Home | History | Annotate | Download | only in CodeGen
      1 //===-- StackProtector.cpp - Stack Protector Insertion --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass inserts stack protectors into functions which need them. A variable
     11 // with a random value in it is stored onto the stack before the local variables
     12 // are allocated. Upon exiting the block, the stored value is checked. If it's
     13 // changed, then there was some sort of violation and the program aborts.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/CodeGen/StackProtector.h"
     18 #include "llvm/ADT/SmallPtrSet.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/Analysis/ValueTracking.h"
     21 #include "llvm/CodeGen/Analysis.h"
     22 #include "llvm/CodeGen/Passes.h"
     23 #include "llvm/IR/Attributes.h"
     24 #include "llvm/IR/Constants.h"
     25 #include "llvm/IR/DataLayout.h"
     26 #include "llvm/IR/DerivedTypes.h"
     27 #include "llvm/IR/Function.h"
     28 #include "llvm/IR/GlobalValue.h"
     29 #include "llvm/IR/GlobalVariable.h"
     30 #include "llvm/IR/IRBuilder.h"
     31 #include "llvm/IR/Instructions.h"
     32 #include "llvm/IR/IntrinsicInst.h"
     33 #include "llvm/IR/Intrinsics.h"
     34 #include "llvm/IR/Module.h"
     35 #include "llvm/Support/CommandLine.h"
     36 #include <cstdlib>
     37 using namespace llvm;
     38 
     39 #define DEBUG_TYPE "stack-protector"
     40 
     41 STATISTIC(NumFunProtected, "Number of functions protected");
     42 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
     43                         " taken.");
     44 
     45 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
     46                                           cl::init(true), cl::Hidden);
     47 
     48 char StackProtector::ID = 0;
     49 INITIALIZE_PASS(StackProtector, "stack-protector", "Insert stack protectors",
     50                 false, true)
     51 
     52 FunctionPass *llvm::createStackProtectorPass(const TargetMachine *TM) {
     53   return new StackProtector(TM);
     54 }
     55 
     56 StackProtector::SSPLayoutKind
     57 StackProtector::getSSPLayout(const AllocaInst *AI) const {
     58   return AI ? Layout.lookup(AI) : SSPLK_None;
     59 }
     60 
     61 void StackProtector::adjustForColoring(const AllocaInst *From,
     62                                        const AllocaInst *To) {
     63   // When coloring replaces one alloca with another, transfer the SSPLayoutKind
     64   // tag from the remapped to the target alloca. The remapped alloca should
     65   // have a size smaller than or equal to the replacement alloca.
     66   SSPLayoutMap::iterator I = Layout.find(From);
     67   if (I != Layout.end()) {
     68     SSPLayoutKind Kind = I->second;
     69     Layout.erase(I);
     70 
     71     // Transfer the tag, but make sure that SSPLK_AddrOf does not overwrite
     72     // SSPLK_SmallArray or SSPLK_LargeArray, and make sure that
     73     // SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
     74     I = Layout.find(To);
     75     if (I == Layout.end())
     76       Layout.insert(std::make_pair(To, Kind));
     77     else if (I->second != SSPLK_LargeArray && Kind != SSPLK_AddrOf)
     78       I->second = Kind;
     79   }
     80 }
     81 
     82 bool StackProtector::runOnFunction(Function &Fn) {
     83   F = &Fn;
     84   M = F->getParent();
     85   DominatorTreeWrapperPass *DTWP =
     86       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
     87   DT = DTWP ? &DTWP->getDomTree() : nullptr;
     88   TLI = TM->getTargetLowering();
     89 
     90   Attribute Attr = Fn.getAttributes().getAttribute(
     91       AttributeSet::FunctionIndex, "stack-protector-buffer-size");
     92   if (Attr.isStringAttribute() &&
     93       Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
     94       return false; // Invalid integer string
     95 
     96   if (!RequiresStackProtector())
     97     return false;
     98 
     99   ++NumFunProtected;
    100   return InsertStackProtectors();
    101 }
    102 
    103 /// \param [out] IsLarge is set to true if a protectable array is found and
    104 /// it is "large" ( >= ssp-buffer-size).  In the case of a structure with
    105 /// multiple arrays, this gets set if any of them is large.
    106 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
    107                                               bool Strong,
    108                                               bool InStruct) const {
    109   if (!Ty)
    110     return false;
    111   if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
    112     if (!AT->getElementType()->isIntegerTy(8)) {
    113       // If we're on a non-Darwin platform or we're inside of a structure, don't
    114       // add stack protectors unless the array is a character array.
    115       // However, in strong mode any array, regardless of type and size,
    116       // triggers a protector.
    117       if (!Strong && (InStruct || !Trip.isOSDarwin()))
    118         return false;
    119     }
    120 
    121     // If an array has more than SSPBufferSize bytes of allocated space, then we
    122     // emit stack protectors.
    123     if (SSPBufferSize <= TLI->getDataLayout()->getTypeAllocSize(AT)) {
    124       IsLarge = true;
    125       return true;
    126     }
    127 
    128     if (Strong)
    129       // Require a protector for all arrays in strong mode
    130       return true;
    131   }
    132 
    133   const StructType *ST = dyn_cast<StructType>(Ty);
    134   if (!ST)
    135     return false;
    136 
    137   bool NeedsProtector = false;
    138   for (StructType::element_iterator I = ST->element_begin(),
    139                                     E = ST->element_end();
    140        I != E; ++I)
    141     if (ContainsProtectableArray(*I, IsLarge, Strong, true)) {
    142       // If the element is a protectable array and is large (>= SSPBufferSize)
    143       // then we are done.  If the protectable array is not large, then
    144       // keep looking in case a subsequent element is a large array.
    145       if (IsLarge)
    146         return true;
    147       NeedsProtector = true;
    148     }
    149 
    150   return NeedsProtector;
    151 }
    152 
    153 bool StackProtector::HasAddressTaken(const Instruction *AI) {
    154   for (const User *U : AI->users()) {
    155     if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
    156       if (AI == SI->getValueOperand())
    157         return true;
    158     } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) {
    159       if (AI == SI->getOperand(0))
    160         return true;
    161     } else if (isa<CallInst>(U)) {
    162       return true;
    163     } else if (isa<InvokeInst>(U)) {
    164       return true;
    165     } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) {
    166       if (HasAddressTaken(SI))
    167         return true;
    168     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
    169       // Keep track of what PHI nodes we have already visited to ensure
    170       // they are only visited once.
    171       if (VisitedPHIs.insert(PN))
    172         if (HasAddressTaken(PN))
    173           return true;
    174     } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
    175       if (HasAddressTaken(GEP))
    176         return true;
    177     } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
    178       if (HasAddressTaken(BI))
    179         return true;
    180     }
    181   }
    182   return false;
    183 }
    184 
    185 /// \brief Check whether or not this function needs a stack protector based
    186 /// upon the stack protector level.
    187 ///
    188 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
    189 /// The standard heuristic which will add a guard variable to functions that
    190 /// call alloca with a either a variable size or a size >= SSPBufferSize,
    191 /// functions with character buffers larger than SSPBufferSize, and functions
    192 /// with aggregates containing character buffers larger than SSPBufferSize. The
    193 /// strong heuristic will add a guard variables to functions that call alloca
    194 /// regardless of size, functions with any buffer regardless of type and size,
    195 /// functions with aggregates that contain any buffer regardless of type and
    196 /// size, and functions that contain stack-based variables that have had their
    197 /// address taken.
    198 bool StackProtector::RequiresStackProtector() {
    199   bool Strong = false;
    200   bool NeedsProtector = false;
    201   if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
    202                                       Attribute::StackProtectReq)) {
    203     NeedsProtector = true;
    204     Strong = true; // Use the same heuristic as strong to determine SSPLayout
    205   } else if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
    206                                              Attribute::StackProtectStrong))
    207     Strong = true;
    208   else if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
    209                                             Attribute::StackProtect))
    210     return false;
    211 
    212   for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
    213     BasicBlock *BB = I;
    214 
    215     for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;
    216          ++II) {
    217       if (AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
    218         if (AI->isArrayAllocation()) {
    219           // SSP-Strong: Enable protectors for any call to alloca, regardless
    220           // of size.
    221           if (Strong)
    222             return true;
    223 
    224           if (const ConstantInt *CI =
    225                   dyn_cast<ConstantInt>(AI->getArraySize())) {
    226             if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
    227               // A call to alloca with size >= SSPBufferSize requires
    228               // stack protectors.
    229               Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
    230               NeedsProtector = true;
    231             } else if (Strong) {
    232               // Require protectors for all alloca calls in strong mode.
    233               Layout.insert(std::make_pair(AI, SSPLK_SmallArray));
    234               NeedsProtector = true;
    235             }
    236           } else {
    237             // A call to alloca with a variable size requires protectors.
    238             Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
    239             NeedsProtector = true;
    240           }
    241           continue;
    242         }
    243 
    244         bool IsLarge = false;
    245         if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
    246           Layout.insert(std::make_pair(AI, IsLarge ? SSPLK_LargeArray
    247                                                    : SSPLK_SmallArray));
    248           NeedsProtector = true;
    249           continue;
    250         }
    251 
    252         if (Strong && HasAddressTaken(AI)) {
    253           ++NumAddrTaken;
    254           Layout.insert(std::make_pair(AI, SSPLK_AddrOf));
    255           NeedsProtector = true;
    256         }
    257       }
    258     }
    259   }
    260 
    261   return NeedsProtector;
    262 }
    263 
    264 static bool InstructionWillNotHaveChain(const Instruction *I) {
    265   return !I->mayHaveSideEffects() && !I->mayReadFromMemory() &&
    266          isSafeToSpeculativelyExecute(I);
    267 }
    268 
    269 /// Identify if RI has a previous instruction in the "Tail Position" and return
    270 /// it. Otherwise return 0.
    271 ///
    272 /// This is based off of the code in llvm::isInTailCallPosition. The difference
    273 /// is that it inverts the first part of llvm::isInTailCallPosition since
    274 /// isInTailCallPosition is checking if a call is in a tail call position, and
    275 /// we are searching for an unknown tail call that might be in the tail call
    276 /// position. Once we find the call though, the code uses the same refactored
    277 /// code, returnTypeIsEligibleForTailCall.
    278 static CallInst *FindPotentialTailCall(BasicBlock *BB, ReturnInst *RI,
    279                                        const TargetLoweringBase *TLI) {
    280   // Establish a reasonable upper bound on the maximum amount of instructions we
    281   // will look through to find a tail call.
    282   unsigned SearchCounter = 0;
    283   const unsigned MaxSearch = 4;
    284   bool NoInterposingChain = true;
    285 
    286   for (BasicBlock::reverse_iterator I = std::next(BB->rbegin()), E = BB->rend();
    287        I != E && SearchCounter < MaxSearch; ++I) {
    288     Instruction *Inst = &*I;
    289 
    290     // Skip over debug intrinsics and do not allow them to affect our MaxSearch
    291     // counter.
    292     if (isa<DbgInfoIntrinsic>(Inst))
    293       continue;
    294 
    295     // If we find a call and the following conditions are satisifed, then we
    296     // have found a tail call that satisfies at least the target independent
    297     // requirements of a tail call:
    298     //
    299     // 1. The call site has the tail marker.
    300     //
    301     // 2. The call site either will not cause the creation of a chain or if a
    302     // chain is necessary there are no instructions in between the callsite and
    303     // the call which would create an interposing chain.
    304     //
    305     // 3. The return type of the function does not impede tail call
    306     // optimization.
    307     if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
    308       if (CI->isTailCall() &&
    309           (InstructionWillNotHaveChain(CI) || NoInterposingChain) &&
    310           returnTypeIsEligibleForTailCall(BB->getParent(), CI, RI, *TLI))
    311         return CI;
    312     }
    313 
    314     // If we did not find a call see if we have an instruction that may create
    315     // an interposing chain.
    316     NoInterposingChain =
    317         NoInterposingChain && InstructionWillNotHaveChain(Inst);
    318 
    319     // Increment max search.
    320     SearchCounter++;
    321   }
    322 
    323   return nullptr;
    324 }
    325 
    326 /// Insert code into the entry block that stores the __stack_chk_guard
    327 /// variable onto the stack:
    328 ///
    329 ///   entry:
    330 ///     StackGuardSlot = alloca i8*
    331 ///     StackGuard = load __stack_chk_guard
    332 ///     call void @llvm.stackprotect.create(StackGuard, StackGuardSlot)
    333 ///
    334 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
    335 /// node.
    336 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
    337                            const TargetLoweringBase *TLI, const Triple &Trip,
    338                            AllocaInst *&AI, Value *&StackGuardVar) {
    339   bool SupportsSelectionDAGSP = false;
    340   PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
    341   unsigned AddressSpace, Offset;
    342   if (TLI->getStackCookieLocation(AddressSpace, Offset)) {
    343     Constant *OffsetVal =
    344         ConstantInt::get(Type::getInt32Ty(RI->getContext()), Offset);
    345 
    346     StackGuardVar = ConstantExpr::getIntToPtr(
    347         OffsetVal, PointerType::get(PtrTy, AddressSpace));
    348   } else if (Trip.getOS() == llvm::Triple::OpenBSD) {
    349     StackGuardVar = M->getOrInsertGlobal("__guard_local", PtrTy);
    350     cast<GlobalValue>(StackGuardVar)
    351         ->setVisibility(GlobalValue::HiddenVisibility);
    352   } else {
    353     SupportsSelectionDAGSP = true;
    354     StackGuardVar = M->getOrInsertGlobal("__stack_chk_guard", PtrTy);
    355   }
    356 
    357   IRBuilder<> B(&F->getEntryBlock().front());
    358   AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
    359   LoadInst *LI = B.CreateLoad(StackGuardVar, "StackGuard");
    360   B.CreateCall2(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), LI,
    361                 AI);
    362 
    363   return SupportsSelectionDAGSP;
    364 }
    365 
    366 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
    367 /// function.
    368 ///
    369 ///  - The prologue code loads and stores the stack guard onto the stack.
    370 ///  - The epilogue checks the value stored in the prologue against the original
    371 ///    value. It calls __stack_chk_fail if they differ.
    372 bool StackProtector::InsertStackProtectors() {
    373   bool HasPrologue = false;
    374   bool SupportsSelectionDAGSP =
    375       EnableSelectionDAGSP && !TM->Options.EnableFastISel;
    376   AllocaInst *AI = nullptr;       // Place on stack that stores the stack guard.
    377   Value *StackGuardVar = nullptr; // The stack guard variable.
    378 
    379   for (Function::iterator I = F->begin(), E = F->end(); I != E;) {
    380     BasicBlock *BB = I++;
    381     ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
    382     if (!RI)
    383       continue;
    384 
    385     if (!HasPrologue) {
    386       HasPrologue = true;
    387       SupportsSelectionDAGSP &=
    388           CreatePrologue(F, M, RI, TLI, Trip, AI, StackGuardVar);
    389     }
    390 
    391     if (SupportsSelectionDAGSP) {
    392       // Since we have a potential tail call, insert the special stack check
    393       // intrinsic.
    394       Instruction *InsertionPt = nullptr;
    395       if (CallInst *CI = FindPotentialTailCall(BB, RI, TLI)) {
    396         InsertionPt = CI;
    397       } else {
    398         InsertionPt = RI;
    399         // At this point we know that BB has a return statement so it *DOES*
    400         // have a terminator.
    401         assert(InsertionPt != nullptr && "BB must have a terminator instruction at "
    402                                    "this point.");
    403       }
    404 
    405       Function *Intrinsic =
    406           Intrinsic::getDeclaration(M, Intrinsic::stackprotectorcheck);
    407       CallInst::Create(Intrinsic, StackGuardVar, "", InsertionPt);
    408 
    409     } else {
    410       // If we do not support SelectionDAG based tail calls, generate IR level
    411       // tail calls.
    412       //
    413       // For each block with a return instruction, convert this:
    414       //
    415       //   return:
    416       //     ...
    417       //     ret ...
    418       //
    419       // into this:
    420       //
    421       //   return:
    422       //     ...
    423       //     %1 = load __stack_chk_guard
    424       //     %2 = load StackGuardSlot
    425       //     %3 = cmp i1 %1, %2
    426       //     br i1 %3, label %SP_return, label %CallStackCheckFailBlk
    427       //
    428       //   SP_return:
    429       //     ret ...
    430       //
    431       //   CallStackCheckFailBlk:
    432       //     call void @__stack_chk_fail()
    433       //     unreachable
    434 
    435       // Create the FailBB. We duplicate the BB every time since the MI tail
    436       // merge pass will merge together all of the various BB into one including
    437       // fail BB generated by the stack protector pseudo instruction.
    438       BasicBlock *FailBB = CreateFailBB();
    439 
    440       // Split the basic block before the return instruction.
    441       BasicBlock *NewBB = BB->splitBasicBlock(RI, "SP_return");
    442 
    443       // Update the dominator tree if we need to.
    444       if (DT && DT->isReachableFromEntry(BB)) {
    445         DT->addNewBlock(NewBB, BB);
    446         DT->addNewBlock(FailBB, BB);
    447       }
    448 
    449       // Remove default branch instruction to the new BB.
    450       BB->getTerminator()->eraseFromParent();
    451 
    452       // Move the newly created basic block to the point right after the old
    453       // basic block so that it's in the "fall through" position.
    454       NewBB->moveAfter(BB);
    455 
    456       // Generate the stack protector instructions in the old basic block.
    457       IRBuilder<> B(BB);
    458       LoadInst *LI1 = B.CreateLoad(StackGuardVar);
    459       LoadInst *LI2 = B.CreateLoad(AI);
    460       Value *Cmp = B.CreateICmpEQ(LI1, LI2);
    461       B.CreateCondBr(Cmp, NewBB, FailBB);
    462     }
    463   }
    464 
    465   // Return if we didn't modify any basic blocks. I.e., there are no return
    466   // statements in the function.
    467   if (!HasPrologue)
    468     return false;
    469 
    470   return true;
    471 }
    472 
    473 /// CreateFailBB - Create a basic block to jump to when the stack protector
    474 /// check fails.
    475 BasicBlock *StackProtector::CreateFailBB() {
    476   LLVMContext &Context = F->getContext();
    477   BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
    478   IRBuilder<> B(FailBB);
    479   if (Trip.getOS() == llvm::Triple::OpenBSD) {
    480     Constant *StackChkFail = M->getOrInsertFunction(
    481         "__stack_smash_handler", Type::getVoidTy(Context),
    482         Type::getInt8PtrTy(Context), NULL);
    483 
    484     B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
    485   } else {
    486     Constant *StackChkFail = M->getOrInsertFunction(
    487         "__stack_chk_fail", Type::getVoidTy(Context), NULL);
    488     B.CreateCall(StackChkFail);
    489   }
    490   B.CreateUnreachable();
    491   return FailBB;
    492 }
    493