperty(MCID::HasOptionalDef, Type);
    391   }
    392 
    393   /// isPseudo - Return true if this is a pseudo instruction that doesn't
    394   /// correspond to a real machine instruction.
    395   ///
    396   bool isPseudo(QueryType Type = IgnoreBundle) const {
    397     return hasProperty(MCID::Pseudo, Type);
    398   }
    399 
    400   bool isReturn(QueryType Type = AnyInBundle) const {
    401     return hasProperty(MCID::Return, Type);
    402   }
    403 
    404   bool isCall(QueryType Type = AnyInBundle) const {
    405     return hasProperty(MCID::Call, Type);
    406   }
    407 
    408   /// isBarrier - Returns true if the specified instruction stops control flow
    409   /// from executing the instruction immediately following it.  Examples include
    410   /// unconditional branches and return instructions.
    411   bool isBarrier(QueryType Type = AnyInBundle) const {
    412     return hasProperty(MCID::Barrier, Type);
    413   }
    414 
    415   /// isTerminator - Returns true if this instruction part of the terminator for
    416   /// a basic block.  Typically this is things like return and branch
    417   /// instructions.
    418   ///
    419   /// Various passes use this to insert code into the bottom of a basic block,
    420   /// but before control flow occurs.
    421   bool isTerminator(QueryType Type = AnyInBundle) const {
    422     return hasProperty(MCID::Terminator, Type);
    423   }
    424 
    425   /// isBranch - Returns true if this is a conditional, unconditional, or
    426   /// indirect branch.  Predicates below can be used to discriminate between
    427   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
    428   /// get more information.
    429   bool isBranch(QueryType Type = AnyInBundle) const {
    430     return hasProperty(MCID::Branch, Type);
    431   }
    432 
    433   /// isIndirectBranch - Return true if this is an indirect branch, such as a
    434   /// branch through a register.
    435   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
    436     return hasProperty(MCID::IndirectBranch, Type);
    437   }
    438 
    439   /// isConditionalBranch - Return true if this is a branch which may fall
    440   /// through to the next instruction or may transfer control flow to some other
    441   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
    442   /// information about this branch.
    443   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
    444     return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
    445   }
    446 
    447   /// isUnconditionalBranch - Return true if this is a branch which always
    448   /// transfers control flow to some other block.  The
    449   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
    450   /// about this branch.
    451   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
    452     return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
    453   }
    454 
    455   /// Return true if this instruction has a predicate operand that
    456   /// controls execution.  It may be set to 'always', or may be set to other
    457   /// values.   There are various methods in TargetInstrInfo that can be used to
    458   /// control and modify the predicate in this instruction.
    459   bool isPredicable(QueryType Type = AllInBundle) const {
    460     // If it's a bundle than all bundled instructions must be predicable for this
    461     // to return true.
    462     return hasProperty(MCID::Predicable, Type);
    463   }
    464 
    465   /// isCompare - Return true if this instruction is a comparison.
    466   bool isCompare(QueryType Type = IgnoreBundle) const {
    467     return hasProperty(MCID::Compare, Type);
    468   }
    469 
    470   /// isMoveImmediate - Return true if this instruction is a move immediate
    471   /// (including conditional moves) instruction.
    472   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
    473     return hasProperty(MCID::MoveImm, Type);
    474   }
    475 
    476   /// isBitcast - Return true if this instruction is a bitcast instruction.
    477   ///
    478   bool isBitcast(QueryType Type = IgnoreBundle) const {
    479     return hasProperty(MCID::Bitcast, Type);
    480   }
    481 
    482   /// isSelect - Return true if this instruction is a select instruction.
    483   ///
    484   bool isSelect(QueryType Type = IgnoreBundle) const {
    485     return hasProperty(MCID::Select, Type);
    486   }
    487 
    488   /// isNotDuplicable - Return true if this instruction cannot be safely
    489   /// duplicated.  For example, if the instruction has a unique labels attached
    490   /// to it, duplicating it would cause multiple definition errors.
    491   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
    492     return hasProperty(MCID::NotDuplicable, Type);
    493   }
    494 
    495   /// hasDelaySlot - Returns true if the specified instruction has a delay slot
    496   /// which must be filled by the code generator.
    497   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
    498     return hasProperty(MCID::DelaySlot, Type);
    499   }
    500 
    501   /// canFoldAsLoad - Return true for instructions that can be folded as
    502   /// memory operands in other instructions. The most common use for this
    503   /// is instructions that are simple loads from memory that don't modify
    504   /// the loaded value in any way, but it can also be used for instructions
    505   /// that can be expressed as constant-pool loads, such as V_SETALLONES
    506   /// on x86, to allow them to be folded when it is beneficial.
    507   /// This should only be set on instructions that return a value in their
    508   /// only virtual register definition.
    509   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
    510     return hasProperty(MCID::FoldableAsLoad, Type);
    511   }
    512 
    513   //===--------------------------------------------------------------------===//
    514   // Side Effect Analysis
    515   //===--------------------------------------------------------------------===//
    516 
    517   /// mayLoad - Return true if this instruction could possibly read memory.
    518   /// Instructions with this flag set are not necessarily simple load
    519   /// instructions, they may load a value and modify it, for example.
    520   bool mayLoad(QueryType Type = AnyInBundle) const {
    521     if (isInlineAsm()) {
    522       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    523       if (ExtraInfo & InlineAsm::Extra_MayLoad)
    524         return true;
    525     }
    526     return hasProperty(MCID::MayLoad, Type);
    527   }
    528 
    529 
    530   /// mayStore - Return true if this instruction could possibly modify memory.
    531   /// Instructions with this flag set are not necessarily simple store
    532   /// instructions, they may store a modified value based on their operands, or
    533   /// may not actually modify anything, for example.
    534   bool mayStore(QueryType Type = AnyInBundle) const {
    535     if (isInlineAsm()) {
    536       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    537       if (ExtraInfo & InlineAsm::Extra_MayStore)
    538         return true;
    539     }
    540     return hasProperty(MCID::MayStore, Type);
    541   }
    542 
    543   //===--------------------------------------------------------------------===//
    544   // Flags that indicate whether an instruction can be modified by a method.
    545   //===--------------------------------------------------------------------===//
    546 
    547   /// isCommutable - Return true if this may be a 2- or 3-address
    548   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
    549   /// result if Y and Z are exchanged.  If this flag is set, then the
    550   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
    551   /// instruction.
    552   ///
    553   /// Note that this flag may be set on instructions that are only commutable
    554   /// sometimes.  In these cases, the call to commuteInstruction will fail.
    555   /// Also note that some instructions require non-trivial modification to
    556   /// commute them.
    557   bool isCommutable(QueryType Type = IgnoreBundle) const {
    558     return hasProperty(MCID::Commutable, Type);
    559   }
    560 
    561   /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
    562   /// which can be changed into a 3-address instruction if needed.  Doing this
    563   /// transformation can be profitable in the register allocator, because it
    564   /// means that the instruction can use a 2-address form if possible, but
    565   /// degrade into a less efficient form if the source and dest register cannot
    566   /// be assigned to the same register.  For example, this allows the x86
    567   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
    568   /// is the same speed as the shift but has bigger code size.
    569   ///
    570   /// If this returns true, then the target must implement the
    571   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
    572   /// is allowed to fail if the transformation isn't valid for this specific
    573   /// instruction (e.g. shl reg, 4 on x86).
    574   ///
    575   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
    576     return hasProperty(MCID::ConvertibleTo3Addr, Type);
    577   }
    578 
    579   /// usesCustomInsertionHook - Return true if this instruction requires
    580   /// custom insertion support when the DAG scheduler is inserting it into a
    581   /// machine basic block.  If this is true for the instruction, it basically
    582   /// means that it is a pseudo instruction used at SelectionDAG time that is
    583   /// expanded out into magic code by the target when MachineInstrs are formed.
    584   ///
    585   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
    586   /// is used to insert this into the MachineBasicBlock.
    587   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
    588     return hasProperty(MCID::UsesCustomInserter, Type);
    589   }
    590 
    591   /// hasPostISelHook - Return true if this instruction requires *adjustment*
    592   /// after instruction selection by calling a target hook. For example, this
    593   /// can be used to fill in ARM 's' optional operand depending on whether
    594   /// the conditional flag register is used.
    595   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
    596     return hasProperty(MCID::HasPostISelHook, Type);
    597   }
    598 
    599   /// isRematerializable - Returns true if this instruction is a candidate for
    600   /// remat.  This flag is deprecated, please don't use it anymore.  If this
    601   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
    602   /// verify the instruction is really rematable.
    603   bool isRematerializable(QueryType Type = AllInBundle) const {
    604     // It's only possible to re-mat a bundle if all bundled instructions are
    605     // re-materializable.
    606     return hasProperty(MCID::Rematerializable, Type);
    607   }
    608 
    609   /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
    610   /// less) than a move instruction. This is useful during certain types of
    611   /// optimizations (e.g., remat during two-address conversion or machine licm)
    612   /// where we would like to remat or hoist the instruction, but not if it costs
    613   /// more than moving the instruction into the appropriate register. Note, we
    614   /// are not marking copies from and to the same register class with this flag.
    615   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
    616     // Only returns true for a bundle if all bundled instructions are cheap.
    617     return hasProperty(MCID::CheapAsAMove, Type);
    618   }
    619 
    620   /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
    621   /// have special register allocation requirements that are not captured by the
    622   /// operand register classes. e.g. ARM::STRD's two source registers must be an
    623   /// even / odd pair, ARM::STM registers have to be in ascending order.
    624   /// Post-register allocation passes should not attempt to change allocations
    625   /// for sources of instructions with this flag.
    626   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
    627     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
    628   }
    629 
    630   /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
    631   /// have special register allocation requirements that are not captured by the
    632   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
    633   /// even / odd pair, ARM::LDM registers have to be in ascending order.
    634   /// Post-register allocation passes should not attempt to change allocations
    635   /// for definitions of instructions with this flag.
    636   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
    637     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
    638   }
    639 
    640 
    641   enum MICheckType {
    642     CheckDefs,      // Check all operands for equality
    643     CheckKillDead,  // Check all operands including kill / dead markers
    644     IgnoreDefs,     // Ignore all definitions
    645     IgnoreVRegDefs  // Ignore virtual register definitions
    646   };
    647 
    648   /// isIdenticalTo - Return true if this instruction is identical to (same
    649   /// opcode and same operands as) the specified instruction.
    650   bool isIdenticalTo(const MachineInstr *Other,
    651                      MICheckType Check = CheckDefs) const;
    652 
    653   /// Unlink 'this' from the containing basic block, and return it without
    654   /// deleting it.
    655   ///
    656   /// This function can not be used on bundled instructions, use
    657   /// removeFromBundle() to remove individual instructions from a bundle.
    658   MachineInstr *removeFromParent();
    659 
    660   /// Unlink this instruction from its basic block and return it without
    661   /// deleting it.
    662   ///
    663   /// If the instruction is part of a bundle, the other instructions in the
    664   /// bundle remain bundled.
    665   MachineInstr *removeFromBundle();
    666 
    667   /// Unlink 'this' from the containing basic block and delete it.
    668   ///
    669   /// If this instruction is the header of a bundle, the whole bundle is erased.
    670   /// This function can not be used for instructions inside a bundle, use
    671   /// eraseFromBundle() to erase individual bundled instructions.
    672   void eraseFromParent();
    673 
    674   /// Unlink 'this' form its basic block and delete it.
    675   ///
    676   /// If the instruction is part of a bundle, the other instructions in the
    677   /// bundle remain bundled.
    678   void eraseFromBundle();
    679 
    680   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
    681   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
    682 
    683   /// isLabel - Returns true if the MachineInstr represents a label.
    684   ///
    685   bool isLabel() const { return isEHLabel() || isGCLabel(); }
    686   bool isCFIInstruction() const {
    687     return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
    688   }
    689 
    690   // True if the instruction represents a position in the function.
    691   bool isPosition() const { return isLabel() || isCFIInstruction(); }
    692 
    693   bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
    694   /// A DBG_VALUE is indirect iff the first operand is a register and
    695   /// the second operand is an immediate.
    696   bool isIndirectDebugValue() const {
    697     return isDebugValue()
    698       && getOperand(0).isReg()
    699       && getOperand(1).isImm();
    700   }
    701 
    702   bool isPHI() const { return getOpcode() == TargetOpcode::PHI; }
    703   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
    704   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
    705   bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
    706   bool isMSInlineAsm() const {
    707     return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
    708   }
    709   bool isStackAligningInlineAsm() const;
    710   InlineAsm::AsmDialect getInlineAsmDialect() const;
    711   bool isInsertSubreg() const {
    712     return getOpcode() == TargetOpcode::INSERT_SUBREG;
    713   }
    714   bool isSubregToReg() const {
    715     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
    716   }
    717   bool isRegSequence() const {
    718     return getOpcode() == TargetOpcode::REG_SEQUENCE;
    719   }
    720   bool isBundle() const {
    721     return getOpcode() == TargetOpcode::BUNDLE;
    722   }
    723   bool isCopy() const {
    724     return getOpcode() == TargetOpcode::COPY;
    725   }
    726   bool isFullCopy() const {
    727     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
    728   }
    729   bool isExtractSubreg() const {
    730     return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
    731   }
    732 
    733   /// isCopyLike - Return true if the instruction behaves like a copy.
    734   /// This does not include native copy instructions.
    735   bool isCopyLike() const {
    736     return isCopy() || isSubregToReg();
    737   }
    738 
    739   /// isIdentityCopy - Return true is the instruction is an identity copy.
    740   bool isIdentityCopy() const {
    741     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
    742       getOperand(0).getSubReg() == getOperand(1).getSubReg();
    743   }
    744 
    745   /// isTransient - Return true if this is a transient instruction that is
    746   /// either very likely to be eliminated during register allocation (such as
    747   /// copy-like instructions), or if this instruction doesn't have an
    748   /// execution-time cost.
    749   bool isTransient() const {
    750     switch(getOpcode()) {
    751     default: return false;
    752     // Copy-like instructions are usually eliminated during register allocation.
    753     case TargetOpcode::PHI:
    754     case TargetOpcode::COPY:
    755     case TargetOpcode::INSERT_SUBREG:
    756     case TargetOpcode::SUBREG_TO_REG:
    757     case TargetOpcode::REG_SEQUENCE:
    758     // Pseudo-instructions that don't produce any real output.
    759     case TargetOpcode::IMPLICIT_DEF:
    760     case TargetOpcode::KILL:
    761     case TargetOpcode::CFI_INSTRUCTION:
    762     case TargetOpcode::EH_LABEL:
    763     case TargetOpcode::GC_LABEL:
    764     case TargetOpcode::DBG_VALUE:
    765       return true;
    766     }
    767   }
    768 
    769   /// Return the number of instructions inside the MI bundle, excluding the
    770   /// bundle header.
    771   ///
    772   /// This is the number of instructions that MachineBasicBlock::iterator
    773   /// skips, 0 for unbundled instructions.
    774   unsigned getBundleSize() const;
    775 
    776   /// readsRegister - Return true if the MachineInstr reads the specified
    777   /// register. If TargetRegisterInfo is passed, then it also checks if there
    778   /// is a read of a super-register.
    779   /// This does not count partial redefines of virtual registers as reads:
    780   ///   %reg1024:6 = OP.
    781   bool readsRegister(unsigned Reg,
    782                      const TargetRegisterInfo *TRI = nullptr) const {
    783     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
    784   }
    785 
    786   /// readsVirtualRegister - Return true if the MachineInstr reads the specified
    787   /// virtual register. Take into account that a partial define is a
    788   /// read-modify-write operation.
    789   bool readsVirtualRegister(unsigned Reg) const {
    790     return readsWritesVirtualRegister(Reg).first;
    791   }
    792 
    793   /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
    794   /// indicating if this instruction reads or writes Reg. This also considers
    795   /// partial defines.
    796   /// If Ops is not null, all operand indices for Reg are added.
    797   std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
    798                                 SmallVectorImpl<unsigned> *Ops = nullptr) const;
    799 
    800   /// killsRegister - Return true if the MachineInstr kills the specified
    801   /// register. If TargetRegisterInfo is passed, then it also checks if there is
    802   /// a kill of a super-register.
    803   bool killsRegister(unsigned Reg,
    804                      const TargetRegisterInfo *TRI = nullptr) const {
    805     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
    806   }
    807 
    808   /// definesRegister - Return true if the MachineInstr fully defines the
    809   /// specified register. If TargetRegisterInfo is passed, then it also checks
    810   /// if there is a def of a super-register.
    811   /// NOTE: It's ignoring subreg indices on virtual registers.
    812   bool definesRegister(unsigned Reg,
    813                        const TargetRegisterInfo *TRI = nullptr) const {
    814     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
    815   }
    816 
    817   /// modifiesRegister - Return true if the MachineInstr modifies (fully define
    818   /// or partially define) the specified register.
    819   /// NOTE: It's ignoring subreg indices on virtual registers.
    820   bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
    821     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
    822   }
    823 
    824   /// registerDefIsDead - Returns true if the register is dead in this machine
    825   /// instruction. If TargetRegisterInfo is passed, then it also checks
    826   /// if there is a dead def of a super-register.
    827   bool registerDefIsDead(unsigned Reg,
    828                          const TargetRegisterInfo *TRI = nullptr) const {
    829     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
    830   }
    831 
    832   /// findRegisterUseOperandIdx() - Returns the operand index that is a use of
    833   /// the specific register or -1 if it is not found. It further tightens
    834   /// the search criteria to a use that kills the register if isKill is true.
    835   int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
    836                                 const TargetRegisterInfo *TRI = nullptr) const;
    837 
    838   /// findRegisterUseOperand - Wrapper for findRegisterUseOperandIdx, it returns
    839   /// a pointer to the MachineOperand rather than an index.
    840   MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
    841                                       const TargetRegisterInfo *TRI = nullptr) {
    842     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
    843     return (Idx == -1) ? nullptr : &getOperand(Idx);
    844   }
    845 
    846   /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
    847   /// the specified register or -1 if it is not found. If isDead is true, defs
    848   /// that are not dead are skipped. If Overlap is true, then it also looks for
    849   /// defs that merely overlap the specified register. If TargetRegisterInfo is
    850   /// non-null, then it also checks if there is a def of a super-register.
    851   /// This may also return a register mask operand when Overlap is true.
    852   int findRegisterDefOperandIdx(unsigned Reg,
    853                                 bool isDead = false, bool Overlap = false,
    854                                 const TargetRegisterInfo *TRI = nullptr) const;
    855 
    856   /// findRegisterDefOperand - Wrapper for findRegisterDefOperandIdx, it returns
    857   /// a pointer to the MachineOperand rather than an index.
    858   MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
    859                                       const TargetRegisterInfo *TRI = nullptr) {
    860     int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
    861     return (Idx == -1) ? nullptr : &getOperand(Idx);
    862   }
    863 
    864   /// findFirstPredOperandIdx() - Find the index of the first operand in the
    865   /// operand list that is used to represent the predicate. It returns -1 if
    866   /// none is found.
    867   int findFirstPredOperandIdx() const;
    868 
    869   /// findInlineAsmFlagIdx() - Find the index of the flag word operand that
    870   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
    871   /// getOperand(OpIdx) does not belong to an inline asm operand group.
    872   ///
    873   /// If GroupNo is not NULL, it will receive the number of the operand group
    874   /// containing OpIdx.
    875   ///
    876   /// The flag operand is an immediate that can be decoded with methods like
    877   /// InlineAsm::hasRegClassConstraint().
    878   ///
    879   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
    880 
    881   /// getRegClassConstraint - Compute the static register class constraint for
    882   /// operand OpIdx.  For normal instructions, this is derived from the
    883   /// MCInstrDesc.  For inline assembly it is derived from the flag words.
    884   ///
    885   /// Returns NULL if the static register classs constraint cannot be
    886   /// determined.
    887   ///
    888   const TargetRegisterClass*
    889   getRegClassConstraint(unsigned OpIdx,
    890                         const TargetInstrInfo *TII,
    891                         const TargetRegisterInfo *TRI) const;
    892 
    893   /// \brief Applies the constraints (def/use) implied by this MI on \p Reg to
    894   /// the given \p CurRC.
    895   /// If \p ExploreBundle is set and MI is part of a bundle, all the
    896   /// instructions inside the bundle will be taken into account. In other words,
    897   /// this method accumulates all the constrains of the operand of this MI and
    898   /// the related bundle if MI is a bundle or inside a bundle.
    899   ///
    900   /// Returns the register class that statisfies both \p CurRC and the
    901   /// constraints set by MI. Returns NULL if such a register class does not
    902   /// exist.
    903   ///
    904   /// \pre CurRC must not be NULL.
    905   const TargetRegisterClass *getRegClassConstraintEffectForVReg(
    906       unsigned Reg, const TargetRegisterClass *CurRC,
    907       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
    908       bool ExploreBundle = false) const;
    909 
    910   /// \brief Applies the constraints (def/use) implied by the \p OpIdx operand
    911   /// to the given \p CurRC.
    912   ///
    913   /// Returns the register class that statisfies both \p CurRC and the
    914   /// constraints set by \p OpIdx MI. Returns NULL if such a register class
    915   /// does not exist.
    916   ///
    917   /// \pre CurRC must not be NULL.
    918   /// \pre The operand at \p OpIdx must be a register.
    919   const TargetRegisterClass *
    920   getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
    921                               const TargetInstrInfo *TII,
    922                               const TargetRegisterInfo *TRI) const;
    923 
    924   /// tieOperands - Add a tie between the register operands at DefIdx and
    925   /// UseIdx. The tie will cause the register allocator to ensure that the two
    926   /// operands are assigned the same physical register.
    927   ///
    928   /// Tied operands are managed automatically for explicit operands in the
    929   /// MCInstrDesc. This method is for exceptional cases like inline asm.
    930   void tieOperands(unsigned DefIdx, unsigned UseIdx);
    931 
    932   /// findTiedOperandIdx - Given the index of a tied register operand, find the
    933   /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
    934   /// index of the tied operand which must exist.
    935   unsigned findTiedOperandIdx(unsigned OpIdx) const;
    936 
    937   /// isRegTiedToUseOperand - Given the index of a register def operand,
    938   /// check if the register def is tied to a source operand, due to either
    939   /// two-address elimination or inline assembly constraints. Returns the
    940   /// first tied use operand index by reference if UseOpIdx is not null.
    941   bool isRegTiedToUseOperand(unsigned DefOpIdx,
    942                              unsigned *UseOpIdx = nullptr) const {
    943     const MachineOperand &MO = getOperand(DefOpIdx);
    944     if (!MO.isReg() || !MO.isDef() || !MO.isTied())
    945       return false;
    946     if (UseOpIdx)
    947       *UseOpIdx = findTiedOperandIdx(DefOpIdx);
    948     return true;
    949   }
    950 
    951   /// isRegTiedToDefOperand - Return true if the use operand of the specified
    952   /// index is tied to a def operand. It also returns the def operand index by
    953   /// reference if DefOpIdx is not null.
    954   bool isRegTiedToDefOperand(unsigned UseOpIdx,
    955                              unsigned *DefOpIdx = nullptr) const {
    956     const MachineOperand &MO = getOperand(UseOpIdx);
    957     if (!MO.isReg() || !MO.isUse() || !MO.isTied())
    958       return false;
    959     if (DefOpIdx)
    960       *DefOpIdx = findTiedOperandIdx(UseOpIdx);
    961     return true;
    962   }
    963 
    964   /// clearKillInfo - Clears kill flags on all operands.
    965   ///
    966   void clearKillInfo();
    967 
    968   /// substituteRegister - Replace all occurrences of FromReg with ToReg:SubIdx,
    969   /// properly composing subreg indices where necessary.
    970   void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
    971                           const TargetRegisterInfo &RegInfo);
    972 
    973   /// addRegisterKilled - We have determined MI kills a register. Look for the
    974   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
    975   /// add a implicit operand if it's not found. Returns true if the operand
    976   /// exists / is added.
    977   bool addRegisterKilled(unsigned IncomingReg,
    978                          const TargetRegisterInfo *RegInfo,
    979                          bool AddIfNotFound = false);
    980 
    981   /// clearRegisterKills - Clear all kill flags affecting Reg.  If RegInfo is
    982   /// provided, this includes super-register kills.
    983   void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
    984 
    985   /// addRegisterDead - We have determined MI defined a register without a use.
    986   /// Look for the operand that defines it and mark it as IsDead. If
    987   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
    988   /// true if the operand exists / is added.
    989   bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo,
    990                        bool AddIfNotFound = false);
    991 
    992   /// addRegisterDefined - We have determined MI defines a register. Make sure
    993   /// there is an operand defining Reg.
    994   void addRegisterDefined(unsigned Reg,
    995                           const TargetRegisterInfo *RegInfo = nullptr);
    996 
    997   /// setPhysRegsDeadExcept - Mark every physreg used by this instruction as
    998   /// dead except those in the UsedRegs list.
    999   ///
   1000   /// On instructions with register mask operands, also add implicit-def
   1001   /// operands for all registers in UsedRegs.
   1002   void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
   1003                              const TargetRegisterInfo &TRI);
   1004 
   1005   /// isSafeToMove - Return true if it is safe to move this instruction. If
   1006   /// SawStore is set to true, it means that there is a store (or call) between
   1007   /// the instruction's location and its intended destination.
   1008   bool isSafeToMove(const TargetInstrInfo *TII, AliasAnalysis *AA,
   1009                     bool &SawStore) const;
   1010 
   1011   /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
   1012   /// or volatile memory reference, or if the information describing the memory
   1013   /// reference is not available. Return false if it is known to have no
   1014   /// ordered or volatile memory references.
   1015   bool hasOrderedMemoryRef() const;
   1016 
   1017   /// isInvariantLoad - Return true if this instruction is loading from a
   1018   /// location whose value is invariant across the function.  For example,
   1019   /// loading a value from the constant pool or from the argument area of
   1020   /// a function if it does not change.  This should only return true of *all*
   1021   /// loads the instruction does are invariant (if it does multiple loads).
   1022   bool isInvariantLoad(AliasAnalysis *AA) const;
   1023 
   1024   /// isConstantValuePHI - If the specified instruction is a PHI that always
   1025   /// merges together the same virtual register, return the register, otherwise
   1026   /// return 0.
   1027   unsigned isConstantValuePHI() const;
   1028 
   1029   /// hasUnmodeledSideEffects - Return true if this instruction has side
   1030   /// effects that are not modeled by mayLoad / mayStore, etc.
   1031   /// For all instructions, the property is encoded in MCInstrDesc::Flags
   1032   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
   1033   /// INLINEASM instruction, in which case the side effect property is encoded
   1034   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
   1035   ///
   1036   bool hasUnmodeledSideEffects() const;
   1037 
   1038   /// allDefsAreDead - Return true if all the defs of this instruction are dead.
   1039   ///
   1040   bool allDefsAreDead() const;
   1041 
   1042   /// copyImplicitOps - Copy implicit register operands from specified
   1043   /// instruction to this instruction.
   1044   void copyImplicitOps(MachineFunction &MF, const MachineInstr *MI);
   1045 
   1046   //
   1047   // Debugging support
   1048   //
   1049   void print(raw_ostream &OS, const TargetMachine *TM = nullptr,
   1050              bool SkipOpers = false) const;
   1051   void dump() const;
   1052 
   1053   //===--------------------------------------------------------------------===//
   1054   // Accessors used to build up machine instructions.
   1055 
   1056   /// Add the specified operand to the instruction.  If it is an implicit
   1057   /// operand, it is added to the end of the operand list.  If it is an
   1058   /// explicit operand it is added at the end of the explicit operand list
   1059   /// (before the first implicit operand).
   1060   ///
   1061   /// MF must be the machine function that was used to allocate this
   1062   /// instruction.
   1063   ///
   1064   /// MachineInstrBuilder provides a more convenient interface for creating
   1065   /// instructions and adding operands.
   1066   void addOperand(MachineFunction &MF, const MachineOperand &Op);
   1067 
   1068   /// Add an operand without providing an MF reference. This only works for
   1069   /// instructions that are inserted in a basic block.
   1070   ///
   1071   /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
   1072   /// preferred.
   1073   void addOperand(const MachineOperand &Op);
   1074 
   1075   /// setDesc - Replace the instruction descriptor (thus opcode) of
   1076   /// the current instruction with a new one.
   1077   ///
   1078   void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
   1079 
   1080   /// setDebugLoc - Replace current source information with new such.
   1081   /// Avoid using this, the constructor argument is preferable.
   1082   ///
   1083   void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
   1084 
   1085   /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
   1086   /// fewer operand than it started with.
   1087   ///
   1088   void RemoveOperand(unsigned i);
   1089 
   1090   /// addMemOperand - Add a MachineMemOperand to the machine instruction.
   1091   /// This function should be used only occasionally. The setMemRefs function
   1092   /// is the primary method for setting up a MachineInstr's MemRefs list.
   1093   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
   1094 
   1095   /// setMemRefs - Assign this MachineInstr's memory reference descriptor
   1096   /// list. This does not transfer ownership.
   1097   void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
   1098     MemRefs = NewMemRefs;
   1099     NumMemRefs = uint8_t(NewMemRefsEnd - NewMemRefs);
   1100     assert(NumMemRefs == NewMemRefsEnd - NewMemRefs && "Too many memrefs");
   1101   }
   1102 
   1103 private:
   1104   /// getRegInfo - If this instruction is embedded into a MachineFunction,
   1105   /// return the MachineRegisterInfo object for the current function, otherwise
   1106   /// return null.
   1107   MachineRegisterInfo *getRegInfo();
   1108 
   1109   /// untieRegOperand - Break any tie involving OpIdx.
   1110   void untieRegOperand(unsigned OpIdx) {
   1111     MachineOperand &MO = getOperand(OpIdx);
   1112     if (MO.isReg() && MO.isTied()) {
   1113       getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
   1114       MO.TiedTo = 0;
   1115     }
   1116   }
   1117 
   1118   /// addImplicitDefUseOperands - Add all implicit def and use operands to
   1119   /// this instruction.
   1120   void addImplicitDefUseOperands(MachineFunction &MF);
   1121 
   1122   /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
   1123   /// this instruction from their respective use lists.  This requires that the
   1124   /// operands already be on their use lists.
   1125   void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
   1126 
   1127   /// AddRegOperandsToUseLists - Add all of the register operands in
   1128   /// this instruction from their respective use lists.  This requires that the
   1129   /// operands not be on their use lists yet.
   1130   void AddRegOperandsToUseLists(MachineRegisterInfo&);
   1131 
   1132   /// hasPropertyInBundle - Slow path for hasProperty when we're dealing with a
   1133   /// bundle.
   1134   bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
   1135 
   1136   /// \brief Implements the logic of getRegClassConstraintEffectForVReg for the
   1137   /// this MI and the given operand index \p OpIdx.
   1138   /// If the related operand does not constrained Reg, this returns CurRC.
   1139   const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
   1140       unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
   1141       const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
   1142 };
   1143 
   1144 /// MachineInstrExpressionTrait - Special DenseMapInfo traits to compare
   1145 /// MachineInstr* by *value* of the instruction rather than by pointer value.
   1146 /// The hashing and equality testing functions ignore definitions so this is
   1147 /// useful for CSE, etc.
   1148 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
   1149   static inline MachineInstr *getEmptyKey() {
   1150     return nullptr;
   1151   }
   1152 
   1153   static inline MachineInstr *getTombstoneKey() {
   1154     return reinterpret_cast<MachineInstr*>(-1);
   1155   }
   1156 
   1157   static unsigned getHashValue(const MachineInstr* const &MI);
   1158 
   1159   static bool isEqual(const MachineInstr* const &LHS,
   1160                       const MachineInstr* const &RHS) {
   1161     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
   1162         LHS == getEmptyKey() || LHS == getTombstoneKey())
   1163       return LHS == RHS;
   1164     return LHS->isIdenticalTo(RHS, MachineInstr::IgnoreVRegDefs);
   1165   }
   1166 };
   1167 
   1168 //===----------------------------------------------------------------------===//
   1169 // Debugging Support
   1170 
   1171 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
   1172   MI.print(OS);
   1173   return OS;
   1174 }
   1175 
   1176 } // End llvm namespace
   1177 
   1178 #endif
   1179