Home | History | Annotate | Download | only in Support
      1 //===--- Allocator.h - Simple memory allocation abstraction -----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 ///
     11 /// This file defines the MallocAllocator and BumpPtrAllocator interfaces. Both
     12 /// of these conform to an LLVM "Allocator" concept which consists of an
     13 /// Allocate method accepting a size and alignment, and a Deallocate accepting
     14 /// a pointer and size. Further, the LLVM "Allocator" concept has overloads of
     15 /// Allocate and Deallocate for setting size and alignment based on the final
     16 /// type. These overloads are typically provided by a base class template \c
     17 /// AllocatorBase.
     18 ///
     19 //===----------------------------------------------------------------------===//
     20 
     21 #ifndef LLVM_SUPPORT_ALLOCATOR_H
     22 #define LLVM_SUPPORT_ALLOCATOR_H
     23 
     24 #include "llvm/ADT/SmallVector.h"
     25 #include "llvm/Support/AlignOf.h"
     26 #include "llvm/Support/DataTypes.h"
     27 #include "llvm/Support/MathExtras.h"
     28 #include "llvm/Support/Memory.h"
     29 #include <algorithm>
     30 #include <cassert>
     31 #include <cstddef>
     32 #include <cstdlib>
     33 
     34 namespace llvm {
     35 
     36 /// \brief CRTP base class providing obvious overloads for the core \c
     37 /// Allocate() methods of LLVM-style allocators.
     38 ///
     39 /// This base class both documents the full public interface exposed by all
     40 /// LLVM-style allocators, and redirects all of the overloads to a single core
     41 /// set of methods which the derived class must define.
     42 template <typename DerivedT> class AllocatorBase {
     43 public:
     44   /// \brief Allocate \a Size bytes of \a Alignment aligned memory. This method
     45   /// must be implemented by \c DerivedT.
     46   void *Allocate(size_t Size, size_t Alignment) {
     47 #ifdef __clang__
     48     static_assert(static_cast<void *(AllocatorBase::*)(size_t, size_t)>(
     49                       &AllocatorBase::Allocate) !=
     50                       static_cast<void *(DerivedT::*)(size_t, size_t)>(
     51                           &DerivedT::Allocate),
     52                   "Class derives from AllocatorBase without implementing the "
     53                   "core Allocate(size_t, size_t) overload!");
     54 #endif
     55     return static_cast<DerivedT *>(this)->Allocate(Size, Alignment);
     56   }
     57 
     58   /// \brief Deallocate \a Ptr to \a Size bytes of memory allocated by this
     59   /// allocator.
     60   void Deallocate(const void *Ptr, size_t Size) {
     61 #ifdef __clang__
     62     static_assert(static_cast<void (AllocatorBase::*)(const void *, size_t)>(
     63                       &AllocatorBase::Deallocate) !=
     64                       static_cast<void (DerivedT::*)(const void *, size_t)>(
     65                           &DerivedT::Deallocate),
     66                   "Class derives from AllocatorBase without implementing the "
     67                   "core Deallocate(void *) overload!");
     68 #endif
     69     return static_cast<DerivedT *>(this)->Deallocate(Ptr, Size);
     70   }
     71 
     72   // The rest of these methods are helpers that redirect to one of the above
     73   // core methods.
     74 
     75   /// \brief Allocate space for a sequence of objects without constructing them.
     76   template <typename T> T *Allocate(size_t Num = 1) {
     77     return static_cast<T *>(Allocate(Num * sizeof(T), AlignOf<T>::Alignment));
     78   }
     79 
     80   /// \brief Deallocate space for a sequence of objects without constructing them.
     81   template <typename T>
     82   typename std::enable_if<
     83       !std::is_same<typename std::remove_cv<T>::type, void>::value, void>::type
     84   Deallocate(T *Ptr, size_t Num = 1) {
     85     Deallocate(static_cast<const void *>(Ptr), Num * sizeof(T));
     86   }
     87 };
     88 
     89 class MallocAllocator : public AllocatorBase<MallocAllocator> {
     90 public:
     91   void Reset() {}
     92 
     93   void *Allocate(size_t Size, size_t /*Alignment*/) { return malloc(Size); }
     94 
     95   // Pull in base class overloads.
     96   using AllocatorBase<MallocAllocator>::Allocate;
     97 
     98   void Deallocate(const void *Ptr, size_t /*Size*/) {
     99     free(const_cast<void *>(Ptr));
    100   }
    101 
    102   // Pull in base class overloads.
    103   using AllocatorBase<MallocAllocator>::Deallocate;
    104 
    105   void PrintStats() const {}
    106 };
    107 
    108 namespace detail {
    109 
    110 // We call out to an external function to actually print the message as the
    111 // printing code uses Allocator.h in its implementation.
    112 void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated,
    113                                 size_t TotalMemory);
    114 } // End namespace detail.
    115 
    116 /// \brief Allocate memory in an ever growing pool, as if by bump-pointer.
    117 ///
    118 /// This isn't strictly a bump-pointer allocator as it uses backing slabs of
    119 /// memory rather than relying on boundless contiguous heap. However, it has
    120 /// bump-pointer semantics in that is a monotonically growing pool of memory
    121 /// where every allocation is found by merely allocating the next N bytes in
    122 /// the slab, or the next N bytes in the next slab.
    123 ///
    124 /// Note that this also has a threshold for forcing allocations above a certain
    125 /// size into their own slab.
    126 ///
    127 /// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator
    128 /// object, which wraps malloc, to allocate memory, but it can be changed to
    129 /// use a custom allocator.
    130 template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096,
    131           size_t SizeThreshold = SlabSize>
    132 class BumpPtrAllocatorImpl
    133     : public AllocatorBase<
    134           BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold>> {
    135 public:
    136   static_assert(SizeThreshold <= SlabSize,
    137                 "The SizeThreshold must be at most the SlabSize to ensure "
    138                 "that objects larger than a slab go into their own memory "
    139                 "allocation.");
    140 
    141   BumpPtrAllocatorImpl()
    142       : CurPtr(nullptr), End(nullptr), BytesAllocated(0), Allocator() {}
    143   template <typename T>
    144   BumpPtrAllocatorImpl(T &&Allocator)
    145       : CurPtr(nullptr), End(nullptr), BytesAllocated(0),
    146         Allocator(std::forward<T &&>(Allocator)) {}
    147 
    148   // Manually implement a move constructor as we must clear the old allocators
    149   // slabs as a matter of correctness.
    150   BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old)
    151       : CurPtr(Old.CurPtr), End(Old.End), Slabs(std::move(Old.Slabs)),
    152         CustomSizedSlabs(std::move(Old.CustomSizedSlabs)),
    153         BytesAllocated(Old.BytesAllocated),
    154         Allocator(std::move(Old.Allocator)) {
    155     Old.CurPtr = Old.End = nullptr;
    156     Old.BytesAllocated = 0;
    157     Old.Slabs.clear();
    158     Old.CustomSizedSlabs.clear();
    159   }
    160 
    161   ~BumpPtrAllocatorImpl() {
    162     DeallocateSlabs(Slabs.begin(), Slabs.end());
    163     DeallocateCustomSizedSlabs();
    164   }
    165 
    166   BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) {
    167     DeallocateSlabs(Slabs.begin(), Slabs.end());
    168     DeallocateCustomSizedSlabs();
    169 
    170     CurPtr = RHS.CurPtr;
    171     End = RHS.End;
    172     BytesAllocated = RHS.BytesAllocated;
    173     Slabs = std::move(RHS.Slabs);
    174     CustomSizedSlabs = std::move(RHS.CustomSizedSlabs);
    175     Allocator = std::move(RHS.Allocator);
    176 
    177     RHS.CurPtr = RHS.End = nullptr;
    178     RHS.BytesAllocated = 0;
    179     RHS.Slabs.clear();
    180     RHS.CustomSizedSlabs.clear();
    181     return *this;
    182   }
    183 
    184   /// \brief Deallocate all but the current slab and reset the current pointer
    185   /// to the beginning of it, freeing all memory allocated so far.
    186   void Reset() {
    187     if (Slabs.empty())
    188       return;
    189 
    190     // Reset the state.
    191     BytesAllocated = 0;
    192     CurPtr = (char *)Slabs.front();
    193     End = CurPtr + SlabSize;
    194 
    195     // Deallocate all but the first slab, and all custome sized slabs.
    196     DeallocateSlabs(std::next(Slabs.begin()), Slabs.end());
    197     Slabs.erase(std::next(Slabs.begin()), Slabs.end());
    198     DeallocateCustomSizedSlabs();
    199     CustomSizedSlabs.clear();
    200   }
    201 
    202   /// \brief Allocate space at the specified alignment.
    203   void *Allocate(size_t Size, size_t Alignment) {
    204     if (!CurPtr) // Start a new slab if we haven't allocated one already.
    205       StartNewSlab();
    206 
    207     // Keep track of how many bytes we've allocated.
    208     BytesAllocated += Size;
    209 
    210     // 0-byte alignment means 1-byte alignment.
    211     if (Alignment == 0)
    212       Alignment = 1;
    213 
    214     // Allocate the aligned space, going forwards from CurPtr.
    215     char *Ptr = alignPtr(CurPtr, Alignment);
    216 
    217     // Check if we can hold it.
    218     if (Ptr + Size <= End) {
    219       CurPtr = Ptr + Size;
    220       // Update the allocation point of this memory block in MemorySanitizer.
    221       // Without this, MemorySanitizer messages for values originated from here
    222       // will point to the allocation of the entire slab.
    223       __msan_allocated_memory(Ptr, Size);
    224       return Ptr;
    225     }
    226 
    227     // If Size is really big, allocate a separate slab for it.
    228     size_t PaddedSize = Size + Alignment - 1;
    229     if (PaddedSize > SizeThreshold) {
    230       void *NewSlab = Allocator.Allocate(PaddedSize, 0);
    231       CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize));
    232 
    233       Ptr = alignPtr((char *)NewSlab, Alignment);
    234       assert((uintptr_t)Ptr + Size <= (uintptr_t)NewSlab + PaddedSize);
    235       __msan_allocated_memory(Ptr, Size);
    236       return Ptr;
    237     }
    238 
    239     // Otherwise, start a new slab and try again.
    240     StartNewSlab();
    241     Ptr = alignPtr(CurPtr, Alignment);
    242     CurPtr = Ptr + Size;
    243     assert(CurPtr <= End && "Unable to allocate memory!");
    244     __msan_allocated_memory(Ptr, Size);
    245     return Ptr;
    246   }
    247 
    248   // Pull in base class overloads.
    249   using AllocatorBase<BumpPtrAllocatorImpl>::Allocate;
    250 
    251   void Deallocate(const void * /*Ptr*/, size_t /*Size*/) {}
    252 
    253   // Pull in base class overloads.
    254   using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate;
    255 
    256   size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); }
    257 
    258   size_t getTotalMemory() const {
    259     size_t TotalMemory = 0;
    260     for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I)
    261       TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I));
    262     for (auto &PtrAndSize : CustomSizedSlabs)
    263       TotalMemory += PtrAndSize.second;
    264     return TotalMemory;
    265   }
    266 
    267   void PrintStats() const {
    268     detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated,
    269                                        getTotalMemory());
    270   }
    271 
    272 private:
    273   /// \brief The current pointer into the current slab.
    274   ///
    275   /// This points to the next free byte in the slab.
    276   char *CurPtr;
    277 
    278   /// \brief The end of the current slab.
    279   char *End;
    280 
    281   /// \brief The slabs allocated so far.
    282   SmallVector<void *, 4> Slabs;
    283 
    284   /// \brief Custom-sized slabs allocated for too-large allocation requests.
    285   SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs;
    286 
    287   /// \brief How many bytes we've allocated.
    288   ///
    289   /// Used so that we can compute how much space was wasted.
    290   size_t BytesAllocated;
    291 
    292   /// \brief The allocator instance we use to get slabs of memory.
    293   AllocatorT Allocator;
    294 
    295   static size_t computeSlabSize(unsigned SlabIdx) {
    296     // Scale the actual allocated slab size based on the number of slabs
    297     // allocated. Every 128 slabs allocated, we double the allocated size to
    298     // reduce allocation frequency, but saturate at multiplying the slab size by
    299     // 2^30.
    300     return SlabSize * ((size_t)1 << std::min<size_t>(30, SlabIdx / 128));
    301   }
    302 
    303   /// \brief Allocate a new slab and move the bump pointers over into the new
    304   /// slab, modifying CurPtr and End.
    305   void StartNewSlab() {
    306     size_t AllocatedSlabSize = computeSlabSize(Slabs.size());
    307 
    308     void *NewSlab = Allocator.Allocate(AllocatedSlabSize, 0);
    309     Slabs.push_back(NewSlab);
    310     CurPtr = (char *)(NewSlab);
    311     End = ((char *)NewSlab) + AllocatedSlabSize;
    312   }
    313 
    314   /// \brief Deallocate a sequence of slabs.
    315   void DeallocateSlabs(SmallVectorImpl<void *>::iterator I,
    316                        SmallVectorImpl<void *>::iterator E) {
    317     for (; I != E; ++I) {
    318       size_t AllocatedSlabSize =
    319           computeSlabSize(std::distance(Slabs.begin(), I));
    320 #ifndef NDEBUG
    321       // Poison the memory so stale pointers crash sooner.  Note we must
    322       // preserve the Size and NextPtr fields at the beginning.
    323       sys::Memory::setRangeWritable(*I, AllocatedSlabSize);
    324       memset(*I, 0xCD, AllocatedSlabSize);
    325 #endif
    326       Allocator.Deallocate(*I, AllocatedSlabSize);
    327     }
    328   }
    329 
    330   /// \brief Deallocate all memory for custom sized slabs.
    331   void DeallocateCustomSizedSlabs() {
    332     for (auto &PtrAndSize : CustomSizedSlabs) {
    333       void *Ptr = PtrAndSize.first;
    334       size_t Size = PtrAndSize.second;
    335 #ifndef NDEBUG
    336       // Poison the memory so stale pointers crash sooner.  Note we must
    337       // preserve the Size and NextPtr fields at the beginning.
    338       sys::Memory::setRangeWritable(Ptr, Size);
    339       memset(Ptr, 0xCD, Size);
    340 #endif
    341       Allocator.Deallocate(Ptr, Size);
    342     }
    343   }
    344 
    345   template <typename T> friend class SpecificBumpPtrAllocator;
    346 };
    347 
    348 /// \brief The standard BumpPtrAllocator which just uses the default template
    349 /// paramaters.
    350 typedef BumpPtrAllocatorImpl<> BumpPtrAllocator;
    351 
    352 /// \brief A BumpPtrAllocator that allows only elements of a specific type to be
    353 /// allocated.
    354 ///
    355 /// This allows calling the destructor in DestroyAll() and when the allocator is
    356 /// destroyed.
    357 template <typename T> class SpecificBumpPtrAllocator {
    358   BumpPtrAllocator Allocator;
    359 
    360 public:
    361   SpecificBumpPtrAllocator() : Allocator() {}
    362   SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old)
    363       : Allocator(std::move(Old.Allocator)) {}
    364   ~SpecificBumpPtrAllocator() { DestroyAll(); }
    365 
    366   SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) {
    367     Allocator = std::move(RHS.Allocator);
    368     return *this;
    369   }
    370 
    371   /// Call the destructor of each allocated object and deallocate all but the
    372   /// current slab and reset the current pointer to the beginning of it, freeing
    373   /// all memory allocated so far.
    374   void DestroyAll() {
    375     auto DestroyElements = [](char *Begin, char *End) {
    376       assert(Begin == alignPtr(Begin, alignOf<T>()));
    377       for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T))
    378         reinterpret_cast<T *>(Ptr)->~T();
    379     };
    380 
    381     for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E;
    382          ++I) {
    383       size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize(
    384           std::distance(Allocator.Slabs.begin(), I));
    385       char *Begin = alignPtr((char *)*I, alignOf<T>());
    386       char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr
    387                                                : (char *)*I + AllocatedSlabSize;
    388 
    389       DestroyElements(Begin, End);
    390     }
    391 
    392     for (auto &PtrAndSize : Allocator.CustomSizedSlabs) {
    393       void *Ptr = PtrAndSize.first;
    394       size_t Size = PtrAndSize.second;
    395       DestroyElements(alignPtr((char *)Ptr, alignOf<T>()), (char *)Ptr + Size);
    396     }
    397 
    398     Allocator.Reset();
    399   }
    400 
    401   /// \brief Allocate space for an array of objects without constructing them.
    402   T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); }
    403 };
    404 
    405 }  // end namespace llvm
    406 
    407 template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold>
    408 void *operator new(size_t Size,
    409                    llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize,
    410                                               SizeThreshold> &Allocator) {
    411   struct S {
    412     char c;
    413     union {
    414       double D;
    415       long double LD;
    416       long long L;
    417       void *P;
    418     } x;
    419   };
    420   return Allocator.Allocate(
    421       Size, std::min((size_t)llvm::NextPowerOf2(Size), offsetof(S, x)));
    422 }
    423 
    424 template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold>
    425 void operator delete(
    426     void *, llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold> &) {
    427 }
    428 
    429 #endif // LLVM_SUPPORT_ALLOCATOR_H
    430