Home | History | Annotate | Download | only in Analysis
      1 //===-- llvm/Analysis/DependenceAnalysis.h -------------------- -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
     11 // accesses. Currently, it is an implementation of the approach described in
     12 //
     13 //            Practical Dependence Testing
     14 //            Goff, Kennedy, Tseng
     15 //            PLDI 1991
     16 //
     17 // There's a single entry point that analyzes the dependence between a pair
     18 // of memory references in a function, returning either NULL, for no dependence,
     19 // or a more-or-less detailed description of the dependence between them.
     20 //
     21 // This pass exists to support the DependenceGraph pass. There are two separate
     22 // passes because there's a useful separation of concerns. A dependence exists
     23 // if two conditions are met:
     24 //
     25 //    1) Two instructions reference the same memory location, and
     26 //    2) There is a flow of control leading from one instruction to the other.
     27 //
     28 // DependenceAnalysis attacks the first condition; DependenceGraph will attack
     29 // the second (it's not yet ready).
     30 //
     31 // Please note that this is work in progress and the interface is subject to
     32 // change.
     33 //
     34 // Plausible changes:
     35 //    Return a set of more precise dependences instead of just one dependence
     36 //    summarizing all.
     37 //
     38 //===----------------------------------------------------------------------===//
     39 
     40 #ifndef LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
     41 #define LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
     42 
     43 #include "llvm/ADT/SmallBitVector.h"
     44 #include "llvm/IR/Instructions.h"
     45 #include "llvm/Pass.h"
     46 
     47 namespace llvm {
     48   class AliasAnalysis;
     49   class Loop;
     50   class LoopInfo;
     51   class ScalarEvolution;
     52   class SCEV;
     53   class SCEVConstant;
     54   class raw_ostream;
     55 
     56   /// Dependence - This class represents a dependence between two memory
     57   /// memory references in a function. It contains minimal information and
     58   /// is used in the very common situation where the compiler is unable to
     59   /// determine anything beyond the existence of a dependence; that is, it
     60   /// represents a confused dependence (see also FullDependence). In most
     61   /// cases (for output, flow, and anti dependences), the dependence implies
     62   /// an ordering, where the source must precede the destination; in contrast,
     63   /// input dependences are unordered.
     64   ///
     65   /// When a dependence graph is built, each Dependence will be a member of
     66   /// the set of predecessor edges for its destination instruction and a set
     67   /// if successor edges for its source instruction. These sets are represented
     68   /// as singly-linked lists, with the "next" fields stored in the dependence
     69   /// itelf.
     70   class Dependence {
     71   public:
     72     Dependence(Instruction *Source,
     73                Instruction *Destination) :
     74       Src(Source),
     75       Dst(Destination),
     76       NextPredecessor(nullptr),
     77       NextSuccessor(nullptr) {}
     78     virtual ~Dependence() {}
     79 
     80     /// Dependence::DVEntry - Each level in the distance/direction vector
     81     /// has a direction (or perhaps a union of several directions), and
     82     /// perhaps a distance.
     83     struct DVEntry {
     84       enum { NONE = 0,
     85              LT = 1,
     86              EQ = 2,
     87              LE = 3,
     88              GT = 4,
     89              NE = 5,
     90              GE = 6,
     91              ALL = 7 };
     92       unsigned char Direction : 3; // Init to ALL, then refine.
     93       bool Scalar    : 1; // Init to true.
     94       bool PeelFirst : 1; // Peeling the first iteration will break dependence.
     95       bool PeelLast  : 1; // Peeling the last iteration will break the dependence.
     96       bool Splitable : 1; // Splitting the loop will break dependence.
     97       const SCEV *Distance; // NULL implies no distance available.
     98       DVEntry() : Direction(ALL), Scalar(true), PeelFirst(false),
     99                   PeelLast(false), Splitable(false), Distance(nullptr) { }
    100     };
    101 
    102     /// getSrc - Returns the source instruction for this dependence.
    103     ///
    104     Instruction *getSrc() const { return Src; }
    105 
    106     /// getDst - Returns the destination instruction for this dependence.
    107     ///
    108     Instruction *getDst() const { return Dst; }
    109 
    110     /// isInput - Returns true if this is an input dependence.
    111     ///
    112     bool isInput() const;
    113 
    114     /// isOutput - Returns true if this is an output dependence.
    115     ///
    116     bool isOutput() const;
    117 
    118     /// isFlow - Returns true if this is a flow (aka true) dependence.
    119     ///
    120     bool isFlow() const;
    121 
    122     /// isAnti - Returns true if this is an anti dependence.
    123     ///
    124     bool isAnti() const;
    125 
    126     /// isOrdered - Returns true if dependence is Output, Flow, or Anti
    127     ///
    128     bool isOrdered() const { return isOutput() || isFlow() || isAnti(); }
    129 
    130     /// isUnordered - Returns true if dependence is Input
    131     ///
    132     bool isUnordered() const { return isInput(); }
    133 
    134     /// isLoopIndependent - Returns true if this is a loop-independent
    135     /// dependence.
    136     virtual bool isLoopIndependent() const { return true; }
    137 
    138     /// isConfused - Returns true if this dependence is confused
    139     /// (the compiler understands nothing and makes worst-case
    140     /// assumptions).
    141     virtual bool isConfused() const { return true; }
    142 
    143     /// isConsistent - Returns true if this dependence is consistent
    144     /// (occurs every time the source and destination are executed).
    145     virtual bool isConsistent() const { return false; }
    146 
    147     /// getLevels - Returns the number of common loops surrounding the
    148     /// source and destination of the dependence.
    149     virtual unsigned getLevels() const { return 0; }
    150 
    151     /// getDirection - Returns the direction associated with a particular
    152     /// level.
    153     virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; }
    154 
    155     /// getDistance - Returns the distance (or NULL) associated with a
    156     /// particular level.
    157     virtual const SCEV *getDistance(unsigned Level) const { return nullptr; }
    158 
    159     /// isPeelFirst - Returns true if peeling the first iteration from
    160     /// this loop will break this dependence.
    161     virtual bool isPeelFirst(unsigned Level) const { return false; }
    162 
    163     /// isPeelLast - Returns true if peeling the last iteration from
    164     /// this loop will break this dependence.
    165     virtual bool isPeelLast(unsigned Level) const { return false; }
    166 
    167     /// isSplitable - Returns true if splitting this loop will break
    168     /// the dependence.
    169     virtual bool isSplitable(unsigned Level) const { return false; }
    170 
    171     /// isScalar - Returns true if a particular level is scalar; that is,
    172     /// if no subscript in the source or destination mention the induction
    173     /// variable associated with the loop at this level.
    174     virtual bool isScalar(unsigned Level) const;
    175 
    176     /// getNextPredecessor - Returns the value of the NextPredecessor
    177     /// field.
    178     const Dependence *getNextPredecessor() const {
    179       return NextPredecessor;
    180     }
    181 
    182     /// getNextSuccessor - Returns the value of the NextSuccessor
    183     /// field.
    184     const Dependence *getNextSuccessor() const {
    185       return NextSuccessor;
    186     }
    187 
    188     /// setNextPredecessor - Sets the value of the NextPredecessor
    189     /// field.
    190     void setNextPredecessor(const Dependence *pred) {
    191       NextPredecessor = pred;
    192     }
    193 
    194     /// setNextSuccessor - Sets the value of the NextSuccessor
    195     /// field.
    196     void setNextSuccessor(const Dependence *succ) {
    197       NextSuccessor = succ;
    198     }
    199 
    200     /// dump - For debugging purposes, dumps a dependence to OS.
    201     ///
    202     void dump(raw_ostream &OS) const;
    203   private:
    204     Instruction *Src, *Dst;
    205     const Dependence *NextPredecessor, *NextSuccessor;
    206     friend class DependenceAnalysis;
    207   };
    208 
    209 
    210   /// FullDependence - This class represents a dependence between two memory
    211   /// references in a function. It contains detailed information about the
    212   /// dependence (direction vectors, etc.) and is used when the compiler is
    213   /// able to accurately analyze the interaction of the references; that is,
    214   /// it is not a confused dependence (see Dependence). In most cases
    215   /// (for output, flow, and anti dependences), the dependence implies an
    216   /// ordering, where the source must precede the destination; in contrast,
    217   /// input dependences are unordered.
    218   class FullDependence : public Dependence {
    219   public:
    220     FullDependence(Instruction *Src,
    221                    Instruction *Dst,
    222                    bool LoopIndependent,
    223                    unsigned Levels);
    224     ~FullDependence() {
    225       delete[] DV;
    226     }
    227 
    228     /// isLoopIndependent - Returns true if this is a loop-independent
    229     /// dependence.
    230     bool isLoopIndependent() const override { return LoopIndependent; }
    231 
    232     /// isConfused - Returns true if this dependence is confused
    233     /// (the compiler understands nothing and makes worst-case
    234     /// assumptions).
    235     bool isConfused() const override { return false; }
    236 
    237     /// isConsistent - Returns true if this dependence is consistent
    238     /// (occurs every time the source and destination are executed).
    239     bool isConsistent() const override { return Consistent; }
    240 
    241     /// getLevels - Returns the number of common loops surrounding the
    242     /// source and destination of the dependence.
    243     unsigned getLevels() const override { return Levels; }
    244 
    245     /// getDirection - Returns the direction associated with a particular
    246     /// level.
    247     unsigned getDirection(unsigned Level) const override;
    248 
    249     /// getDistance - Returns the distance (or NULL) associated with a
    250     /// particular level.
    251     const SCEV *getDistance(unsigned Level) const override;
    252 
    253     /// isPeelFirst - Returns true if peeling the first iteration from
    254     /// this loop will break this dependence.
    255     bool isPeelFirst(unsigned Level) const override;
    256 
    257     /// isPeelLast - Returns true if peeling the last iteration from
    258     /// this loop will break this dependence.
    259     bool isPeelLast(unsigned Level) const override;
    260 
    261     /// isSplitable - Returns true if splitting the loop will break
    262     /// the dependence.
    263     bool isSplitable(unsigned Level) const override;
    264 
    265     /// isScalar - Returns true if a particular level is scalar; that is,
    266     /// if no subscript in the source or destination mention the induction
    267     /// variable associated with the loop at this level.
    268     bool isScalar(unsigned Level) const override;
    269   private:
    270     unsigned short Levels;
    271     bool LoopIndependent;
    272     bool Consistent; // Init to true, then refine.
    273     DVEntry *DV;
    274     friend class DependenceAnalysis;
    275   };
    276 
    277 
    278   /// DependenceAnalysis - This class is the main dependence-analysis driver.
    279   ///
    280   class DependenceAnalysis : public FunctionPass {
    281     void operator=(const DependenceAnalysis &) LLVM_DELETED_FUNCTION;
    282     DependenceAnalysis(const DependenceAnalysis &) LLVM_DELETED_FUNCTION;
    283   public:
    284     /// depends - Tests for a dependence between the Src and Dst instructions.
    285     /// Returns NULL if no dependence; otherwise, returns a Dependence (or a
    286     /// FullDependence) with as much information as can be gleaned.
    287     /// The flag PossiblyLoopIndependent should be set by the caller
    288     /// if it appears that control flow can reach from Src to Dst
    289     /// without traversing a loop back edge.
    290     Dependence *depends(Instruction *Src,
    291                         Instruction *Dst,
    292                         bool PossiblyLoopIndependent);
    293 
    294     /// getSplitIteration - Give a dependence that's splittable at some
    295     /// particular level, return the iteration that should be used to split
    296     /// the loop.
    297     ///
    298     /// Generally, the dependence analyzer will be used to build
    299     /// a dependence graph for a function (basically a map from instructions
    300     /// to dependences). Looking for cycles in the graph shows us loops
    301     /// that cannot be trivially vectorized/parallelized.
    302     ///
    303     /// We can try to improve the situation by examining all the dependences
    304     /// that make up the cycle, looking for ones we can break.
    305     /// Sometimes, peeling the first or last iteration of a loop will break
    306     /// dependences, and there are flags for those possibilities.
    307     /// Sometimes, splitting a loop at some other iteration will do the trick,
    308     /// and we've got a flag for that case. Rather than waste the space to
    309     /// record the exact iteration (since we rarely know), we provide
    310     /// a method that calculates the iteration. It's a drag that it must work
    311     /// from scratch, but wonderful in that it's possible.
    312     ///
    313     /// Here's an example:
    314     ///
    315     ///    for (i = 0; i < 10; i++)
    316     ///        A[i] = ...
    317     ///        ... = A[11 - i]
    318     ///
    319     /// There's a loop-carried flow dependence from the store to the load,
    320     /// found by the weak-crossing SIV test. The dependence will have a flag,
    321     /// indicating that the dependence can be broken by splitting the loop.
    322     /// Calling getSplitIteration will return 5.
    323     /// Splitting the loop breaks the dependence, like so:
    324     ///
    325     ///    for (i = 0; i <= 5; i++)
    326     ///        A[i] = ...
    327     ///        ... = A[11 - i]
    328     ///    for (i = 6; i < 10; i++)
    329     ///        A[i] = ...
    330     ///        ... = A[11 - i]
    331     ///
    332     /// breaks the dependence and allows us to vectorize/parallelize
    333     /// both loops.
    334     const SCEV *getSplitIteration(const Dependence *Dep, unsigned Level);
    335 
    336   private:
    337     AliasAnalysis *AA;
    338     ScalarEvolution *SE;
    339     LoopInfo *LI;
    340     Function *F;
    341 
    342     /// Subscript - This private struct represents a pair of subscripts from
    343     /// a pair of potentially multi-dimensional array references. We use a
    344     /// vector of them to guide subscript partitioning.
    345     struct Subscript {
    346       const SCEV *Src;
    347       const SCEV *Dst;
    348       enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification;
    349       SmallBitVector Loops;
    350       SmallBitVector GroupLoops;
    351       SmallBitVector Group;
    352     };
    353 
    354     struct CoefficientInfo {
    355       const SCEV *Coeff;
    356       const SCEV *PosPart;
    357       const SCEV *NegPart;
    358       const SCEV *Iterations;
    359     };
    360 
    361     struct BoundInfo {
    362       const SCEV *Iterations;
    363       const SCEV *Upper[8];
    364       const SCEV *Lower[8];
    365       unsigned char Direction;
    366       unsigned char DirSet;
    367     };
    368 
    369     /// Constraint - This private class represents a constraint, as defined
    370     /// in the paper
    371     ///
    372     ///           Practical Dependence Testing
    373     ///           Goff, Kennedy, Tseng
    374     ///           PLDI 1991
    375     ///
    376     /// There are 5 kinds of constraint, in a hierarchy.
    377     ///   1) Any - indicates no constraint, any dependence is possible.
    378     ///   2) Line - A line ax + by = c, where a, b, and c are parameters,
    379     ///             representing the dependence equation.
    380     ///   3) Distance - The value d of the dependence distance;
    381     ///   4) Point - A point <x, y> representing the dependence from
    382     ///              iteration x to iteration y.
    383     ///   5) Empty - No dependence is possible.
    384     class Constraint {
    385     private:
    386       enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind;
    387       ScalarEvolution *SE;
    388       const SCEV *A;
    389       const SCEV *B;
    390       const SCEV *C;
    391       const Loop *AssociatedLoop;
    392     public:
    393       /// isEmpty - Return true if the constraint is of kind Empty.
    394       bool isEmpty() const { return Kind == Empty; }
    395 
    396       /// isPoint - Return true if the constraint is of kind Point.
    397       bool isPoint() const { return Kind == Point; }
    398 
    399       /// isDistance - Return true if the constraint is of kind Distance.
    400       bool isDistance() const { return Kind == Distance; }
    401 
    402       /// isLine - Return true if the constraint is of kind Line.
    403       /// Since Distance's can also be represented as Lines, we also return
    404       /// true if the constraint is of kind Distance.
    405       bool isLine() const { return Kind == Line || Kind == Distance; }
    406 
    407       /// isAny - Return true if the constraint is of kind Any;
    408       bool isAny() const { return Kind == Any; }
    409 
    410       /// getX - If constraint is a point <X, Y>, returns X.
    411       /// Otherwise assert.
    412       const SCEV *getX() const;
    413 
    414       /// getY - If constraint is a point <X, Y>, returns Y.
    415       /// Otherwise assert.
    416       const SCEV *getY() const;
    417 
    418       /// getA - If constraint is a line AX + BY = C, returns A.
    419       /// Otherwise assert.
    420       const SCEV *getA() const;
    421 
    422       /// getB - If constraint is a line AX + BY = C, returns B.
    423       /// Otherwise assert.
    424       const SCEV *getB() const;
    425 
    426       /// getC - If constraint is a line AX + BY = C, returns C.
    427       /// Otherwise assert.
    428       const SCEV *getC() const;
    429 
    430       /// getD - If constraint is a distance, returns D.
    431       /// Otherwise assert.
    432       const SCEV *getD() const;
    433 
    434       /// getAssociatedLoop - Returns the loop associated with this constraint.
    435       const Loop *getAssociatedLoop() const;
    436 
    437       /// setPoint - Change a constraint to Point.
    438       void setPoint(const SCEV *X, const SCEV *Y, const Loop *CurrentLoop);
    439 
    440       /// setLine - Change a constraint to Line.
    441       void setLine(const SCEV *A, const SCEV *B,
    442                    const SCEV *C, const Loop *CurrentLoop);
    443 
    444       /// setDistance - Change a constraint to Distance.
    445       void setDistance(const SCEV *D, const Loop *CurrentLoop);
    446 
    447       /// setEmpty - Change a constraint to Empty.
    448       void setEmpty();
    449 
    450       /// setAny - Change a constraint to Any.
    451       void setAny(ScalarEvolution *SE);
    452 
    453       /// dump - For debugging purposes. Dumps the constraint
    454       /// out to OS.
    455       void dump(raw_ostream &OS) const;
    456     };
    457 
    458 
    459     /// establishNestingLevels - Examines the loop nesting of the Src and Dst
    460     /// instructions and establishes their shared loops. Sets the variables
    461     /// CommonLevels, SrcLevels, and MaxLevels.
    462     /// The source and destination instructions needn't be contained in the same
    463     /// loop. The routine establishNestingLevels finds the level of most deeply
    464     /// nested loop that contains them both, CommonLevels. An instruction that's
    465     /// not contained in a loop is at level = 0. MaxLevels is equal to the level
    466     /// of the source plus the level of the destination, minus CommonLevels.
    467     /// This lets us allocate vectors MaxLevels in length, with room for every
    468     /// distinct loop referenced in both the source and destination subscripts.
    469     /// The variable SrcLevels is the nesting depth of the source instruction.
    470     /// It's used to help calculate distinct loops referenced by the destination.
    471     /// Here's the map from loops to levels:
    472     ///            0 - unused
    473     ///            1 - outermost common loop
    474     ///          ... - other common loops
    475     /// CommonLevels - innermost common loop
    476     ///          ... - loops containing Src but not Dst
    477     ///    SrcLevels - innermost loop containing Src but not Dst
    478     ///          ... - loops containing Dst but not Src
    479     ///    MaxLevels - innermost loop containing Dst but not Src
    480     /// Consider the follow code fragment:
    481     ///    for (a = ...) {
    482     ///      for (b = ...) {
    483     ///        for (c = ...) {
    484     ///          for (d = ...) {
    485     ///            A[] = ...;
    486     ///          }
    487     ///        }
    488     ///        for (e = ...) {
    489     ///          for (f = ...) {
    490     ///            for (g = ...) {
    491     ///              ... = A[];
    492     ///            }
    493     ///          }
    494     ///        }
    495     ///      }
    496     ///    }
    497     /// If we're looking at the possibility of a dependence between the store
    498     /// to A (the Src) and the load from A (the Dst), we'll note that they
    499     /// have 2 loops in common, so CommonLevels will equal 2 and the direction
    500     /// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
    501     /// A map from loop names to level indices would look like
    502     ///     a - 1
    503     ///     b - 2 = CommonLevels
    504     ///     c - 3
    505     ///     d - 4 = SrcLevels
    506     ///     e - 5
    507     ///     f - 6
    508     ///     g - 7 = MaxLevels
    509     void establishNestingLevels(const Instruction *Src,
    510                                 const Instruction *Dst);
    511 
    512     unsigned CommonLevels, SrcLevels, MaxLevels;
    513 
    514     /// mapSrcLoop - Given one of the loops containing the source, return
    515     /// its level index in our numbering scheme.
    516     unsigned mapSrcLoop(const Loop *SrcLoop) const;
    517 
    518     /// mapDstLoop - Given one of the loops containing the destination,
    519     /// return its level index in our numbering scheme.
    520     unsigned mapDstLoop(const Loop *DstLoop) const;
    521 
    522     /// isLoopInvariant - Returns true if Expression is loop invariant
    523     /// in LoopNest.
    524     bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const;
    525 
    526     /// removeMatchingExtensions - Examines a subscript pair.
    527     /// If the source and destination are identically sign (or zero)
    528     /// extended, it strips off the extension in an effort to
    529     /// simplify the actual analysis.
    530     void removeMatchingExtensions(Subscript *Pair);
    531 
    532     /// collectCommonLoops - Finds the set of loops from the LoopNest that
    533     /// have a level <= CommonLevels and are referred to by the SCEV Expression.
    534     void collectCommonLoops(const SCEV *Expression,
    535                             const Loop *LoopNest,
    536                             SmallBitVector &Loops) const;
    537 
    538     /// checkSrcSubscript - Examines the SCEV Src, returning true iff it's
    539     /// linear. Collect the set of loops mentioned by Src.
    540     bool checkSrcSubscript(const SCEV *Src,
    541                            const Loop *LoopNest,
    542                            SmallBitVector &Loops);
    543 
    544     /// checkDstSubscript - Examines the SCEV Dst, returning true iff it's
    545     /// linear. Collect the set of loops mentioned by Dst.
    546     bool checkDstSubscript(const SCEV *Dst,
    547                            const Loop *LoopNest,
    548                            SmallBitVector &Loops);
    549 
    550     /// isKnownPredicate - Compare X and Y using the predicate Pred.
    551     /// Basically a wrapper for SCEV::isKnownPredicate,
    552     /// but tries harder, especially in the presence of sign and zero
    553     /// extensions and symbolics.
    554     bool isKnownPredicate(ICmpInst::Predicate Pred,
    555                           const SCEV *X,
    556                           const SCEV *Y) const;
    557 
    558     /// collectUpperBound - All subscripts are the same type (on my machine,
    559     /// an i64). The loop bound may be a smaller type. collectUpperBound
    560     /// find the bound, if available, and zero extends it to the Type T.
    561     /// (I zero extend since the bound should always be >= 0.)
    562     /// If no upper bound is available, return NULL.
    563     const SCEV *collectUpperBound(const Loop *l, Type *T) const;
    564 
    565     /// collectConstantUpperBound - Calls collectUpperBound(), then
    566     /// attempts to cast it to SCEVConstant. If the cast fails,
    567     /// returns NULL.
    568     const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const;
    569 
    570     /// classifyPair - Examines the subscript pair (the Src and Dst SCEVs)
    571     /// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
    572     /// Collects the associated loops in a set.
    573     Subscript::ClassificationKind classifyPair(const SCEV *Src,
    574                                            const Loop *SrcLoopNest,
    575                                            const SCEV *Dst,
    576                                            const Loop *DstLoopNest,
    577                                            SmallBitVector &Loops);
    578 
    579     /// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence.
    580     /// Returns true if any possible dependence is disproved.
    581     /// If there might be a dependence, returns false.
    582     /// If the dependence isn't proven to exist,
    583     /// marks the Result as inconsistent.
    584     bool testZIV(const SCEV *Src,
    585                  const SCEV *Dst,
    586                  FullDependence &Result) const;
    587 
    588     /// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence.
    589     /// Things of the form [c1 + a1*i] and [c2 + a2*j], where
    590     /// i and j are induction variables, c1 and c2 are loop invariant,
    591     /// and a1 and a2 are constant.
    592     /// Returns true if any possible dependence is disproved.
    593     /// If there might be a dependence, returns false.
    594     /// Sets appropriate direction vector entry and, when possible,
    595     /// the distance vector entry.
    596     /// If the dependence isn't proven to exist,
    597     /// marks the Result as inconsistent.
    598     bool testSIV(const SCEV *Src,
    599                  const SCEV *Dst,
    600                  unsigned &Level,
    601                  FullDependence &Result,
    602                  Constraint &NewConstraint,
    603                  const SCEV *&SplitIter) const;
    604 
    605     /// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence.
    606     /// Things of the form [c1 + a1*i] and [c2 + a2*j]
    607     /// where i and j are induction variables, c1 and c2 are loop invariant,
    608     /// and a1 and a2 are constant.
    609     /// With minor algebra, this test can also be used for things like
    610     /// [c1 + a1*i + a2*j][c2].
    611     /// Returns true if any possible dependence is disproved.
    612     /// If there might be a dependence, returns false.
    613     /// Marks the Result as inconsistent.
    614     bool testRDIV(const SCEV *Src,
    615                   const SCEV *Dst,
    616                   FullDependence &Result) const;
    617 
    618     /// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence.
    619     /// Returns true if dependence disproved.
    620     /// Can sometimes refine direction vectors.
    621     bool testMIV(const SCEV *Src,
    622                  const SCEV *Dst,
    623                  const SmallBitVector &Loops,
    624                  FullDependence &Result) const;
    625 
    626     /// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst)
    627     /// for dependence.
    628     /// Things of the form [c1 + a*i] and [c2 + a*i],
    629     /// where i is an induction variable, c1 and c2 are loop invariant,
    630     /// and a is a constant
    631     /// Returns true if any possible dependence is disproved.
    632     /// If there might be a dependence, returns false.
    633     /// Sets appropriate direction and distance.
    634     bool strongSIVtest(const SCEV *Coeff,
    635                        const SCEV *SrcConst,
    636                        const SCEV *DstConst,
    637                        const Loop *CurrentLoop,
    638                        unsigned Level,
    639                        FullDependence &Result,
    640                        Constraint &NewConstraint) const;
    641 
    642     /// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair
    643     /// (Src and Dst) for dependence.
    644     /// Things of the form [c1 + a*i] and [c2 - a*i],
    645     /// where i is an induction variable, c1 and c2 are loop invariant,
    646     /// and a is a constant.
    647     /// Returns true if any possible dependence is disproved.
    648     /// If there might be a dependence, returns false.
    649     /// Sets appropriate direction entry.
    650     /// Set consistent to false.
    651     /// Marks the dependence as splitable.
    652     bool weakCrossingSIVtest(const SCEV *SrcCoeff,
    653                              const SCEV *SrcConst,
    654                              const SCEV *DstConst,
    655                              const Loop *CurrentLoop,
    656                              unsigned Level,
    657                              FullDependence &Result,
    658                              Constraint &NewConstraint,
    659                              const SCEV *&SplitIter) const;
    660 
    661     /// ExactSIVtest - Tests the SIV subscript pair
    662     /// (Src and Dst) for dependence.
    663     /// Things of the form [c1 + a1*i] and [c2 + a2*i],
    664     /// where i is an induction variable, c1 and c2 are loop invariant,
    665     /// and a1 and a2 are constant.
    666     /// Returns true if any possible dependence is disproved.
    667     /// If there might be a dependence, returns false.
    668     /// Sets appropriate direction entry.
    669     /// Set consistent to false.
    670     bool exactSIVtest(const SCEV *SrcCoeff,
    671                       const SCEV *DstCoeff,
    672                       const SCEV *SrcConst,
    673                       const SCEV *DstConst,
    674                       const Loop *CurrentLoop,
    675                       unsigned Level,
    676                       FullDependence &Result,
    677                       Constraint &NewConstraint) const;
    678 
    679     /// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair
    680     /// (Src and Dst) for dependence.
    681     /// Things of the form [c1] and [c2 + a*i],
    682     /// where i is an induction variable, c1 and c2 are loop invariant,
    683     /// and a is a constant. See also weakZeroDstSIVtest.
    684     /// Returns true if any possible dependence is disproved.
    685     /// If there might be a dependence, returns false.
    686     /// Sets appropriate direction entry.
    687     /// Set consistent to false.
    688     /// If loop peeling will break the dependence, mark appropriately.
    689     bool weakZeroSrcSIVtest(const SCEV *DstCoeff,
    690                             const SCEV *SrcConst,
    691                             const SCEV *DstConst,
    692                             const Loop *CurrentLoop,
    693                             unsigned Level,
    694                             FullDependence &Result,
    695                             Constraint &NewConstraint) const;
    696 
    697     /// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair
    698     /// (Src and Dst) for dependence.
    699     /// Things of the form [c1 + a*i] and [c2],
    700     /// where i is an induction variable, c1 and c2 are loop invariant,
    701     /// and a is a constant. See also weakZeroSrcSIVtest.
    702     /// Returns true if any possible dependence is disproved.
    703     /// If there might be a dependence, returns false.
    704     /// Sets appropriate direction entry.
    705     /// Set consistent to false.
    706     /// If loop peeling will break the dependence, mark appropriately.
    707     bool weakZeroDstSIVtest(const SCEV *SrcCoeff,
    708                             const SCEV *SrcConst,
    709                             const SCEV *DstConst,
    710                             const Loop *CurrentLoop,
    711                             unsigned Level,
    712                             FullDependence &Result,
    713                             Constraint &NewConstraint) const;
    714 
    715     /// exactRDIVtest - Tests the RDIV subscript pair for dependence.
    716     /// Things of the form [c1 + a*i] and [c2 + b*j],
    717     /// where i and j are induction variable, c1 and c2 are loop invariant,
    718     /// and a and b are constants.
    719     /// Returns true if any possible dependence is disproved.
    720     /// Marks the result as inconsistent.
    721     /// Works in some cases that symbolicRDIVtest doesn't,
    722     /// and vice versa.
    723     bool exactRDIVtest(const SCEV *SrcCoeff,
    724                        const SCEV *DstCoeff,
    725                        const SCEV *SrcConst,
    726                        const SCEV *DstConst,
    727                        const Loop *SrcLoop,
    728                        const Loop *DstLoop,
    729                        FullDependence &Result) const;
    730 
    731     /// symbolicRDIVtest - Tests the RDIV subscript pair for dependence.
    732     /// Things of the form [c1 + a*i] and [c2 + b*j],
    733     /// where i and j are induction variable, c1 and c2 are loop invariant,
    734     /// and a and b are constants.
    735     /// Returns true if any possible dependence is disproved.
    736     /// Marks the result as inconsistent.
    737     /// Works in some cases that exactRDIVtest doesn't,
    738     /// and vice versa. Can also be used as a backup for
    739     /// ordinary SIV tests.
    740     bool symbolicRDIVtest(const SCEV *SrcCoeff,
    741                           const SCEV *DstCoeff,
    742                           const SCEV *SrcConst,
    743                           const SCEV *DstConst,
    744                           const Loop *SrcLoop,
    745                           const Loop *DstLoop) const;
    746 
    747     /// gcdMIVtest - Tests an MIV subscript pair for dependence.
    748     /// Returns true if any possible dependence is disproved.
    749     /// Marks the result as inconsistent.
    750     /// Can sometimes disprove the equal direction for 1 or more loops.
    751     //  Can handle some symbolics that even the SIV tests don't get,
    752     /// so we use it as a backup for everything.
    753     bool gcdMIVtest(const SCEV *Src,
    754                     const SCEV *Dst,
    755                     FullDependence &Result) const;
    756 
    757     /// banerjeeMIVtest - Tests an MIV subscript pair for dependence.
    758     /// Returns true if any possible dependence is disproved.
    759     /// Marks the result as inconsistent.
    760     /// Computes directions.
    761     bool banerjeeMIVtest(const SCEV *Src,
    762                          const SCEV *Dst,
    763                          const SmallBitVector &Loops,
    764                          FullDependence &Result) const;
    765 
    766     /// collectCoefficientInfo - Walks through the subscript,
    767     /// collecting each coefficient, the associated loop bounds,
    768     /// and recording its positive and negative parts for later use.
    769     CoefficientInfo *collectCoeffInfo(const SCEV *Subscript,
    770                                       bool SrcFlag,
    771                                       const SCEV *&Constant) const;
    772 
    773     /// getPositivePart - X^+ = max(X, 0).
    774     ///
    775     const SCEV *getPositivePart(const SCEV *X) const;
    776 
    777     /// getNegativePart - X^- = min(X, 0).
    778     ///
    779     const SCEV *getNegativePart(const SCEV *X) const;
    780 
    781     /// getLowerBound - Looks through all the bounds info and
    782     /// computes the lower bound given the current direction settings
    783     /// at each level.
    784     const SCEV *getLowerBound(BoundInfo *Bound) const;
    785 
    786     /// getUpperBound - Looks through all the bounds info and
    787     /// computes the upper bound given the current direction settings
    788     /// at each level.
    789     const SCEV *getUpperBound(BoundInfo *Bound) const;
    790 
    791     /// exploreDirections - Hierarchically expands the direction vector
    792     /// search space, combining the directions of discovered dependences
    793     /// in the DirSet field of Bound. Returns the number of distinct
    794     /// dependences discovered. If the dependence is disproved,
    795     /// it will return 0.
    796     unsigned exploreDirections(unsigned Level,
    797                                CoefficientInfo *A,
    798                                CoefficientInfo *B,
    799                                BoundInfo *Bound,
    800                                const SmallBitVector &Loops,
    801                                unsigned &DepthExpanded,
    802                                const SCEV *Delta) const;
    803 
    804     /// testBounds - Returns true iff the current bounds are plausible.
    805     ///
    806     bool testBounds(unsigned char DirKind,
    807                     unsigned Level,
    808                     BoundInfo *Bound,
    809                     const SCEV *Delta) const;
    810 
    811     /// findBoundsALL - Computes the upper and lower bounds for level K
    812     /// using the * direction. Records them in Bound.
    813     void findBoundsALL(CoefficientInfo *A,
    814                        CoefficientInfo *B,
    815                        BoundInfo *Bound,
    816                        unsigned K) const;
    817 
    818     /// findBoundsLT - Computes the upper and lower bounds for level K
    819     /// using the < direction. Records them in Bound.
    820     void findBoundsLT(CoefficientInfo *A,
    821                       CoefficientInfo *B,
    822                       BoundInfo *Bound,
    823                       unsigned K) const;
    824 
    825     /// findBoundsGT - Computes the upper and lower bounds for level K
    826     /// using the > direction. Records them in Bound.
    827     void findBoundsGT(CoefficientInfo *A,
    828                       CoefficientInfo *B,
    829                       BoundInfo *Bound,
    830                       unsigned K) const;
    831 
    832     /// findBoundsEQ - Computes the upper and lower bounds for level K
    833     /// using the = direction. Records them in Bound.
    834     void findBoundsEQ(CoefficientInfo *A,
    835                       CoefficientInfo *B,
    836                       BoundInfo *Bound,
    837                       unsigned K) const;
    838 
    839     /// intersectConstraints - Updates X with the intersection
    840     /// of the Constraints X and Y. Returns true if X has changed.
    841     bool intersectConstraints(Constraint *X,
    842                               const Constraint *Y);
    843 
    844     /// propagate - Review the constraints, looking for opportunities
    845     /// to simplify a subscript pair (Src and Dst).
    846     /// Return true if some simplification occurs.
    847     /// If the simplification isn't exact (that is, if it is conservative
    848     /// in terms of dependence), set consistent to false.
    849     bool propagate(const SCEV *&Src,
    850                    const SCEV *&Dst,
    851                    SmallBitVector &Loops,
    852                    SmallVectorImpl<Constraint> &Constraints,
    853                    bool &Consistent);
    854 
    855     /// propagateDistance - Attempt to propagate a distance
    856     /// constraint into a subscript pair (Src and Dst).
    857     /// Return true if some simplification occurs.
    858     /// If the simplification isn't exact (that is, if it is conservative
    859     /// in terms of dependence), set consistent to false.
    860     bool propagateDistance(const SCEV *&Src,
    861                            const SCEV *&Dst,
    862                            Constraint &CurConstraint,
    863                            bool &Consistent);
    864 
    865     /// propagatePoint - Attempt to propagate a point
    866     /// constraint into a subscript pair (Src and Dst).
    867     /// Return true if some simplification occurs.
    868     bool propagatePoint(const SCEV *&Src,
    869                         const SCEV *&Dst,
    870                         Constraint &CurConstraint);
    871 
    872     /// propagateLine - Attempt to propagate a line
    873     /// constraint into a subscript pair (Src and Dst).
    874     /// Return true if some simplification occurs.
    875     /// If the simplification isn't exact (that is, if it is conservative
    876     /// in terms of dependence), set consistent to false.
    877     bool propagateLine(const SCEV *&Src,
    878                        const SCEV *&Dst,
    879                        Constraint &CurConstraint,
    880                        bool &Consistent);
    881 
    882     /// findCoefficient - Given a linear SCEV,
    883     /// return the coefficient corresponding to specified loop.
    884     /// If there isn't one, return the SCEV constant 0.
    885     /// For example, given a*i + b*j + c*k, returning the coefficient
    886     /// corresponding to the j loop would yield b.
    887     const SCEV *findCoefficient(const SCEV *Expr,
    888                                 const Loop *TargetLoop) const;
    889 
    890     /// zeroCoefficient - Given a linear SCEV,
    891     /// return the SCEV given by zeroing out the coefficient
    892     /// corresponding to the specified loop.
    893     /// For example, given a*i + b*j + c*k, zeroing the coefficient
    894     /// corresponding to the j loop would yield a*i + c*k.
    895     const SCEV *zeroCoefficient(const SCEV *Expr,
    896                                 const Loop *TargetLoop) const;
    897 
    898     /// addToCoefficient - Given a linear SCEV Expr,
    899     /// return the SCEV given by adding some Value to the
    900     /// coefficient corresponding to the specified TargetLoop.
    901     /// For example, given a*i + b*j + c*k, adding 1 to the coefficient
    902     /// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
    903     const SCEV *addToCoefficient(const SCEV *Expr,
    904                                  const Loop *TargetLoop,
    905                                  const SCEV *Value)  const;
    906 
    907     /// updateDirection - Update direction vector entry
    908     /// based on the current constraint.
    909     void updateDirection(Dependence::DVEntry &Level,
    910                          const Constraint &CurConstraint) const;
    911 
    912     bool tryDelinearize(const SCEV *SrcSCEV, const SCEV *DstSCEV,
    913                         SmallVectorImpl<Subscript> &Pair,
    914                         const SCEV *ElementSize) const;
    915 
    916   public:
    917     static char ID; // Class identification, replacement for typeinfo
    918     DependenceAnalysis() : FunctionPass(ID) {
    919       initializeDependenceAnalysisPass(*PassRegistry::getPassRegistry());
    920     }
    921 
    922     bool runOnFunction(Function &F) override;
    923     void releaseMemory() override;
    924     void getAnalysisUsage(AnalysisUsage &) const override;
    925     void print(raw_ostream &, const Module * = nullptr) const override;
    926   }; // class DependenceAnalysis
    927 
    928   /// createDependenceAnalysisPass - This creates an instance of the
    929   /// DependenceAnalysis pass.
    930   FunctionPass *createDependenceAnalysisPass();
    931 
    932 } // namespace llvm
    933 
    934 #endif
    935