Home | History | Annotate | Download | only in Scalar
      1 //===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass implements a simple loop reroller.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Transforms/Scalar.h"
     15 #include "llvm/ADT/STLExtras.h"
     16 #include "llvm/ADT/SmallSet.h"
     17 #include "llvm/ADT/Statistic.h"
     18 #include "llvm/Analysis/AliasAnalysis.h"
     19 #include "llvm/Analysis/AliasSetTracker.h"
     20 #include "llvm/Analysis/LoopPass.h"
     21 #include "llvm/Analysis/ScalarEvolution.h"
     22 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     23 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     24 #include "llvm/Analysis/ValueTracking.h"
     25 #include "llvm/IR/DataLayout.h"
     26 #include "llvm/IR/Dominators.h"
     27 #include "llvm/IR/IntrinsicInst.h"
     28 #include "llvm/Support/CommandLine.h"
     29 #include "llvm/Support/Debug.h"
     30 #include "llvm/Support/raw_ostream.h"
     31 #include "llvm/Target/TargetLibraryInfo.h"
     32 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     33 #include "llvm/Transforms/Utils/Local.h"
     34 #include "llvm/Transforms/Utils/LoopUtils.h"
     35 
     36 using namespace llvm;
     37 
     38 #define DEBUG_TYPE "loop-reroll"
     39 
     40 STATISTIC(NumRerolledLoops, "Number of rerolled loops");
     41 
     42 static cl::opt<unsigned>
     43 MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden,
     44   cl::desc("The maximum increment for loop rerolling"));
     45 
     46 // This loop re-rolling transformation aims to transform loops like this:
     47 //
     48 // int foo(int a);
     49 // void bar(int *x) {
     50 //   for (int i = 0; i < 500; i += 3) {
     51 //     foo(i);
     52 //     foo(i+1);
     53 //     foo(i+2);
     54 //   }
     55 // }
     56 //
     57 // into a loop like this:
     58 //
     59 // void bar(int *x) {
     60 //   for (int i = 0; i < 500; ++i)
     61 //     foo(i);
     62 // }
     63 //
     64 // It does this by looking for loops that, besides the latch code, are composed
     65 // of isomorphic DAGs of instructions, with each DAG rooted at some increment
     66 // to the induction variable, and where each DAG is isomorphic to the DAG
     67 // rooted at the induction variable (excepting the sub-DAGs which root the
     68 // other induction-variable increments). In other words, we're looking for loop
     69 // bodies of the form:
     70 //
     71 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
     72 // f(%iv)
     73 // %iv.1 = add %iv, 1                <-- a root increment
     74 // f(%iv.1)
     75 // %iv.2 = add %iv, 2                <-- a root increment
     76 // f(%iv.2)
     77 // %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
     78 // f(%iv.scale_m_1)
     79 // ...
     80 // %iv.next = add %iv, scale
     81 // %cmp = icmp(%iv, ...)
     82 // br %cmp, header, exit
     83 //
     84 // where each f(i) is a set of instructions that, collectively, are a function
     85 // only of i (and other loop-invariant values).
     86 //
     87 // As a special case, we can also reroll loops like this:
     88 //
     89 // int foo(int);
     90 // void bar(int *x) {
     91 //   for (int i = 0; i < 500; ++i) {
     92 //     x[3*i] = foo(0);
     93 //     x[3*i+1] = foo(0);
     94 //     x[3*i+2] = foo(0);
     95 //   }
     96 // }
     97 //
     98 // into this:
     99 //
    100 // void bar(int *x) {
    101 //   for (int i = 0; i < 1500; ++i)
    102 //     x[i] = foo(0);
    103 // }
    104 //
    105 // in which case, we're looking for inputs like this:
    106 //
    107 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
    108 // %scaled.iv = mul %iv, scale
    109 // f(%scaled.iv)
    110 // %scaled.iv.1 = add %scaled.iv, 1
    111 // f(%scaled.iv.1)
    112 // %scaled.iv.2 = add %scaled.iv, 2
    113 // f(%scaled.iv.2)
    114 // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
    115 // f(%scaled.iv.scale_m_1)
    116 // ...
    117 // %iv.next = add %iv, 1
    118 // %cmp = icmp(%iv, ...)
    119 // br %cmp, header, exit
    120 
    121 namespace {
    122   class LoopReroll : public LoopPass {
    123   public:
    124     static char ID; // Pass ID, replacement for typeid
    125     LoopReroll() : LoopPass(ID) {
    126       initializeLoopRerollPass(*PassRegistry::getPassRegistry());
    127     }
    128 
    129     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
    130 
    131     void getAnalysisUsage(AnalysisUsage &AU) const override {
    132       AU.addRequired<AliasAnalysis>();
    133       AU.addRequired<LoopInfo>();
    134       AU.addPreserved<LoopInfo>();
    135       AU.addRequired<DominatorTreeWrapperPass>();
    136       AU.addPreserved<DominatorTreeWrapperPass>();
    137       AU.addRequired<ScalarEvolution>();
    138       AU.addRequired<TargetLibraryInfo>();
    139     }
    140 
    141 protected:
    142     AliasAnalysis *AA;
    143     LoopInfo *LI;
    144     ScalarEvolution *SE;
    145     const DataLayout *DL;
    146     TargetLibraryInfo *TLI;
    147     DominatorTree *DT;
    148 
    149     typedef SmallVector<Instruction *, 16> SmallInstructionVector;
    150     typedef SmallSet<Instruction *, 16>   SmallInstructionSet;
    151 
    152     // A chain of isomorphic instructions, indentified by a single-use PHI,
    153     // representing a reduction. Only the last value may be used outside the
    154     // loop.
    155     struct SimpleLoopReduction {
    156       SimpleLoopReduction(Instruction *P, Loop *L)
    157         : Valid(false), Instructions(1, P) {
    158         assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
    159         add(L);
    160       }
    161 
    162       bool valid() const {
    163         return Valid;
    164       }
    165 
    166       Instruction *getPHI() const {
    167         assert(Valid && "Using invalid reduction");
    168         return Instructions.front();
    169       }
    170 
    171       Instruction *getReducedValue() const {
    172         assert(Valid && "Using invalid reduction");
    173         return Instructions.back();
    174       }
    175 
    176       Instruction *get(size_t i) const {
    177         assert(Valid && "Using invalid reduction");
    178         return Instructions[i+1];
    179       }
    180 
    181       Instruction *operator [] (size_t i) const { return get(i); }
    182 
    183       // The size, ignoring the initial PHI.
    184       size_t size() const {
    185         assert(Valid && "Using invalid reduction");
    186         return Instructions.size()-1;
    187       }
    188 
    189       typedef SmallInstructionVector::iterator iterator;
    190       typedef SmallInstructionVector::const_iterator const_iterator;
    191 
    192       iterator begin() {
    193         assert(Valid && "Using invalid reduction");
    194         return std::next(Instructions.begin());
    195       }
    196 
    197       const_iterator begin() const {
    198         assert(Valid && "Using invalid reduction");
    199         return std::next(Instructions.begin());
    200       }
    201 
    202       iterator end() { return Instructions.end(); }
    203       const_iterator end() const { return Instructions.end(); }
    204 
    205     protected:
    206       bool Valid;
    207       SmallInstructionVector Instructions;
    208 
    209       void add(Loop *L);
    210     };
    211 
    212     // The set of all reductions, and state tracking of possible reductions
    213     // during loop instruction processing.
    214     struct ReductionTracker {
    215       typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector;
    216 
    217       // Add a new possible reduction.
    218       void addSLR(SimpleLoopReduction &SLR) {
    219         PossibleReds.push_back(SLR);
    220       }
    221 
    222       // Setup to track possible reductions corresponding to the provided
    223       // rerolling scale. Only reductions with a number of non-PHI instructions
    224       // that is divisible by the scale are considered. Three instructions sets
    225       // are filled in:
    226       //   - A set of all possible instructions in eligible reductions.
    227       //   - A set of all PHIs in eligible reductions
    228       //   - A set of all reduced values (last instructions) in eligible reductions.
    229       void restrictToScale(uint64_t Scale,
    230                            SmallInstructionSet &PossibleRedSet,
    231                            SmallInstructionSet &PossibleRedPHISet,
    232                            SmallInstructionSet &PossibleRedLastSet) {
    233         PossibleRedIdx.clear();
    234         PossibleRedIter.clear();
    235         Reds.clear();
    236 
    237         for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
    238           if (PossibleReds[i].size() % Scale == 0) {
    239             PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
    240             PossibleRedPHISet.insert(PossibleReds[i].getPHI());
    241 
    242             PossibleRedSet.insert(PossibleReds[i].getPHI());
    243             PossibleRedIdx[PossibleReds[i].getPHI()] = i;
    244             for (SimpleLoopReduction::iterator J = PossibleReds[i].begin(),
    245                  JE = PossibleReds[i].end(); J != JE; ++J) {
    246               PossibleRedSet.insert(*J);
    247               PossibleRedIdx[*J] = i;
    248             }
    249           }
    250       }
    251 
    252       // The functions below are used while processing the loop instructions.
    253 
    254       // Are the two instructions both from reductions, and furthermore, from
    255       // the same reduction?
    256       bool isPairInSame(Instruction *J1, Instruction *J2) {
    257         DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
    258         if (J1I != PossibleRedIdx.end()) {
    259           DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
    260           if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
    261             return true;
    262         }
    263 
    264         return false;
    265       }
    266 
    267       // The two provided instructions, the first from the base iteration, and
    268       // the second from iteration i, form a matched pair. If these are part of
    269       // a reduction, record that fact.
    270       void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
    271         if (PossibleRedIdx.count(J1)) {
    272           assert(PossibleRedIdx.count(J2) &&
    273                  "Recording reduction vs. non-reduction instruction?");
    274 
    275           PossibleRedIter[J1] = 0;
    276           PossibleRedIter[J2] = i;
    277 
    278           int Idx = PossibleRedIdx[J1];
    279           assert(Idx == PossibleRedIdx[J2] &&
    280                  "Recording pair from different reductions?");
    281           Reds.insert(Idx);
    282         }
    283       }
    284 
    285       // The functions below can be called after we've finished processing all
    286       // instructions in the loop, and we know which reductions were selected.
    287 
    288       // Is the provided instruction the PHI of a reduction selected for
    289       // rerolling?
    290       bool isSelectedPHI(Instruction *J) {
    291         if (!isa<PHINode>(J))
    292           return false;
    293 
    294         for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
    295              RI != RIE; ++RI) {
    296           int i = *RI;
    297           if (cast<Instruction>(J) == PossibleReds[i].getPHI())
    298             return true;
    299         }
    300 
    301         return false;
    302       }
    303 
    304       bool validateSelected();
    305       void replaceSelected();
    306 
    307     protected:
    308       // The vector of all possible reductions (for any scale).
    309       SmallReductionVector PossibleReds;
    310 
    311       DenseMap<Instruction *, int> PossibleRedIdx;
    312       DenseMap<Instruction *, int> PossibleRedIter;
    313       DenseSet<int> Reds;
    314     };
    315 
    316     void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
    317     void collectPossibleReductions(Loop *L,
    318            ReductionTracker &Reductions);
    319     void collectInLoopUserSet(Loop *L,
    320            const SmallInstructionVector &Roots,
    321            const SmallInstructionSet &Exclude,
    322            const SmallInstructionSet &Final,
    323            DenseSet<Instruction *> &Users);
    324     void collectInLoopUserSet(Loop *L,
    325            Instruction * Root,
    326            const SmallInstructionSet &Exclude,
    327            const SmallInstructionSet &Final,
    328            DenseSet<Instruction *> &Users);
    329     bool findScaleFromMul(Instruction *RealIV, uint64_t &Scale,
    330                           Instruction *&IV,
    331                           SmallInstructionVector &LoopIncs);
    332     bool collectAllRoots(Loop *L, uint64_t Inc, uint64_t Scale, Instruction *IV,
    333                          SmallVector<SmallInstructionVector, 32> &Roots,
    334                          SmallInstructionSet &AllRoots,
    335                          SmallInstructionVector &LoopIncs);
    336     bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount,
    337                 ReductionTracker &Reductions);
    338   };
    339 }
    340 
    341 char LoopReroll::ID = 0;
    342 INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
    343 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    344 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
    345 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    346 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
    347 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
    348 INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)
    349 
    350 Pass *llvm::createLoopRerollPass() {
    351   return new LoopReroll;
    352 }
    353 
    354 // Returns true if the provided instruction is used outside the given loop.
    355 // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
    356 // non-loop blocks to be outside the loop.
    357 static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
    358   for (User *U : I->users())
    359     if (!L->contains(cast<Instruction>(U)))
    360       return true;
    361 
    362   return false;
    363 }
    364 
    365 // Collect the list of loop induction variables with respect to which it might
    366 // be possible to reroll the loop.
    367 void LoopReroll::collectPossibleIVs(Loop *L,
    368                                     SmallInstructionVector &PossibleIVs) {
    369   BasicBlock *Header = L->getHeader();
    370   for (BasicBlock::iterator I = Header->begin(),
    371        IE = Header->getFirstInsertionPt(); I != IE; ++I) {
    372     if (!isa<PHINode>(I))
    373       continue;
    374     if (!I->getType()->isIntegerTy())
    375       continue;
    376 
    377     if (const SCEVAddRecExpr *PHISCEV =
    378         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(I))) {
    379       if (PHISCEV->getLoop() != L)
    380         continue;
    381       if (!PHISCEV->isAffine())
    382         continue;
    383       if (const SCEVConstant *IncSCEV =
    384           dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE))) {
    385         if (!IncSCEV->getValue()->getValue().isStrictlyPositive())
    386           continue;
    387         if (IncSCEV->getValue()->uge(MaxInc))
    388           continue;
    389 
    390         DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " <<
    391               *PHISCEV << "\n");
    392         PossibleIVs.push_back(I);
    393       }
    394     }
    395   }
    396 }
    397 
    398 // Add the remainder of the reduction-variable chain to the instruction vector
    399 // (the initial PHINode has already been added). If successful, the object is
    400 // marked as valid.
    401 void LoopReroll::SimpleLoopReduction::add(Loop *L) {
    402   assert(!Valid && "Cannot add to an already-valid chain");
    403 
    404   // The reduction variable must be a chain of single-use instructions
    405   // (including the PHI), except for the last value (which is used by the PHI
    406   // and also outside the loop).
    407   Instruction *C = Instructions.front();
    408 
    409   do {
    410     C = cast<Instruction>(*C->user_begin());
    411     if (C->hasOneUse()) {
    412       if (!C->isBinaryOp())
    413         return;
    414 
    415       if (!(isa<PHINode>(Instructions.back()) ||
    416             C->isSameOperationAs(Instructions.back())))
    417         return;
    418 
    419       Instructions.push_back(C);
    420     }
    421   } while (C->hasOneUse());
    422 
    423   if (Instructions.size() < 2 ||
    424       !C->isSameOperationAs(Instructions.back()) ||
    425       C->use_empty())
    426     return;
    427 
    428   // C is now the (potential) last instruction in the reduction chain.
    429   for (User *U : C->users())
    430     // The only in-loop user can be the initial PHI.
    431     if (L->contains(cast<Instruction>(U)))
    432       if (cast<Instruction>(U) != Instructions.front())
    433         return;
    434 
    435   Instructions.push_back(C);
    436   Valid = true;
    437 }
    438 
    439 // Collect the vector of possible reduction variables.
    440 void LoopReroll::collectPossibleReductions(Loop *L,
    441   ReductionTracker &Reductions) {
    442   BasicBlock *Header = L->getHeader();
    443   for (BasicBlock::iterator I = Header->begin(),
    444        IE = Header->getFirstInsertionPt(); I != IE; ++I) {
    445     if (!isa<PHINode>(I))
    446       continue;
    447     if (!I->getType()->isSingleValueType())
    448       continue;
    449 
    450     SimpleLoopReduction SLR(I, L);
    451     if (!SLR.valid())
    452       continue;
    453 
    454     DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " <<
    455           SLR.size() << " chained instructions)\n");
    456     Reductions.addSLR(SLR);
    457   }
    458 }
    459 
    460 // Collect the set of all users of the provided root instruction. This set of
    461 // users contains not only the direct users of the root instruction, but also
    462 // all users of those users, and so on. There are two exceptions:
    463 //
    464 //   1. Instructions in the set of excluded instructions are never added to the
    465 //   use set (even if they are users). This is used, for example, to exclude
    466 //   including root increments in the use set of the primary IV.
    467 //
    468 //   2. Instructions in the set of final instructions are added to the use set
    469 //   if they are users, but their users are not added. This is used, for
    470 //   example, to prevent a reduction update from forcing all later reduction
    471 //   updates into the use set.
    472 void LoopReroll::collectInLoopUserSet(Loop *L,
    473   Instruction *Root, const SmallInstructionSet &Exclude,
    474   const SmallInstructionSet &Final,
    475   DenseSet<Instruction *> &Users) {
    476   SmallInstructionVector Queue(1, Root);
    477   while (!Queue.empty()) {
    478     Instruction *I = Queue.pop_back_val();
    479     if (!Users.insert(I).second)
    480       continue;
    481 
    482     if (!Final.count(I))
    483       for (Use &U : I->uses()) {
    484         Instruction *User = cast<Instruction>(U.getUser());
    485         if (PHINode *PN = dyn_cast<PHINode>(User)) {
    486           // Ignore "wrap-around" uses to PHIs of this loop's header.
    487           if (PN->getIncomingBlock(U) == L->getHeader())
    488             continue;
    489         }
    490 
    491         if (L->contains(User) && !Exclude.count(User)) {
    492           Queue.push_back(User);
    493         }
    494       }
    495 
    496     // We also want to collect single-user "feeder" values.
    497     for (User::op_iterator OI = I->op_begin(),
    498          OIE = I->op_end(); OI != OIE; ++OI) {
    499       if (Instruction *Op = dyn_cast<Instruction>(*OI))
    500         if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
    501             !Final.count(Op))
    502           Queue.push_back(Op);
    503     }
    504   }
    505 }
    506 
    507 // Collect all of the users of all of the provided root instructions (combined
    508 // into a single set).
    509 void LoopReroll::collectInLoopUserSet(Loop *L,
    510   const SmallInstructionVector &Roots,
    511   const SmallInstructionSet &Exclude,
    512   const SmallInstructionSet &Final,
    513   DenseSet<Instruction *> &Users) {
    514   for (SmallInstructionVector::const_iterator I = Roots.begin(),
    515        IE = Roots.end(); I != IE; ++I)
    516     collectInLoopUserSet(L, *I, Exclude, Final, Users);
    517 }
    518 
    519 static bool isSimpleLoadStore(Instruction *I) {
    520   if (LoadInst *LI = dyn_cast<LoadInst>(I))
    521     return LI->isSimple();
    522   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    523     return SI->isSimple();
    524   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
    525     return !MI->isVolatile();
    526   return false;
    527 }
    528 
    529 // Recognize loops that are setup like this:
    530 //
    531 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
    532 // %scaled.iv = mul %iv, scale
    533 // f(%scaled.iv)
    534 // %scaled.iv.1 = add %scaled.iv, 1
    535 // f(%scaled.iv.1)
    536 // %scaled.iv.2 = add %scaled.iv, 2
    537 // f(%scaled.iv.2)
    538 // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
    539 // f(%scaled.iv.scale_m_1)
    540 // ...
    541 // %iv.next = add %iv, 1
    542 // %cmp = icmp(%iv, ...)
    543 // br %cmp, header, exit
    544 //
    545 // and, if found, set IV = %scaled.iv, and add %iv.next to LoopIncs.
    546 bool LoopReroll::findScaleFromMul(Instruction *RealIV, uint64_t &Scale,
    547                                   Instruction *&IV,
    548                                   SmallInstructionVector &LoopIncs) {
    549   // This is a special case: here we're looking for all uses (except for
    550   // the increment) to be multiplied by a common factor. The increment must
    551   // be by one. This is to capture loops like:
    552   //   for (int i = 0; i < 500; ++i) {
    553   //     foo(3*i); foo(3*i+1); foo(3*i+2);
    554   //   }
    555   if (RealIV->getNumUses() != 2)
    556     return false;
    557   const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(RealIV));
    558   Instruction *User1 = cast<Instruction>(*RealIV->user_begin()),
    559               *User2 = cast<Instruction>(*std::next(RealIV->user_begin()));
    560   if (!SE->isSCEVable(User1->getType()) || !SE->isSCEVable(User2->getType()))
    561     return false;
    562   const SCEVAddRecExpr *User1SCEV =
    563                          dyn_cast<SCEVAddRecExpr>(SE->getSCEV(User1)),
    564                        *User2SCEV =
    565                          dyn_cast<SCEVAddRecExpr>(SE->getSCEV(User2));
    566   if (!User1SCEV || !User1SCEV->isAffine() ||
    567       !User2SCEV || !User2SCEV->isAffine())
    568     return false;
    569 
    570   // We assume below that User1 is the scale multiply and User2 is the
    571   // increment. If this can't be true, then swap them.
    572   if (User1SCEV == RealIVSCEV->getPostIncExpr(*SE)) {
    573     std::swap(User1, User2);
    574     std::swap(User1SCEV, User2SCEV);
    575   }
    576 
    577   if (User2SCEV != RealIVSCEV->getPostIncExpr(*SE))
    578     return false;
    579   assert(User2SCEV->getStepRecurrence(*SE)->isOne() &&
    580          "Invalid non-unit step for multiplicative scaling");
    581   LoopIncs.push_back(User2);
    582 
    583   if (const SCEVConstant *MulScale =
    584       dyn_cast<SCEVConstant>(User1SCEV->getStepRecurrence(*SE))) {
    585     // Make sure that both the start and step have the same multiplier.
    586     if (RealIVSCEV->getStart()->getType() != MulScale->getType())
    587       return false;
    588     if (SE->getMulExpr(RealIVSCEV->getStart(), MulScale) !=
    589         User1SCEV->getStart())
    590       return false;
    591 
    592     ConstantInt *MulScaleCI = MulScale->getValue();
    593     if (!MulScaleCI->uge(2) || MulScaleCI->uge(MaxInc))
    594       return false;
    595     Scale = MulScaleCI->getZExtValue();
    596     IV = User1;
    597   } else
    598     return false;
    599 
    600   DEBUG(dbgs() << "LRR: Found possible scaling " << *User1 << "\n");
    601   return true;
    602 }
    603 
    604 // Collect all root increments with respect to the provided induction variable
    605 // (normally the PHI, but sometimes a multiply). A root increment is an
    606 // instruction, normally an add, with a positive constant less than Scale. In a
    607 // rerollable loop, each of these increments is the root of an instruction
    608 // graph isomorphic to the others. Also, we collect the final induction
    609 // increment (the increment equal to the Scale), and its users in LoopIncs.
    610 bool LoopReroll::collectAllRoots(Loop *L, uint64_t Inc, uint64_t Scale,
    611                                  Instruction *IV,
    612                                  SmallVector<SmallInstructionVector, 32> &Roots,
    613                                  SmallInstructionSet &AllRoots,
    614                                  SmallInstructionVector &LoopIncs) {
    615   for (User *U : IV->users()) {
    616     Instruction *UI = cast<Instruction>(U);
    617     if (!SE->isSCEVable(UI->getType()))
    618       continue;
    619     if (UI->getType() != IV->getType())
    620       continue;
    621     if (!L->contains(UI))
    622       continue;
    623     if (hasUsesOutsideLoop(UI, L))
    624       continue;
    625 
    626     if (const SCEVConstant *Diff = dyn_cast<SCEVConstant>(SE->getMinusSCEV(
    627           SE->getSCEV(UI), SE->getSCEV(IV)))) {
    628       uint64_t Idx = Diff->getValue()->getValue().getZExtValue();
    629       if (Idx > 0 && Idx < Scale) {
    630         Roots[Idx-1].push_back(UI);
    631         AllRoots.insert(UI);
    632       } else if (Idx == Scale && Inc > 1) {
    633         LoopIncs.push_back(UI);
    634       }
    635     }
    636   }
    637 
    638   if (Roots[0].empty())
    639     return false;
    640   bool AllSame = true;
    641   for (unsigned i = 1; i < Scale-1; ++i)
    642     if (Roots[i].size() != Roots[0].size()) {
    643       AllSame = false;
    644       break;
    645     }
    646 
    647   if (!AllSame)
    648     return false;
    649 
    650   return true;
    651 }
    652 
    653 // Validate the selected reductions. All iterations must have an isomorphic
    654 // part of the reduction chain and, for non-associative reductions, the chain
    655 // entries must appear in order.
    656 bool LoopReroll::ReductionTracker::validateSelected() {
    657   // For a non-associative reduction, the chain entries must appear in order.
    658   for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
    659        RI != RIE; ++RI) {
    660     int i = *RI;
    661     int PrevIter = 0, BaseCount = 0, Count = 0;
    662     for (SimpleLoopReduction::iterator J = PossibleReds[i].begin(),
    663          JE = PossibleReds[i].end(); J != JE; ++J) {
    664 	// Note that all instructions in the chain must have been found because
    665 	// all instructions in the function must have been assigned to some
    666 	// iteration.
    667       int Iter = PossibleRedIter[*J];
    668       if (Iter != PrevIter && Iter != PrevIter + 1 &&
    669           !PossibleReds[i].getReducedValue()->isAssociative()) {
    670         DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " <<
    671                         *J << "\n");
    672         return false;
    673       }
    674 
    675       if (Iter != PrevIter) {
    676         if (Count != BaseCount) {
    677           DEBUG(dbgs() << "LRR: Iteration " << PrevIter <<
    678                 " reduction use count " << Count <<
    679                 " is not equal to the base use count " <<
    680                 BaseCount << "\n");
    681           return false;
    682         }
    683 
    684         Count = 0;
    685       }
    686 
    687       ++Count;
    688       if (Iter == 0)
    689         ++BaseCount;
    690 
    691       PrevIter = Iter;
    692     }
    693   }
    694 
    695   return true;
    696 }
    697 
    698 // For all selected reductions, remove all parts except those in the first
    699 // iteration (and the PHI). Replace outside uses of the reduced value with uses
    700 // of the first-iteration reduced value (in other words, reroll the selected
    701 // reductions).
    702 void LoopReroll::ReductionTracker::replaceSelected() {
    703   // Fixup reductions to refer to the last instruction associated with the
    704   // first iteration (not the last).
    705   for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
    706        RI != RIE; ++RI) {
    707     int i = *RI;
    708     int j = 0;
    709     for (int e = PossibleReds[i].size(); j != e; ++j)
    710       if (PossibleRedIter[PossibleReds[i][j]] != 0) {
    711         --j;
    712         break;
    713       }
    714 
    715     // Replace users with the new end-of-chain value.
    716     SmallInstructionVector Users;
    717     for (User *U : PossibleReds[i].getReducedValue()->users())
    718       Users.push_back(cast<Instruction>(U));
    719 
    720     for (SmallInstructionVector::iterator J = Users.begin(),
    721          JE = Users.end(); J != JE; ++J)
    722       (*J)->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
    723                               PossibleReds[i][j]);
    724   }
    725 }
    726 
    727 // Reroll the provided loop with respect to the provided induction variable.
    728 // Generally, we're looking for a loop like this:
    729 //
    730 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
    731 // f(%iv)
    732 // %iv.1 = add %iv, 1                <-- a root increment
    733 // f(%iv.1)
    734 // %iv.2 = add %iv, 2                <-- a root increment
    735 // f(%iv.2)
    736 // %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
    737 // f(%iv.scale_m_1)
    738 // ...
    739 // %iv.next = add %iv, scale
    740 // %cmp = icmp(%iv, ...)
    741 // br %cmp, header, exit
    742 //
    743 // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
    744 // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
    745 // be intermixed with eachother. The restriction imposed by this algorithm is
    746 // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
    747 // etc. be the same.
    748 //
    749 // First, we collect the use set of %iv, excluding the other increment roots.
    750 // This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
    751 // times, having collected the use set of f(%iv.(i+1)), during which we:
    752 //   - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
    753 //     the next unmatched instruction in f(%iv.(i+1)).
    754 //   - Ensure that both matched instructions don't have any external users
    755 //     (with the exception of last-in-chain reduction instructions).
    756 //   - Track the (aliasing) write set, and other side effects, of all
    757 //     instructions that belong to future iterations that come before the matched
    758 //     instructions. If the matched instructions read from that write set, then
    759 //     f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
    760 //     f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
    761 //     if any of these future instructions had side effects (could not be
    762 //     speculatively executed), and so do the matched instructions, when we
    763 //     cannot reorder those side-effect-producing instructions, and rerolling
    764 //     fails.
    765 //
    766 // Finally, we make sure that all loop instructions are either loop increment
    767 // roots, belong to simple latch code, parts of validated reductions, part of
    768 // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
    769 // have been validated), then we reroll the loop.
    770 bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
    771                         const SCEV *IterCount,
    772                         ReductionTracker &Reductions) {
    773   const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(IV));
    774   uint64_t Inc = cast<SCEVConstant>(RealIVSCEV->getOperand(1))->
    775                    getValue()->getZExtValue();
    776   // The collection of loop increment instructions.
    777   SmallInstructionVector LoopIncs;
    778   uint64_t Scale = Inc;
    779 
    780   // The effective induction variable, IV, is normally also the real induction
    781   // variable. When we're dealing with a loop like:
    782   //   for (int i = 0; i < 500; ++i)
    783   //     x[3*i] = ...;
    784   //     x[3*i+1] = ...;
    785   //     x[3*i+2] = ...;
    786   // then the real IV is still i, but the effective IV is (3*i).
    787   Instruction *RealIV = IV;
    788   if (Inc == 1 && !findScaleFromMul(RealIV, Scale, IV, LoopIncs))
    789     return false;
    790 
    791   assert(Scale <= MaxInc && "Scale is too large");
    792   assert(Scale > 1 && "Scale must be at least 2");
    793 
    794   // The set of increment instructions for each increment value.
    795   SmallVector<SmallInstructionVector, 32> Roots(Scale-1);
    796   SmallInstructionSet AllRoots;
    797   if (!collectAllRoots(L, Inc, Scale, IV, Roots, AllRoots, LoopIncs))
    798     return false;
    799 
    800   DEBUG(dbgs() << "LRR: Found all root induction increments for: " <<
    801                   *RealIV << "\n");
    802 
    803   // An array of just the possible reductions for this scale factor. When we
    804   // collect the set of all users of some root instructions, these reduction
    805   // instructions are treated as 'final' (their uses are not considered).
    806   // This is important because we don't want the root use set to search down
    807   // the reduction chain.
    808   SmallInstructionSet PossibleRedSet;
    809   SmallInstructionSet PossibleRedLastSet, PossibleRedPHISet;
    810   Reductions.restrictToScale(Scale, PossibleRedSet, PossibleRedPHISet,
    811                              PossibleRedLastSet);
    812 
    813   // We now need to check for equivalence of the use graph of each root with
    814   // that of the primary induction variable (excluding the roots). Our goal
    815   // here is not to solve the full graph isomorphism problem, but rather to
    816   // catch common cases without a lot of work. As a result, we will assume
    817   // that the relative order of the instructions in each unrolled iteration
    818   // is the same (although we will not make an assumption about how the
    819   // different iterations are intermixed). Note that while the order must be
    820   // the same, the instructions may not be in the same basic block.
    821   SmallInstructionSet Exclude(AllRoots);
    822   Exclude.insert(LoopIncs.begin(), LoopIncs.end());
    823 
    824   DenseSet<Instruction *> BaseUseSet;
    825   collectInLoopUserSet(L, IV, Exclude, PossibleRedSet, BaseUseSet);
    826 
    827   DenseSet<Instruction *> AllRootUses;
    828   std::vector<DenseSet<Instruction *> > RootUseSets(Scale-1);
    829 
    830   bool MatchFailed = false;
    831   for (unsigned i = 0; i < Scale-1 && !MatchFailed; ++i) {
    832     DenseSet<Instruction *> &RootUseSet = RootUseSets[i];
    833     collectInLoopUserSet(L, Roots[i], SmallInstructionSet(),
    834                          PossibleRedSet, RootUseSet);
    835 
    836     DEBUG(dbgs() << "LRR: base use set size: " << BaseUseSet.size() <<
    837                     " vs. iteration increment " << (i+1) <<
    838                     " use set size: " << RootUseSet.size() << "\n");
    839 
    840     if (BaseUseSet.size() != RootUseSet.size()) {
    841       MatchFailed = true;
    842       break;
    843     }
    844 
    845     // In addition to regular aliasing information, we need to look for
    846     // instructions from later (future) iterations that have side effects
    847     // preventing us from reordering them past other instructions with side
    848     // effects.
    849     bool FutureSideEffects = false;
    850     AliasSetTracker AST(*AA);
    851 
    852     // The map between instructions in f(%iv.(i+1)) and f(%iv).
    853     DenseMap<Value *, Value *> BaseMap;
    854 
    855     assert(L->getNumBlocks() == 1 && "Cannot handle multi-block loops");
    856     for (BasicBlock::iterator J1 = Header->begin(), J2 = Header->begin(),
    857          JE = Header->end(); J1 != JE && !MatchFailed; ++J1) {
    858       if (cast<Instruction>(J1) == RealIV)
    859         continue;
    860       if (cast<Instruction>(J1) == IV)
    861         continue;
    862       if (!BaseUseSet.count(J1))
    863         continue;
    864       if (PossibleRedPHISet.count(J1)) // Skip reduction PHIs.
    865         continue;
    866 
    867       while (J2 != JE && (!RootUseSet.count(J2) ||
    868              std::find(Roots[i].begin(), Roots[i].end(), J2) !=
    869                Roots[i].end())) {
    870         // As we iterate through the instructions, instructions that don't
    871         // belong to previous iterations (or the base case), must belong to
    872         // future iterations. We want to track the alias set of writes from
    873         // previous iterations.
    874         if (!isa<PHINode>(J2) && !BaseUseSet.count(J2) &&
    875             !AllRootUses.count(J2)) {
    876           if (J2->mayWriteToMemory())
    877             AST.add(J2);
    878 
    879           // Note: This is specifically guarded by a check on isa<PHINode>,
    880           // which while a valid (somewhat arbitrary) micro-optimization, is
    881           // needed because otherwise isSafeToSpeculativelyExecute returns
    882           // false on PHI nodes.
    883           if (!isSimpleLoadStore(J2) && !isSafeToSpeculativelyExecute(J2, DL))
    884             FutureSideEffects = true;
    885         }
    886 
    887         ++J2;
    888       }
    889 
    890       if (!J1->isSameOperationAs(J2)) {
    891         DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
    892                         " vs. " << *J2 << "\n");
    893         MatchFailed = true;
    894         break;
    895       }
    896 
    897       // Make sure that this instruction, which is in the use set of this
    898       // root instruction, does not also belong to the base set or the set of
    899       // some previous root instruction.
    900       if (BaseUseSet.count(J2) || AllRootUses.count(J2)) {
    901         DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
    902                         " vs. " << *J2 << " (prev. case overlap)\n");
    903         MatchFailed = true;
    904         break;
    905       }
    906 
    907       // Make sure that we don't alias with any instruction in the alias set
    908       // tracker. If we do, then we depend on a future iteration, and we
    909       // can't reroll.
    910       if (J2->mayReadFromMemory()) {
    911         for (AliasSetTracker::iterator K = AST.begin(), KE = AST.end();
    912              K != KE && !MatchFailed; ++K) {
    913           if (K->aliasesUnknownInst(J2, *AA)) {
    914             DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
    915                             " vs. " << *J2 << " (depends on future store)\n");
    916             MatchFailed = true;
    917             break;
    918           }
    919         }
    920       }
    921 
    922       // If we've past an instruction from a future iteration that may have
    923       // side effects, and this instruction might also, then we can't reorder
    924       // them, and this matching fails. As an exception, we allow the alias
    925       // set tracker to handle regular (simple) load/store dependencies.
    926       if (FutureSideEffects &&
    927             ((!isSimpleLoadStore(J1) &&
    928               !isSafeToSpeculativelyExecute(J1, DL)) ||
    929              (!isSimpleLoadStore(J2) &&
    930               !isSafeToSpeculativelyExecute(J2, DL)))) {
    931         DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
    932                         " vs. " << *J2 <<
    933                         " (side effects prevent reordering)\n");
    934         MatchFailed = true;
    935         break;
    936       }
    937 
    938       // For instructions that are part of a reduction, if the operation is
    939       // associative, then don't bother matching the operands (because we
    940       // already know that the instructions are isomorphic, and the order
    941       // within the iteration does not matter). For non-associative reductions,
    942       // we do need to match the operands, because we need to reject
    943       // out-of-order instructions within an iteration!
    944       // For example (assume floating-point addition), we need to reject this:
    945       //   x += a[i]; x += b[i];
    946       //   x += a[i+1]; x += b[i+1];
    947       //   x += b[i+2]; x += a[i+2];
    948       bool InReduction = Reductions.isPairInSame(J1, J2);
    949 
    950       if (!(InReduction && J1->isAssociative())) {
    951         bool Swapped = false, SomeOpMatched = false;
    952         for (unsigned j = 0; j < J1->getNumOperands() && !MatchFailed; ++j) {
    953           Value *Op2 = J2->getOperand(j);
    954 
    955 	  // If this is part of a reduction (and the operation is not
    956 	  // associatve), then we match all operands, but not those that are
    957 	  // part of the reduction.
    958           if (InReduction)
    959             if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
    960               if (Reductions.isPairInSame(J2, Op2I))
    961                 continue;
    962 
    963           DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
    964           if (BMI != BaseMap.end())
    965             Op2 = BMI->second;
    966           else if (std::find(Roots[i].begin(), Roots[i].end(),
    967                              (Instruction*) Op2) != Roots[i].end())
    968             Op2 = IV;
    969 
    970           if (J1->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
    971 	    // If we've not already decided to swap the matched operands, and
    972 	    // we've not already matched our first operand (note that we could
    973 	    // have skipped matching the first operand because it is part of a
    974 	    // reduction above), and the instruction is commutative, then try
    975 	    // the swapped match.
    976             if (!Swapped && J1->isCommutative() && !SomeOpMatched &&
    977                 J1->getOperand(!j) == Op2) {
    978               Swapped = true;
    979             } else {
    980               DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
    981                               " vs. " << *J2 << " (operand " << j << ")\n");
    982               MatchFailed = true;
    983               break;
    984             }
    985           }
    986 
    987           SomeOpMatched = true;
    988         }
    989       }
    990 
    991       if ((!PossibleRedLastSet.count(J1) && hasUsesOutsideLoop(J1, L)) ||
    992           (!PossibleRedLastSet.count(J2) && hasUsesOutsideLoop(J2, L))) {
    993         DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
    994                         " vs. " << *J2 << " (uses outside loop)\n");
    995         MatchFailed = true;
    996         break;
    997       }
    998 
    999       if (!MatchFailed)
   1000         BaseMap.insert(std::pair<Value *, Value *>(J2, J1));
   1001 
   1002       AllRootUses.insert(J2);
   1003       Reductions.recordPair(J1, J2, i+1);
   1004 
   1005       ++J2;
   1006     }
   1007   }
   1008 
   1009   if (MatchFailed)
   1010     return false;
   1011 
   1012   DEBUG(dbgs() << "LRR: Matched all iteration increments for " <<
   1013                   *RealIV << "\n");
   1014 
   1015   DenseSet<Instruction *> LoopIncUseSet;
   1016   collectInLoopUserSet(L, LoopIncs, SmallInstructionSet(),
   1017                        SmallInstructionSet(), LoopIncUseSet);
   1018   DEBUG(dbgs() << "LRR: Loop increment set size: " <<
   1019                   LoopIncUseSet.size() << "\n");
   1020 
   1021   // Make sure that all instructions in the loop have been included in some
   1022   // use set.
   1023   for (BasicBlock::iterator J = Header->begin(), JE = Header->end();
   1024        J != JE; ++J) {
   1025     if (isa<DbgInfoIntrinsic>(J))
   1026       continue;
   1027     if (cast<Instruction>(J) == RealIV)
   1028       continue;
   1029     if (cast<Instruction>(J) == IV)
   1030       continue;
   1031     if (BaseUseSet.count(J) || AllRootUses.count(J) ||
   1032         (LoopIncUseSet.count(J) && (J->isTerminator() ||
   1033                                     isSafeToSpeculativelyExecute(J, DL))))
   1034       continue;
   1035 
   1036     if (AllRoots.count(J))
   1037       continue;
   1038 
   1039     if (Reductions.isSelectedPHI(J))
   1040       continue;
   1041 
   1042     DEBUG(dbgs() << "LRR: aborting reroll based on " << *RealIV <<
   1043                     " unprocessed instruction found: " << *J << "\n");
   1044     MatchFailed = true;
   1045     break;
   1046   }
   1047 
   1048   if (MatchFailed)
   1049     return false;
   1050 
   1051   DEBUG(dbgs() << "LRR: all instructions processed from " <<
   1052                   *RealIV << "\n");
   1053 
   1054   if (!Reductions.validateSelected())
   1055     return false;
   1056 
   1057   // At this point, we've validated the rerolling, and we're committed to
   1058   // making changes!
   1059 
   1060   Reductions.replaceSelected();
   1061 
   1062   // Remove instructions associated with non-base iterations.
   1063   for (BasicBlock::reverse_iterator J = Header->rbegin();
   1064        J != Header->rend();) {
   1065     if (AllRootUses.count(&*J)) {
   1066       Instruction *D = &*J;
   1067       DEBUG(dbgs() << "LRR: removing: " << *D << "\n");
   1068       D->eraseFromParent();
   1069       continue;
   1070     }
   1071 
   1072     ++J;
   1073   }
   1074 
   1075   // Insert the new induction variable.
   1076   const SCEV *Start = RealIVSCEV->getStart();
   1077   if (Inc == 1)
   1078     Start = SE->getMulExpr(Start,
   1079                            SE->getConstant(Start->getType(), Scale));
   1080   const SCEVAddRecExpr *H =
   1081     cast<SCEVAddRecExpr>(SE->getAddRecExpr(Start,
   1082                            SE->getConstant(RealIVSCEV->getType(), 1),
   1083                            L, SCEV::FlagAnyWrap));
   1084   { // Limit the lifetime of SCEVExpander.
   1085     SCEVExpander Expander(*SE, "reroll");
   1086     Value *NewIV = Expander.expandCodeFor(H, IV->getType(), Header->begin());
   1087 
   1088     for (DenseSet<Instruction *>::iterator J = BaseUseSet.begin(),
   1089          JE = BaseUseSet.end(); J != JE; ++J)
   1090       (*J)->replaceUsesOfWith(IV, NewIV);
   1091 
   1092     if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) {
   1093       if (LoopIncUseSet.count(BI)) {
   1094         const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE);
   1095         if (Inc == 1)
   1096           ICSCEV =
   1097             SE->getMulExpr(ICSCEV, SE->getConstant(ICSCEV->getType(), Scale));
   1098         // Iteration count SCEV minus 1
   1099         const SCEV *ICMinus1SCEV =
   1100           SE->getMinusSCEV(ICSCEV, SE->getConstant(ICSCEV->getType(), 1));
   1101 
   1102         Value *ICMinus1; // Iteration count minus 1
   1103         if (isa<SCEVConstant>(ICMinus1SCEV)) {
   1104           ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(), BI);
   1105         } else {
   1106           BasicBlock *Preheader = L->getLoopPreheader();
   1107           if (!Preheader)
   1108             Preheader = InsertPreheaderForLoop(L, this);
   1109 
   1110           ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(),
   1111                                             Preheader->getTerminator());
   1112         }
   1113 
   1114         Value *Cond = new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinus1,
   1115                                    "exitcond");
   1116         BI->setCondition(Cond);
   1117 
   1118         if (BI->getSuccessor(1) != Header)
   1119           BI->swapSuccessors();
   1120       }
   1121     }
   1122   }
   1123 
   1124   SimplifyInstructionsInBlock(Header, DL, TLI);
   1125   DeleteDeadPHIs(Header, TLI);
   1126   ++NumRerolledLoops;
   1127   return true;
   1128 }
   1129 
   1130 bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
   1131   if (skipOptnoneFunction(L))
   1132     return false;
   1133 
   1134   AA = &getAnalysis<AliasAnalysis>();
   1135   LI = &getAnalysis<LoopInfo>();
   1136   SE = &getAnalysis<ScalarEvolution>();
   1137   TLI = &getAnalysis<TargetLibraryInfo>();
   1138   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
   1139   DL = DLP ? &DLP->getDataLayout() : nullptr;
   1140   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   1141 
   1142   BasicBlock *Header = L->getHeader();
   1143   DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() <<
   1144         "] Loop %" << Header->getName() << " (" <<
   1145         L->getNumBlocks() << " block(s))\n");
   1146 
   1147   bool Changed = false;
   1148 
   1149   // For now, we'll handle only single BB loops.
   1150   if (L->getNumBlocks() > 1)
   1151     return Changed;
   1152 
   1153   if (!SE->hasLoopInvariantBackedgeTakenCount(L))
   1154     return Changed;
   1155 
   1156   const SCEV *LIBETC = SE->getBackedgeTakenCount(L);
   1157   const SCEV *IterCount =
   1158     SE->getAddExpr(LIBETC, SE->getConstant(LIBETC->getType(), 1));
   1159   DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n");
   1160 
   1161   // First, we need to find the induction variable with respect to which we can
   1162   // reroll (there may be several possible options).
   1163   SmallInstructionVector PossibleIVs;
   1164   collectPossibleIVs(L, PossibleIVs);
   1165 
   1166   if (PossibleIVs.empty()) {
   1167     DEBUG(dbgs() << "LRR: No possible IVs found\n");
   1168     return Changed;
   1169   }
   1170 
   1171   ReductionTracker Reductions;
   1172   collectPossibleReductions(L, Reductions);
   1173 
   1174   // For each possible IV, collect the associated possible set of 'root' nodes
   1175   // (i+1, i+2, etc.).
   1176   for (SmallInstructionVector::iterator I = PossibleIVs.begin(),
   1177        IE = PossibleIVs.end(); I != IE; ++I)
   1178     if (reroll(*I, L, Header, IterCount, Reductions)) {
   1179       Changed = true;
   1180       break;
   1181     }
   1182 
   1183   return Changed;
   1184 }
   1185 
   1186