Home | History | Annotate | Download | only in AsmPrinter
      1 //===-- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer --===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains support for writing exception info into assembly files.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "EHStreamer.h"
     15 #include "llvm/CodeGen/AsmPrinter.h"
     16 #include "llvm/CodeGen/MachineFunction.h"
     17 #include "llvm/CodeGen/MachineInstr.h"
     18 #include "llvm/CodeGen/MachineModuleInfo.h"
     19 #include "llvm/IR/Function.h"
     20 #include "llvm/MC/MCAsmInfo.h"
     21 #include "llvm/MC/MCStreamer.h"
     22 #include "llvm/MC/MCSymbol.h"
     23 #include "llvm/Support/LEB128.h"
     24 #include "llvm/Target/TargetLoweringObjectFile.h"
     25 
     26 using namespace llvm;
     27 
     28 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
     29 
     30 EHStreamer::~EHStreamer() {}
     31 
     32 /// How many leading type ids two landing pads have in common.
     33 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
     34                                    const LandingPadInfo *R) {
     35   const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
     36   unsigned LSize = LIds.size(), RSize = RIds.size();
     37   unsigned MinSize = LSize < RSize ? LSize : RSize;
     38   unsigned Count = 0;
     39 
     40   for (; Count != MinSize; ++Count)
     41     if (LIds[Count] != RIds[Count])
     42       return Count;
     43 
     44   return Count;
     45 }
     46 
     47 /// Compute the actions table and gather the first action index for each landing
     48 /// pad site.
     49 unsigned EHStreamer::
     50 computeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
     51                     SmallVectorImpl<ActionEntry> &Actions,
     52                     SmallVectorImpl<unsigned> &FirstActions) {
     53 
     54   // The action table follows the call-site table in the LSDA. The individual
     55   // records are of two types:
     56   //
     57   //   * Catch clause
     58   //   * Exception specification
     59   //
     60   // The two record kinds have the same format, with only small differences.
     61   // They are distinguished by the "switch value" field: Catch clauses
     62   // (TypeInfos) have strictly positive switch values, and exception
     63   // specifications (FilterIds) have strictly negative switch values. Value 0
     64   // indicates a catch-all clause.
     65   //
     66   // Negative type IDs index into FilterIds. Positive type IDs index into
     67   // TypeInfos.  The value written for a positive type ID is just the type ID
     68   // itself.  For a negative type ID, however, the value written is the
     69   // (negative) byte offset of the corresponding FilterIds entry.  The byte
     70   // offset is usually equal to the type ID (because the FilterIds entries are
     71   // written using a variable width encoding, which outputs one byte per entry
     72   // as long as the value written is not too large) but can differ.  This kind
     73   // of complication does not occur for positive type IDs because type infos are
     74   // output using a fixed width encoding.  FilterOffsets[i] holds the byte
     75   // offset corresponding to FilterIds[i].
     76 
     77   const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
     78   SmallVector<int, 16> FilterOffsets;
     79   FilterOffsets.reserve(FilterIds.size());
     80   int Offset = -1;
     81 
     82   for (std::vector<unsigned>::const_iterator
     83          I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
     84     FilterOffsets.push_back(Offset);
     85     Offset -= getULEB128Size(*I);
     86   }
     87 
     88   FirstActions.reserve(LandingPads.size());
     89 
     90   int FirstAction = 0;
     91   unsigned SizeActions = 0;
     92   const LandingPadInfo *PrevLPI = nullptr;
     93 
     94   for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
     95          I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
     96     const LandingPadInfo *LPI = *I;
     97     const std::vector<int> &TypeIds = LPI->TypeIds;
     98     unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
     99     unsigned SizeSiteActions = 0;
    100 
    101     if (NumShared < TypeIds.size()) {
    102       unsigned SizeAction = 0;
    103       unsigned PrevAction = (unsigned)-1;
    104 
    105       if (NumShared) {
    106         unsigned SizePrevIds = PrevLPI->TypeIds.size();
    107         assert(Actions.size());
    108         PrevAction = Actions.size() - 1;
    109         SizeAction = getSLEB128Size(Actions[PrevAction].NextAction) +
    110                      getSLEB128Size(Actions[PrevAction].ValueForTypeID);
    111 
    112         for (unsigned j = NumShared; j != SizePrevIds; ++j) {
    113           assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
    114           SizeAction -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
    115           SizeAction += -Actions[PrevAction].NextAction;
    116           PrevAction = Actions[PrevAction].Previous;
    117         }
    118       }
    119 
    120       // Compute the actions.
    121       for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
    122         int TypeID = TypeIds[J];
    123         assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
    124         int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
    125         unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
    126 
    127         int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
    128         SizeAction = SizeTypeID + getSLEB128Size(NextAction);
    129         SizeSiteActions += SizeAction;
    130 
    131         ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
    132         Actions.push_back(Action);
    133         PrevAction = Actions.size() - 1;
    134       }
    135 
    136       // Record the first action of the landing pad site.
    137       FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
    138     } // else identical - re-use previous FirstAction
    139 
    140     // Information used when created the call-site table. The action record
    141     // field of the call site record is the offset of the first associated
    142     // action record, relative to the start of the actions table. This value is
    143     // biased by 1 (1 indicating the start of the actions table), and 0
    144     // indicates that there are no actions.
    145     FirstActions.push_back(FirstAction);
    146 
    147     // Compute this sites contribution to size.
    148     SizeActions += SizeSiteActions;
    149 
    150     PrevLPI = LPI;
    151   }
    152 
    153   return SizeActions;
    154 }
    155 
    156 /// Return `true' if this is a call to a function marked `nounwind'. Return
    157 /// `false' otherwise.
    158 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
    159   assert(MI->isCall() && "This should be a call instruction!");
    160 
    161   bool MarkedNoUnwind = false;
    162   bool SawFunc = false;
    163 
    164   for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
    165     const MachineOperand &MO = MI->getOperand(I);
    166 
    167     if (!MO.isGlobal()) continue;
    168 
    169     const Function *F = dyn_cast<Function>(MO.getGlobal());
    170     if (!F) continue;
    171 
    172     if (SawFunc) {
    173       // Be conservative. If we have more than one function operand for this
    174       // call, then we can't make the assumption that it's the callee and
    175       // not a parameter to the call.
    176       //
    177       // FIXME: Determine if there's a way to say that `F' is the callee or
    178       // parameter.
    179       MarkedNoUnwind = false;
    180       break;
    181     }
    182 
    183     MarkedNoUnwind = F->doesNotThrow();
    184     SawFunc = true;
    185   }
    186 
    187   return MarkedNoUnwind;
    188 }
    189 
    190 /// Compute the call-site table.  The entry for an invoke has a try-range
    191 /// containing the call, a non-zero landing pad, and an appropriate action.  The
    192 /// entry for an ordinary call has a try-range containing the call and zero for
    193 /// the landing pad and the action.  Calls marked 'nounwind' have no entry and
    194 /// must not be contained in the try-range of any entry - they form gaps in the
    195 /// table.  Entries must be ordered by try-range address.
    196 void EHStreamer::
    197 computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
    198                      const RangeMapType &PadMap,
    199                      const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
    200                      const SmallVectorImpl<unsigned> &FirstActions) {
    201   // The end label of the previous invoke or nounwind try-range.
    202   MCSymbol *LastLabel = nullptr;
    203 
    204   // Whether there is a potentially throwing instruction (currently this means
    205   // an ordinary call) between the end of the previous try-range and now.
    206   bool SawPotentiallyThrowing = false;
    207 
    208   // Whether the last CallSite entry was for an invoke.
    209   bool PreviousIsInvoke = false;
    210 
    211   // Visit all instructions in order of address.
    212   for (const auto &MBB : *Asm->MF) {
    213     for (const auto &MI : MBB) {
    214       if (!MI.isEHLabel()) {
    215         if (MI.isCall())
    216           SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
    217         continue;
    218       }
    219 
    220       // End of the previous try-range?
    221       MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
    222       if (BeginLabel == LastLabel)
    223         SawPotentiallyThrowing = false;
    224 
    225       // Beginning of a new try-range?
    226       RangeMapType::const_iterator L = PadMap.find(BeginLabel);
    227       if (L == PadMap.end())
    228         // Nope, it was just some random label.
    229         continue;
    230 
    231       const PadRange &P = L->second;
    232       const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
    233       assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
    234              "Inconsistent landing pad map!");
    235 
    236       // For Dwarf exception handling (SjLj handling doesn't use this). If some
    237       // instruction between the previous try-range and this one may throw,
    238       // create a call-site entry with no landing pad for the region between the
    239       // try-ranges.
    240       if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) {
    241         CallSiteEntry Site = { LastLabel, BeginLabel, nullptr, 0 };
    242         CallSites.push_back(Site);
    243         PreviousIsInvoke = false;
    244       }
    245 
    246       LastLabel = LandingPad->EndLabels[P.RangeIndex];
    247       assert(BeginLabel && LastLabel && "Invalid landing pad!");
    248 
    249       if (!LandingPad->LandingPadLabel) {
    250         // Create a gap.
    251         PreviousIsInvoke = false;
    252       } else {
    253         // This try-range is for an invoke.
    254         CallSiteEntry Site = {
    255           BeginLabel,
    256           LastLabel,
    257           LandingPad->LandingPadLabel,
    258           FirstActions[P.PadIndex]
    259         };
    260 
    261         // Try to merge with the previous call-site. SJLJ doesn't do this
    262         if (PreviousIsInvoke && Asm->MAI->isExceptionHandlingDwarf()) {
    263           CallSiteEntry &Prev = CallSites.back();
    264           if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
    265             // Extend the range of the previous entry.
    266             Prev.EndLabel = Site.EndLabel;
    267             continue;
    268           }
    269         }
    270 
    271         // Otherwise, create a new call-site.
    272         if (Asm->MAI->isExceptionHandlingDwarf())
    273           CallSites.push_back(Site);
    274         else {
    275           // SjLj EH must maintain the call sites in the order assigned
    276           // to them by the SjLjPrepare pass.
    277           unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel);
    278           if (CallSites.size() < SiteNo)
    279             CallSites.resize(SiteNo);
    280           CallSites[SiteNo - 1] = Site;
    281         }
    282         PreviousIsInvoke = true;
    283       }
    284     }
    285   }
    286 
    287   // If some instruction between the previous try-range and the end of the
    288   // function may throw, create a call-site entry with no landing pad for the
    289   // region following the try-range.
    290   if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) {
    291     CallSiteEntry Site = { LastLabel, nullptr, nullptr, 0 };
    292     CallSites.push_back(Site);
    293   }
    294 }
    295 
    296 /// Emit landing pads and actions.
    297 ///
    298 /// The general organization of the table is complex, but the basic concepts are
    299 /// easy.  First there is a header which describes the location and organization
    300 /// of the three components that follow.
    301 ///
    302 ///  1. The landing pad site information describes the range of code covered by
    303 ///     the try.  In our case it's an accumulation of the ranges covered by the
    304 ///     invokes in the try.  There is also a reference to the landing pad that
    305 ///     handles the exception once processed.  Finally an index into the actions
    306 ///     table.
    307 ///  2. The action table, in our case, is composed of pairs of type IDs and next
    308 ///     action offset.  Starting with the action index from the landing pad
    309 ///     site, each type ID is checked for a match to the current exception.  If
    310 ///     it matches then the exception and type id are passed on to the landing
    311 ///     pad.  Otherwise the next action is looked up.  This chain is terminated
    312 ///     with a next action of zero.  If no type id is found then the frame is
    313 ///     unwound and handling continues.
    314 ///  3. Type ID table contains references to all the C++ typeinfo for all
    315 ///     catches in the function.  This tables is reverse indexed base 1.
    316 void EHStreamer::emitExceptionTable() {
    317   const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
    318   const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
    319   const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
    320 
    321   // Sort the landing pads in order of their type ids.  This is used to fold
    322   // duplicate actions.
    323   SmallVector<const LandingPadInfo *, 64> LandingPads;
    324   LandingPads.reserve(PadInfos.size());
    325 
    326   for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
    327     LandingPads.push_back(&PadInfos[i]);
    328 
    329   // Order landing pads lexicographically by type id.
    330   std::sort(LandingPads.begin(), LandingPads.end(),
    331             [](const LandingPadInfo *L,
    332                const LandingPadInfo *R) { return L->TypeIds < R->TypeIds; });
    333 
    334   // Compute the actions table and gather the first action index for each
    335   // landing pad site.
    336   SmallVector<ActionEntry, 32> Actions;
    337   SmallVector<unsigned, 64> FirstActions;
    338   unsigned SizeActions =
    339     computeActionsTable(LandingPads, Actions, FirstActions);
    340 
    341   // Invokes and nounwind calls have entries in PadMap (due to being bracketed
    342   // by try-range labels when lowered).  Ordinary calls do not, so appropriate
    343   // try-ranges for them need be deduced when using DWARF exception handling.
    344   RangeMapType PadMap;
    345   for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
    346     const LandingPadInfo *LandingPad = LandingPads[i];
    347     for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
    348       MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
    349       assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
    350       PadRange P = { i, j };
    351       PadMap[BeginLabel] = P;
    352     }
    353   }
    354 
    355   // Compute the call-site table.
    356   SmallVector<CallSiteEntry, 64> CallSites;
    357   computeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions);
    358 
    359   // Final tallies.
    360 
    361   // Call sites.
    362   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
    363   bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
    364 
    365   unsigned CallSiteTableLength;
    366   if (IsSJLJ)
    367     CallSiteTableLength = 0;
    368   else {
    369     unsigned SiteStartSize  = 4; // dwarf::DW_EH_PE_udata4
    370     unsigned SiteLengthSize = 4; // dwarf::DW_EH_PE_udata4
    371     unsigned LandingPadSize = 4; // dwarf::DW_EH_PE_udata4
    372     CallSiteTableLength =
    373       CallSites.size() * (SiteStartSize + SiteLengthSize + LandingPadSize);
    374   }
    375 
    376   for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
    377     CallSiteTableLength += getULEB128Size(CallSites[i].Action);
    378     if (IsSJLJ)
    379       CallSiteTableLength += getULEB128Size(i);
    380   }
    381 
    382   // Type infos.
    383   const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
    384   unsigned TTypeEncoding;
    385   unsigned TypeFormatSize;
    386 
    387   if (!HaveTTData) {
    388     // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
    389     // that we're omitting that bit.
    390     TTypeEncoding = dwarf::DW_EH_PE_omit;
    391     // dwarf::DW_EH_PE_absptr
    392     TypeFormatSize = Asm->getDataLayout().getPointerSize();
    393   } else {
    394     // Okay, we have actual filters or typeinfos to emit.  As such, we need to
    395     // pick a type encoding for them.  We're about to emit a list of pointers to
    396     // typeinfo objects at the end of the LSDA.  However, unless we're in static
    397     // mode, this reference will require a relocation by the dynamic linker.
    398     //
    399     // Because of this, we have a couple of options:
    400     //
    401     //   1) If we are in -static mode, we can always use an absolute reference
    402     //      from the LSDA, because the static linker will resolve it.
    403     //
    404     //   2) Otherwise, if the LSDA section is writable, we can output the direct
    405     //      reference to the typeinfo and allow the dynamic linker to relocate
    406     //      it.  Since it is in a writable section, the dynamic linker won't
    407     //      have a problem.
    408     //
    409     //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
    410     //      we need to use some form of indirection.  For example, on Darwin,
    411     //      we can output a statically-relocatable reference to a dyld stub. The
    412     //      offset to the stub is constant, but the contents are in a section
    413     //      that is updated by the dynamic linker.  This is easy enough, but we
    414     //      need to tell the personality function of the unwinder to indirect
    415     //      through the dyld stub.
    416     //
    417     // FIXME: When (3) is actually implemented, we'll have to emit the stubs
    418     // somewhere.  This predicate should be moved to a shared location that is
    419     // in target-independent code.
    420     //
    421     TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
    422     TypeFormatSize = Asm->GetSizeOfEncodedValue(TTypeEncoding);
    423   }
    424 
    425   // Begin the exception table.
    426   // Sometimes we want not to emit the data into separate section (e.g. ARM
    427   // EHABI). In this case LSDASection will be NULL.
    428   if (LSDASection)
    429     Asm->OutStreamer.SwitchSection(LSDASection);
    430   Asm->EmitAlignment(2);
    431 
    432   // Emit the LSDA.
    433   MCSymbol *GCCETSym =
    434     Asm->OutContext.GetOrCreateSymbol(Twine("GCC_except_table")+
    435                                       Twine(Asm->getFunctionNumber()));
    436   Asm->OutStreamer.EmitLabel(GCCETSym);
    437   Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("exception",
    438                                                 Asm->getFunctionNumber()));
    439 
    440   if (IsSJLJ)
    441     Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("_LSDA_",
    442                                                   Asm->getFunctionNumber()));
    443 
    444   // Emit the LSDA header.
    445   Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
    446   Asm->EmitEncodingByte(TTypeEncoding, "@TType");
    447 
    448   // The type infos need to be aligned. GCC does this by inserting padding just
    449   // before the type infos. However, this changes the size of the exception
    450   // table, so you need to take this into account when you output the exception
    451   // table size. However, the size is output using a variable length encoding.
    452   // So by increasing the size by inserting padding, you may increase the number
    453   // of bytes used for writing the size. If it increases, say by one byte, then
    454   // you now need to output one less byte of padding to get the type infos
    455   // aligned. However this decreases the size of the exception table. This
    456   // changes the value you have to output for the exception table size. Due to
    457   // the variable length encoding, the number of bytes used for writing the
    458   // length may decrease. If so, you then have to increase the amount of
    459   // padding. And so on. If you look carefully at the GCC code you will see that
    460   // it indeed does this in a loop, going on and on until the values stabilize.
    461   // We chose another solution: don't output padding inside the table like GCC
    462   // does, instead output it before the table.
    463   unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
    464   unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength);
    465   unsigned TTypeBaseOffset =
    466     sizeof(int8_t) +                            // Call site format
    467     CallSiteTableLengthSize +                   // Call site table length size
    468     CallSiteTableLength +                       // Call site table length
    469     SizeActions +                               // Actions size
    470     SizeTypes;
    471   unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset);
    472   unsigned TotalSize =
    473     sizeof(int8_t) +                            // LPStart format
    474     sizeof(int8_t) +                            // TType format
    475     (HaveTTData ? TTypeBaseOffsetSize : 0) +    // TType base offset size
    476     TTypeBaseOffset;                            // TType base offset
    477   unsigned SizeAlign = (4 - TotalSize) & 3;
    478 
    479   if (HaveTTData) {
    480     // Account for any extra padding that will be added to the call site table
    481     // length.
    482     Asm->EmitULEB128(TTypeBaseOffset, "@TType base offset", SizeAlign);
    483     SizeAlign = 0;
    484   }
    485 
    486   bool VerboseAsm = Asm->OutStreamer.isVerboseAsm();
    487 
    488   // SjLj Exception handling
    489   if (IsSJLJ) {
    490     Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
    491 
    492     // Add extra padding if it wasn't added to the TType base offset.
    493     Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
    494 
    495     // Emit the landing pad site information.
    496     unsigned idx = 0;
    497     for (SmallVectorImpl<CallSiteEntry>::const_iterator
    498          I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
    499       const CallSiteEntry &S = *I;
    500 
    501       // Offset of the landing pad, counted in 16-byte bundles relative to the
    502       // @LPStart address.
    503       if (VerboseAsm) {
    504         Asm->OutStreamer.AddComment(">> Call Site " + Twine(idx) + " <<");
    505         Asm->OutStreamer.AddComment("  On exception at call site "+Twine(idx));
    506       }
    507       Asm->EmitULEB128(idx);
    508 
    509       // Offset of the first associated action record, relative to the start of
    510       // the action table. This value is biased by 1 (1 indicates the start of
    511       // the action table), and 0 indicates that there are no actions.
    512       if (VerboseAsm) {
    513         if (S.Action == 0)
    514           Asm->OutStreamer.AddComment("  Action: cleanup");
    515         else
    516           Asm->OutStreamer.AddComment("  Action: " +
    517                                       Twine((S.Action - 1) / 2 + 1));
    518       }
    519       Asm->EmitULEB128(S.Action);
    520     }
    521   } else {
    522     // DWARF Exception handling
    523     assert(Asm->MAI->isExceptionHandlingDwarf());
    524 
    525     // The call-site table is a list of all call sites that may throw an
    526     // exception (including C++ 'throw' statements) in the procedure
    527     // fragment. It immediately follows the LSDA header. Each entry indicates,
    528     // for a given call, the first corresponding action record and corresponding
    529     // landing pad.
    530     //
    531     // The table begins with the number of bytes, stored as an LEB128
    532     // compressed, unsigned integer. The records immediately follow the record
    533     // count. They are sorted in increasing call-site address. Each record
    534     // indicates:
    535     //
    536     //   * The position of the call-site.
    537     //   * The position of the landing pad.
    538     //   * The first action record for that call site.
    539     //
    540     // A missing entry in the call-site table indicates that a call is not
    541     // supposed to throw.
    542 
    543     // Emit the landing pad call site table.
    544     Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
    545 
    546     // Add extra padding if it wasn't added to the TType base offset.
    547     Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
    548 
    549     unsigned Entry = 0;
    550     for (SmallVectorImpl<CallSiteEntry>::const_iterator
    551          I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
    552       const CallSiteEntry &S = *I;
    553 
    554       MCSymbol *EHFuncBeginSym =
    555         Asm->GetTempSymbol("eh_func_begin", Asm->getFunctionNumber());
    556 
    557       MCSymbol *BeginLabel = S.BeginLabel;
    558       if (!BeginLabel)
    559         BeginLabel = EHFuncBeginSym;
    560       MCSymbol *EndLabel = S.EndLabel;
    561       if (!EndLabel)
    562         EndLabel = Asm->GetTempSymbol("eh_func_end", Asm->getFunctionNumber());
    563 
    564 
    565       // Offset of the call site relative to the previous call site, counted in
    566       // number of 16-byte bundles. The first call site is counted relative to
    567       // the start of the procedure fragment.
    568       if (VerboseAsm)
    569         Asm->OutStreamer.AddComment(">> Call Site " + Twine(++Entry) + " <<");
    570       Asm->EmitLabelDifference(BeginLabel, EHFuncBeginSym, 4);
    571       if (VerboseAsm)
    572         Asm->OutStreamer.AddComment(Twine("  Call between ") +
    573                                     BeginLabel->getName() + " and " +
    574                                     EndLabel->getName());
    575       Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
    576 
    577       // Offset of the landing pad, counted in 16-byte bundles relative to the
    578       // @LPStart address.
    579       if (!S.PadLabel) {
    580         if (VerboseAsm)
    581           Asm->OutStreamer.AddComment("    has no landing pad");
    582         Asm->OutStreamer.EmitIntValue(0, 4/*size*/);
    583       } else {
    584         if (VerboseAsm)
    585           Asm->OutStreamer.AddComment(Twine("    jumps to ") +
    586                                       S.PadLabel->getName());
    587         Asm->EmitLabelDifference(S.PadLabel, EHFuncBeginSym, 4);
    588       }
    589 
    590       // Offset of the first associated action record, relative to the start of
    591       // the action table. This value is biased by 1 (1 indicates the start of
    592       // the action table), and 0 indicates that there are no actions.
    593       if (VerboseAsm) {
    594         if (S.Action == 0)
    595           Asm->OutStreamer.AddComment("  On action: cleanup");
    596         else
    597           Asm->OutStreamer.AddComment("  On action: " +
    598                                       Twine((S.Action - 1) / 2 + 1));
    599       }
    600       Asm->EmitULEB128(S.Action);
    601     }
    602   }
    603 
    604   // Emit the Action Table.
    605   int Entry = 0;
    606   for (SmallVectorImpl<ActionEntry>::const_iterator
    607          I = Actions.begin(), E = Actions.end(); I != E; ++I) {
    608     const ActionEntry &Action = *I;
    609 
    610     if (VerboseAsm) {
    611       // Emit comments that decode the action table.
    612       Asm->OutStreamer.AddComment(">> Action Record " + Twine(++Entry) + " <<");
    613     }
    614 
    615     // Type Filter
    616     //
    617     //   Used by the runtime to match the type of the thrown exception to the
    618     //   type of the catch clauses or the types in the exception specification.
    619     if (VerboseAsm) {
    620       if (Action.ValueForTypeID > 0)
    621         Asm->OutStreamer.AddComment("  Catch TypeInfo " +
    622                                     Twine(Action.ValueForTypeID));
    623       else if (Action.ValueForTypeID < 0)
    624         Asm->OutStreamer.AddComment("  Filter TypeInfo " +
    625                                     Twine(Action.ValueForTypeID));
    626       else
    627         Asm->OutStreamer.AddComment("  Cleanup");
    628     }
    629     Asm->EmitSLEB128(Action.ValueForTypeID);
    630 
    631     // Action Record
    632     //
    633     //   Self-relative signed displacement in bytes of the next action record,
    634     //   or 0 if there is no next action record.
    635     if (VerboseAsm) {
    636       if (Action.NextAction == 0) {
    637         Asm->OutStreamer.AddComment("  No further actions");
    638       } else {
    639         unsigned NextAction = Entry + (Action.NextAction + 1) / 2;
    640         Asm->OutStreamer.AddComment("  Continue to action "+Twine(NextAction));
    641       }
    642     }
    643     Asm->EmitSLEB128(Action.NextAction);
    644   }
    645 
    646   emitTypeInfos(TTypeEncoding);
    647 
    648   Asm->EmitAlignment(2);
    649 }
    650 
    651 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding) {
    652   const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
    653   const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
    654 
    655   bool VerboseAsm = Asm->OutStreamer.isVerboseAsm();
    656 
    657   int Entry = 0;
    658   // Emit the Catch TypeInfos.
    659   if (VerboseAsm && !TypeInfos.empty()) {
    660     Asm->OutStreamer.AddComment(">> Catch TypeInfos <<");
    661     Asm->OutStreamer.AddBlankLine();
    662     Entry = TypeInfos.size();
    663   }
    664 
    665   for (std::vector<const GlobalVariable *>::const_reverse_iterator
    666          I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
    667     const GlobalVariable *GV = *I;
    668     if (VerboseAsm)
    669       Asm->OutStreamer.AddComment("TypeInfo " + Twine(Entry--));
    670     Asm->EmitTTypeReference(GV, TTypeEncoding);
    671   }
    672 
    673   // Emit the Exception Specifications.
    674   if (VerboseAsm && !FilterIds.empty()) {
    675     Asm->OutStreamer.AddComment(">> Filter TypeInfos <<");
    676     Asm->OutStreamer.AddBlankLine();
    677     Entry = 0;
    678   }
    679   for (std::vector<unsigned>::const_iterator
    680          I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
    681     unsigned TypeID = *I;
    682     if (VerboseAsm) {
    683       --Entry;
    684       if (TypeID != 0)
    685         Asm->OutStreamer.AddComment("FilterInfo " + Twine(Entry));
    686     }
    687 
    688     Asm->EmitULEB128(TypeID);
    689   }
    690 }
    691 
    692 /// Emit all exception information that should come after the content.
    693 void EHStreamer::endModule() {
    694   llvm_unreachable("Should be implemented");
    695 }
    696 
    697 /// Gather pre-function exception information. Assumes it's being emitted
    698 /// immediately after the function entry point.
    699 void EHStreamer::beginFunction(const MachineFunction *MF) {
    700   llvm_unreachable("Should be implemented");
    701 }
    702 
    703 /// Gather and emit post-function exception information.
    704 void EHStreamer::endFunction(const MachineFunction *) {
    705   llvm_unreachable("Should be implemented");
    706 }
    707