1 /******************************************************************** 2 * COPYRIGHT: 3 * Copyright (c) 2005-2013, International Business Machines Corporation and 4 * others. All Rights Reserved. 5 ********************************************************************/ 6 /************************************************************************ 7 * Tests for the UText and UTextIterator text abstraction classses 8 * 9 ************************************************************************/ 10 11 #include <string.h> 12 #include <stdio.h> 13 #include <stdlib.h> 14 #include "unicode/utypes.h" 15 #include "unicode/utext.h" 16 #include "unicode/utf8.h" 17 #include "unicode/ustring.h" 18 #include "unicode/uchriter.h" 19 #include "utxttest.h" 20 21 static UBool gFailed = FALSE; 22 static int gTestNum = 0; 23 24 // Forward decl 25 UText *openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status); 26 27 #define TEST_ASSERT(x) \ 28 { if ((x)==FALSE) {errln("Test #%d failure in file %s at line %d\n", gTestNum, __FILE__, __LINE__);\ 29 gFailed = TRUE;\ 30 }} 31 32 33 #define TEST_SUCCESS(status) \ 34 { if (U_FAILURE(status)) {errln("Test #%d failure in file %s at line %d. Error = \"%s\"\n", \ 35 gTestNum, __FILE__, __LINE__, u_errorName(status)); \ 36 gFailed = TRUE;\ 37 }} 38 39 UTextTest::UTextTest() { 40 } 41 42 UTextTest::~UTextTest() { 43 } 44 45 46 void 47 UTextTest::runIndexedTest(int32_t index, UBool exec, 48 const char* &name, char* /*par*/) { 49 switch (index) { 50 case 0: name = "TextTest"; 51 if (exec) TextTest(); break; 52 case 1: name = "ErrorTest"; 53 if (exec) ErrorTest(); break; 54 case 2: name = "FreezeTest"; 55 if (exec) FreezeTest(); break; 56 case 3: name = "Ticket5560"; 57 if (exec) Ticket5560(); break; 58 case 4: name = "Ticket6847"; 59 if (exec) Ticket6847(); break; 60 case 5: name = "Ticket10562"; 61 if (exec) Ticket10562(); break; 62 default: name = ""; break; 63 } 64 } 65 66 // 67 // Quick and dirty random number generator. 68 // (don't use library so that results are portable. 69 static uint32_t m_seed = 1; 70 static uint32_t m_rand() 71 { 72 m_seed = m_seed * 1103515245 + 12345; 73 return (uint32_t)(m_seed/65536) % 32768; 74 } 75 76 77 // 78 // TextTest() 79 // 80 // Top Level function for UText testing. 81 // Specifies the strings to be tested, with the acutal testing itself 82 // being carried out in another function, TestString(). 83 // 84 void UTextTest::TextTest() { 85 int32_t i, j; 86 87 TestString("abcd\\U00010001xyz"); 88 TestString(""); 89 90 // Supplementary chars at start or end 91 TestString("\\U00010001"); 92 TestString("abc\\U00010001"); 93 TestString("\\U00010001abc"); 94 95 // Test simple strings of lengths 1 to 60, looking for glitches at buffer boundaries 96 UnicodeString s; 97 for (i=1; i<60; i++) { 98 s.truncate(0); 99 for (j=0; j<i; j++) { 100 if (j+0x30 == 0x5c) { 101 // backslash. Needs to be escaped 102 s.append((UChar)0x5c); 103 } 104 s.append(UChar(j+0x30)); 105 } 106 TestString(s); 107 } 108 109 // Test strings with odd-aligned supplementary chars, 110 // looking for glitches at buffer boundaries 111 for (i=1; i<60; i++) { 112 s.truncate(0); 113 s.append((UChar)0x41); 114 for (j=0; j<i; j++) { 115 s.append(UChar32(j+0x11000)); 116 } 117 TestString(s); 118 } 119 120 // String of chars of randomly varying size in utf-8 representation. 121 // Exercise the mapping, and the varying sized buffer. 122 // 123 s.truncate(0); 124 UChar32 c1 = 0; 125 UChar32 c2 = 0x100; 126 UChar32 c3 = 0xa000; 127 UChar32 c4 = 0x11000; 128 for (i=0; i<1000; i++) { 129 int len8 = m_rand()%4 + 1; 130 switch (len8) { 131 case 1: 132 c1 = (c1+1)%0x80; 133 // don't put 0 into string (0 terminated strings for some tests) 134 // don't put '\', will cause unescape() to fail. 135 if (c1==0x5c || c1==0) { 136 c1++; 137 } 138 s.append(c1); 139 break; 140 case 2: 141 s.append(c2++); 142 break; 143 case 3: 144 s.append(c3++); 145 break; 146 case 4: 147 s.append(c4++); 148 break; 149 } 150 } 151 TestString(s); 152 } 153 154 155 // 156 // TestString() Run a suite of UText tests on a string. 157 // The test string is unescaped before use. 158 // 159 void UTextTest::TestString(const UnicodeString &s) { 160 int32_t i; 161 int32_t j; 162 UChar32 c; 163 int32_t cpCount = 0; 164 UErrorCode status = U_ZERO_ERROR; 165 UText *ut = NULL; 166 int32_t saLen; 167 168 UnicodeString sa = s.unescape(); 169 saLen = sa.length(); 170 171 // 172 // Build up a mapping between code points and UTF-16 code unit indexes. 173 // 174 m *cpMap = new m[sa.length() + 1]; 175 j = 0; 176 for (i=0; i<sa.length(); i=sa.moveIndex32(i, 1)) { 177 c = sa.char32At(i); 178 cpMap[j].nativeIdx = i; 179 cpMap[j].cp = c; 180 j++; 181 cpCount++; 182 } 183 cpMap[j].nativeIdx = i; // position following the last char in utf-16 string. 184 185 186 // UChar * test, null terminated 187 status = U_ZERO_ERROR; 188 UChar *buf = new UChar[saLen+1]; 189 sa.extract(buf, saLen+1, status); 190 TEST_SUCCESS(status); 191 ut = utext_openUChars(NULL, buf, -1, &status); 192 TEST_SUCCESS(status); 193 TestAccess(sa, ut, cpCount, cpMap); 194 utext_close(ut); 195 delete [] buf; 196 197 // UChar * test, with length 198 status = U_ZERO_ERROR; 199 buf = new UChar[saLen+1]; 200 sa.extract(buf, saLen+1, status); 201 TEST_SUCCESS(status); 202 ut = utext_openUChars(NULL, buf, saLen, &status); 203 TEST_SUCCESS(status); 204 TestAccess(sa, ut, cpCount, cpMap); 205 utext_close(ut); 206 delete [] buf; 207 208 209 // UnicodeString test 210 status = U_ZERO_ERROR; 211 ut = utext_openUnicodeString(NULL, &sa, &status); 212 TEST_SUCCESS(status); 213 TestAccess(sa, ut, cpCount, cpMap); 214 TestCMR(sa, ut, cpCount, cpMap, cpMap); 215 utext_close(ut); 216 217 218 // Const UnicodeString test 219 status = U_ZERO_ERROR; 220 ut = utext_openConstUnicodeString(NULL, &sa, &status); 221 TEST_SUCCESS(status); 222 TestAccess(sa, ut, cpCount, cpMap); 223 utext_close(ut); 224 225 226 // Replaceable test. (UnicodeString inherits Replaceable) 227 status = U_ZERO_ERROR; 228 ut = utext_openReplaceable(NULL, &sa, &status); 229 TEST_SUCCESS(status); 230 TestAccess(sa, ut, cpCount, cpMap); 231 TestCMR(sa, ut, cpCount, cpMap, cpMap); 232 utext_close(ut); 233 234 // Character Iterator Tests 235 status = U_ZERO_ERROR; 236 const UChar *cbuf = sa.getBuffer(); 237 CharacterIterator *ci = new UCharCharacterIterator(cbuf, saLen, status); 238 TEST_SUCCESS(status); 239 ut = utext_openCharacterIterator(NULL, ci, &status); 240 TEST_SUCCESS(status); 241 TestAccess(sa, ut, cpCount, cpMap); 242 utext_close(ut); 243 delete ci; 244 245 246 // Fragmented UnicodeString (Chunk size of one) 247 // 248 status = U_ZERO_ERROR; 249 ut = openFragmentedUnicodeString(NULL, &sa, &status); 250 TEST_SUCCESS(status); 251 TestAccess(sa, ut, cpCount, cpMap); 252 utext_close(ut); 253 254 // 255 // UTF-8 test 256 // 257 258 // Convert the test string from UnicodeString to (char *) in utf-8 format 259 int32_t u8Len = sa.extract(0, sa.length(), NULL, 0, "utf-8"); 260 char *u8String = new char[u8Len + 1]; 261 sa.extract(0, sa.length(), u8String, u8Len+1, "utf-8"); 262 263 // Build up the map of code point indices in the utf-8 string 264 m * u8Map = new m[sa.length() + 1]; 265 i = 0; // native utf-8 index 266 for (j=0; j<cpCount ; j++) { // code point number 267 u8Map[j].nativeIdx = i; 268 U8_NEXT(u8String, i, u8Len, c) 269 u8Map[j].cp = c; 270 } 271 u8Map[cpCount].nativeIdx = u8Len; // position following the last char in utf-8 string. 272 273 // Do the test itself 274 status = U_ZERO_ERROR; 275 ut = utext_openUTF8(NULL, u8String, -1, &status); 276 TEST_SUCCESS(status); 277 TestAccess(sa, ut, cpCount, u8Map); 278 utext_close(ut); 279 280 281 282 delete []cpMap; 283 delete []u8Map; 284 delete []u8String; 285 } 286 287 // TestCMR test Copy, Move and Replace operations. 288 // us UnicodeString containing the test text. 289 // ut UText containing the same test text. 290 // cpCount number of code points in the test text. 291 // nativeMap Mapping from code points to native indexes for the UText. 292 // u16Map Mapping from code points to UTF-16 indexes, for use with the UnicodeString. 293 // 294 // This function runs a whole series of opertions on each incoming UText. 295 // The UText is deep-cloned prior to each operation, so that the original UText remains unchanged. 296 // 297 void UTextTest::TestCMR(const UnicodeString &us, UText *ut, int cpCount, m *nativeMap, m *u16Map) { 298 TEST_ASSERT(utext_isWritable(ut) == TRUE); 299 300 int srcLengthType; // Loop variables for selecting the postion and length 301 int srcPosType; // of the block to operate on within the source text. 302 int destPosType; 303 304 int srcIndex = 0; // Code Point indexes of the block to operate on for 305 int srcLength = 0; // a specific test. 306 307 int destIndex = 0; // Code point index of the destination for a copy/move test. 308 309 int32_t nativeStart = 0; // Native unit indexes for a test. 310 int32_t nativeLimit = 0; 311 int32_t nativeDest = 0; 312 313 int32_t u16Start = 0; // UTF-16 indexes for a test. 314 int32_t u16Limit = 0; // used when performing the same operation in a Unicode String 315 int32_t u16Dest = 0; 316 317 // Iterate over a whole series of source index, length and a target indexes. 318 // This is done with code point indexes; these will be later translated to native 319 // indexes using the cpMap. 320 for (srcLengthType=1; srcLengthType<=3; srcLengthType++) { 321 switch (srcLengthType) { 322 case 1: srcLength = 1; break; 323 case 2: srcLength = 5; break; 324 case 3: srcLength = cpCount / 3; 325 } 326 for (srcPosType=1; srcPosType<=5; srcPosType++) { 327 switch (srcPosType) { 328 case 1: srcIndex = 0; break; 329 case 2: srcIndex = 1; break; 330 case 3: srcIndex = cpCount - srcLength; break; 331 case 4: srcIndex = cpCount - srcLength - 1; break; 332 case 5: srcIndex = cpCount / 2; break; 333 } 334 if (srcIndex < 0 || srcIndex + srcLength > cpCount) { 335 // filter out bogus test cases - 336 // those with a source range that falls of an edge of the string. 337 continue; 338 } 339 340 // 341 // Copy and move tests. 342 // iterate over a variety of destination positions. 343 // 344 for (destPosType=1; destPosType<=4; destPosType++) { 345 switch (destPosType) { 346 case 1: destIndex = 0; break; 347 case 2: destIndex = 1; break; 348 case 3: destIndex = srcIndex - 1; break; 349 case 4: destIndex = srcIndex + srcLength + 1; break; 350 case 5: destIndex = cpCount-1; break; 351 case 6: destIndex = cpCount; break; 352 } 353 if (destIndex<0 || destIndex>cpCount) { 354 // filter out bogus test cases. 355 continue; 356 } 357 358 nativeStart = nativeMap[srcIndex].nativeIdx; 359 nativeLimit = nativeMap[srcIndex+srcLength].nativeIdx; 360 nativeDest = nativeMap[destIndex].nativeIdx; 361 362 u16Start = u16Map[srcIndex].nativeIdx; 363 u16Limit = u16Map[srcIndex+srcLength].nativeIdx; 364 u16Dest = u16Map[destIndex].nativeIdx; 365 366 gFailed = FALSE; 367 TestCopyMove(us, ut, FALSE, 368 nativeStart, nativeLimit, nativeDest, 369 u16Start, u16Limit, u16Dest); 370 371 TestCopyMove(us, ut, TRUE, 372 nativeStart, nativeLimit, nativeDest, 373 u16Start, u16Limit, u16Dest); 374 375 if (gFailed) { 376 return; 377 } 378 } 379 380 // 381 // Replace tests. 382 // 383 UnicodeString fullRepString("This is an arbitrary string that will be used as replacement text"); 384 for (int32_t replStrLen=0; replStrLen<20; replStrLen++) { 385 UnicodeString repStr(fullRepString, 0, replStrLen); 386 TestReplace(us, ut, 387 nativeStart, nativeLimit, 388 u16Start, u16Limit, 389 repStr); 390 if (gFailed) { 391 return; 392 } 393 } 394 395 } 396 } 397 398 } 399 400 // 401 // TestCopyMove run a single test case for utext_copy. 402 // Test cases are created in TestCMR and dispatched here for execution. 403 // 404 void UTextTest::TestCopyMove(const UnicodeString &us, UText *ut, UBool move, 405 int32_t nativeStart, int32_t nativeLimit, int32_t nativeDest, 406 int32_t u16Start, int32_t u16Limit, int32_t u16Dest) 407 { 408 UErrorCode status = U_ZERO_ERROR; 409 UText *targetUT = NULL; 410 gTestNum++; 411 gFailed = FALSE; 412 413 // 414 // clone the UText. The test will be run in the cloned copy 415 // so that we don't alter the original. 416 // 417 targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status); 418 TEST_SUCCESS(status); 419 UnicodeString targetUS(us); // And copy the reference string. 420 421 // do the test operation first in the reference 422 targetUS.copy(u16Start, u16Limit, u16Dest); 423 if (move) { 424 // delete out the source range. 425 if (u16Limit < u16Dest) { 426 targetUS.removeBetween(u16Start, u16Limit); 427 } else { 428 int32_t amtCopied = u16Limit - u16Start; 429 targetUS.removeBetween(u16Start+amtCopied, u16Limit+amtCopied); 430 } 431 } 432 433 // Do the same operation in the UText under test 434 utext_copy(targetUT, nativeStart, nativeLimit, nativeDest, move, &status); 435 if (nativeDest > nativeStart && nativeDest < nativeLimit) { 436 TEST_ASSERT(status == U_INDEX_OUTOFBOUNDS_ERROR); 437 } else { 438 TEST_SUCCESS(status); 439 440 // Compare the results of the two parallel tests 441 int32_t usi = 0; // UnicodeString postion, utf-16 index. 442 int64_t uti = 0; // UText position, native index. 443 int32_t cpi; // char32 position (code point index) 444 UChar32 usc; // code point from Unicode String 445 UChar32 utc; // code point from UText 446 utext_setNativeIndex(targetUT, 0); 447 for (cpi=0; ; cpi++) { 448 usc = targetUS.char32At(usi); 449 utc = utext_next32(targetUT); 450 if (utc < 0) { 451 break; 452 } 453 TEST_ASSERT(uti == usi); 454 TEST_ASSERT(utc == usc); 455 usi = targetUS.moveIndex32(usi, 1); 456 uti = utext_getNativeIndex(targetUT); 457 if (gFailed) { 458 goto cleanupAndReturn; 459 } 460 } 461 int64_t expectedNativeLength = utext_nativeLength(ut); 462 if (move == FALSE) { 463 expectedNativeLength += nativeLimit - nativeStart; 464 } 465 uti = utext_getNativeIndex(targetUT); 466 TEST_ASSERT(uti == expectedNativeLength); 467 } 468 469 cleanupAndReturn: 470 utext_close(targetUT); 471 } 472 473 474 // 475 // TestReplace Test a single Replace operation. 476 // 477 void UTextTest::TestReplace( 478 const UnicodeString &us, // reference UnicodeString in which to do the replace 479 UText *ut, // UnicodeText object under test. 480 int32_t nativeStart, // Range to be replaced, in UText native units. 481 int32_t nativeLimit, 482 int32_t u16Start, // Range to be replaced, in UTF-16 units 483 int32_t u16Limit, // for use in the reference UnicodeString. 484 const UnicodeString &repStr) // The replacement string 485 { 486 UErrorCode status = U_ZERO_ERROR; 487 UText *targetUT = NULL; 488 gTestNum++; 489 gFailed = FALSE; 490 491 // 492 // clone the target UText. The test will be run in the cloned copy 493 // so that we don't alter the original. 494 // 495 targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status); 496 TEST_SUCCESS(status); 497 UnicodeString targetUS(us); // And copy the reference string. 498 499 // 500 // Do the replace operation in the Unicode String, to 501 // produce a reference result. 502 // 503 targetUS.replace(u16Start, u16Limit-u16Start, repStr); 504 505 // 506 // Do the replace on the UText under test 507 // 508 const UChar *rs = repStr.getBuffer(); 509 int32_t rsLen = repStr.length(); 510 int32_t actualDelta = utext_replace(targetUT, nativeStart, nativeLimit, rs, rsLen, &status); 511 int32_t expectedDelta = repStr.length() - (nativeLimit - nativeStart); 512 TEST_ASSERT(actualDelta == expectedDelta); 513 514 // 515 // Compare the results 516 // 517 int32_t usi = 0; // UnicodeString postion, utf-16 index. 518 int64_t uti = 0; // UText position, native index. 519 int32_t cpi; // char32 position (code point index) 520 UChar32 usc; // code point from Unicode String 521 UChar32 utc; // code point from UText 522 int64_t expectedNativeLength = 0; 523 utext_setNativeIndex(targetUT, 0); 524 for (cpi=0; ; cpi++) { 525 usc = targetUS.char32At(usi); 526 utc = utext_next32(targetUT); 527 if (utc < 0) { 528 break; 529 } 530 TEST_ASSERT(uti == usi); 531 TEST_ASSERT(utc == usc); 532 usi = targetUS.moveIndex32(usi, 1); 533 uti = utext_getNativeIndex(targetUT); 534 if (gFailed) { 535 goto cleanupAndReturn; 536 } 537 } 538 expectedNativeLength = utext_nativeLength(ut) + expectedDelta; 539 uti = utext_getNativeIndex(targetUT); 540 TEST_ASSERT(uti == expectedNativeLength); 541 542 cleanupAndReturn: 543 utext_close(targetUT); 544 } 545 546 // 547 // TestAccess Test the read only access functions on a UText, including cloning. 548 // The text is accessed in a variety of ways, and compared with 549 // the reference UnicodeString. 550 // 551 void UTextTest::TestAccess(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) { 552 // Run the standard tests on the caller-supplied UText. 553 TestAccessNoClone(us, ut, cpCount, cpMap); 554 555 // Re-run tests on a shallow clone. 556 utext_setNativeIndex(ut, 0); 557 UErrorCode status = U_ZERO_ERROR; 558 UText *shallowClone = utext_clone(NULL, ut, FALSE /*deep*/, FALSE /*readOnly*/, &status); 559 TEST_SUCCESS(status); 560 TestAccessNoClone(us, shallowClone, cpCount, cpMap); 561 562 // 563 // Rerun again on a deep clone. 564 // Note that text providers are not required to provide deep cloning, 565 // so unsupported errors are ignored. 566 // 567 status = U_ZERO_ERROR; 568 utext_setNativeIndex(shallowClone, 0); 569 UText *deepClone = utext_clone(NULL, shallowClone, TRUE, FALSE, &status); 570 utext_close(shallowClone); 571 if (status != U_UNSUPPORTED_ERROR) { 572 TEST_SUCCESS(status); 573 TestAccessNoClone(us, deepClone, cpCount, cpMap); 574 } 575 utext_close(deepClone); 576 } 577 578 579 // 580 // TestAccessNoClone() Test the read only access functions on a UText. 581 // The text is accessed in a variety of ways, and compared with 582 // the reference UnicodeString. 583 // 584 void UTextTest::TestAccessNoClone(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) { 585 UErrorCode status = U_ZERO_ERROR; 586 gTestNum++; 587 588 // 589 // Check the length from the UText 590 // 591 int64_t expectedLen = cpMap[cpCount].nativeIdx; 592 int64_t utlen = utext_nativeLength(ut); 593 TEST_ASSERT(expectedLen == utlen); 594 595 // 596 // Iterate forwards, verify that we get the correct code points 597 // at the correct native offsets. 598 // 599 int i = 0; 600 int64_t index; 601 int64_t expectedIndex = 0; 602 int64_t foundIndex = 0; 603 UChar32 expectedC; 604 UChar32 foundC; 605 int64_t len; 606 607 for (i=0; i<cpCount; i++) { 608 expectedIndex = cpMap[i].nativeIdx; 609 foundIndex = utext_getNativeIndex(ut); 610 TEST_ASSERT(expectedIndex == foundIndex); 611 expectedC = cpMap[i].cp; 612 foundC = utext_next32(ut); 613 TEST_ASSERT(expectedC == foundC); 614 foundIndex = utext_getPreviousNativeIndex(ut); 615 TEST_ASSERT(expectedIndex == foundIndex); 616 if (gFailed) { 617 return; 618 } 619 } 620 foundC = utext_next32(ut); 621 TEST_ASSERT(foundC == U_SENTINEL); 622 623 // Repeat above, using macros 624 utext_setNativeIndex(ut, 0); 625 for (i=0; i<cpCount; i++) { 626 expectedIndex = cpMap[i].nativeIdx; 627 foundIndex = UTEXT_GETNATIVEINDEX(ut); 628 TEST_ASSERT(expectedIndex == foundIndex); 629 expectedC = cpMap[i].cp; 630 foundC = UTEXT_NEXT32(ut); 631 TEST_ASSERT(expectedC == foundC); 632 if (gFailed) { 633 return; 634 } 635 } 636 foundC = UTEXT_NEXT32(ut); 637 TEST_ASSERT(foundC == U_SENTINEL); 638 639 // 640 // Forward iteration (above) should have left index at the 641 // end of the input, which should == length(). 642 // 643 len = utext_nativeLength(ut); 644 foundIndex = utext_getNativeIndex(ut); 645 TEST_ASSERT(len == foundIndex); 646 647 // 648 // Iterate backwards over entire test string 649 // 650 len = utext_getNativeIndex(ut); 651 utext_setNativeIndex(ut, len); 652 for (i=cpCount-1; i>=0; i--) { 653 expectedC = cpMap[i].cp; 654 expectedIndex = cpMap[i].nativeIdx; 655 int64_t prevIndex = utext_getPreviousNativeIndex(ut); 656 foundC = utext_previous32(ut); 657 foundIndex = utext_getNativeIndex(ut); 658 TEST_ASSERT(expectedIndex == foundIndex); 659 TEST_ASSERT(expectedC == foundC); 660 TEST_ASSERT(prevIndex == foundIndex); 661 if (gFailed) { 662 return; 663 } 664 } 665 666 // 667 // Backwards iteration, above, should have left our iterator 668 // position at zero, and continued backwards iterationshould fail. 669 // 670 foundIndex = utext_getNativeIndex(ut); 671 TEST_ASSERT(foundIndex == 0); 672 foundIndex = utext_getPreviousNativeIndex(ut); 673 TEST_ASSERT(foundIndex == 0); 674 675 676 foundC = utext_previous32(ut); 677 TEST_ASSERT(foundC == U_SENTINEL); 678 foundIndex = utext_getNativeIndex(ut); 679 TEST_ASSERT(foundIndex == 0); 680 foundIndex = utext_getPreviousNativeIndex(ut); 681 TEST_ASSERT(foundIndex == 0); 682 683 684 // And again, with the macros 685 utext_setNativeIndex(ut, len); 686 for (i=cpCount-1; i>=0; i--) { 687 expectedC = cpMap[i].cp; 688 expectedIndex = cpMap[i].nativeIdx; 689 foundC = UTEXT_PREVIOUS32(ut); 690 foundIndex = UTEXT_GETNATIVEINDEX(ut); 691 TEST_ASSERT(expectedIndex == foundIndex); 692 TEST_ASSERT(expectedC == foundC); 693 if (gFailed) { 694 return; 695 } 696 } 697 698 // 699 // Backwards iteration, above, should have left our iterator 700 // position at zero, and continued backwards iterationshould fail. 701 // 702 foundIndex = UTEXT_GETNATIVEINDEX(ut); 703 TEST_ASSERT(foundIndex == 0); 704 705 foundC = UTEXT_PREVIOUS32(ut); 706 TEST_ASSERT(foundC == U_SENTINEL); 707 foundIndex = UTEXT_GETNATIVEINDEX(ut); 708 TEST_ASSERT(foundIndex == 0); 709 if (gFailed) { 710 return; 711 } 712 713 // 714 // next32From(), prevous32From(), Iterate in a somewhat random order. 715 // 716 int cpIndex = 0; 717 for (i=0; i<cpCount; i++) { 718 cpIndex = (cpIndex + 9973) % cpCount; 719 index = cpMap[cpIndex].nativeIdx; 720 expectedC = cpMap[cpIndex].cp; 721 foundC = utext_next32From(ut, index); 722 TEST_ASSERT(expectedC == foundC); 723 if (gFailed) { 724 return; 725 } 726 } 727 728 cpIndex = 0; 729 for (i=0; i<cpCount; i++) { 730 cpIndex = (cpIndex + 9973) % cpCount; 731 index = cpMap[cpIndex+1].nativeIdx; 732 expectedC = cpMap[cpIndex].cp; 733 foundC = utext_previous32From(ut, index); 734 TEST_ASSERT(expectedC == foundC); 735 if (gFailed) { 736 return; 737 } 738 } 739 740 741 // 742 // moveIndex(int32_t delta); 743 // 744 745 // Walk through frontwards, incrementing by one 746 utext_setNativeIndex(ut, 0); 747 for (i=1; i<=cpCount; i++) { 748 utext_moveIndex32(ut, 1); 749 index = utext_getNativeIndex(ut); 750 expectedIndex = cpMap[i].nativeIdx; 751 TEST_ASSERT(expectedIndex == index); 752 index = UTEXT_GETNATIVEINDEX(ut); 753 TEST_ASSERT(expectedIndex == index); 754 } 755 756 // Walk through frontwards, incrementing by two 757 utext_setNativeIndex(ut, 0); 758 for (i=2; i<cpCount; i+=2) { 759 utext_moveIndex32(ut, 2); 760 index = utext_getNativeIndex(ut); 761 expectedIndex = cpMap[i].nativeIdx; 762 TEST_ASSERT(expectedIndex == index); 763 index = UTEXT_GETNATIVEINDEX(ut); 764 TEST_ASSERT(expectedIndex == index); 765 } 766 767 // walk through the string backwards, decrementing by one. 768 i = cpMap[cpCount].nativeIdx; 769 utext_setNativeIndex(ut, i); 770 for (i=cpCount; i>=0; i--) { 771 expectedIndex = cpMap[i].nativeIdx; 772 index = utext_getNativeIndex(ut); 773 TEST_ASSERT(expectedIndex == index); 774 index = UTEXT_GETNATIVEINDEX(ut); 775 TEST_ASSERT(expectedIndex == index); 776 utext_moveIndex32(ut, -1); 777 } 778 779 780 // walk through backwards, decrementing by three 781 i = cpMap[cpCount].nativeIdx; 782 utext_setNativeIndex(ut, i); 783 for (i=cpCount; i>=0; i-=3) { 784 expectedIndex = cpMap[i].nativeIdx; 785 index = utext_getNativeIndex(ut); 786 TEST_ASSERT(expectedIndex == index); 787 index = UTEXT_GETNATIVEINDEX(ut); 788 TEST_ASSERT(expectedIndex == index); 789 utext_moveIndex32(ut, -3); 790 } 791 792 793 // 794 // Extract 795 // 796 int bufSize = us.length() + 10; 797 UChar *buf = new UChar[bufSize]; 798 status = U_ZERO_ERROR; 799 expectedLen = us.length(); 800 len = utext_extract(ut, 0, utlen, buf, bufSize, &status); 801 TEST_SUCCESS(status); 802 TEST_ASSERT(len == expectedLen); 803 int compareResult = us.compare(buf, -1); 804 TEST_ASSERT(compareResult == 0); 805 806 status = U_ZERO_ERROR; 807 len = utext_extract(ut, 0, utlen, NULL, 0, &status); 808 if (utlen == 0) { 809 TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING); 810 } else { 811 TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR); 812 } 813 TEST_ASSERT(len == expectedLen); 814 815 status = U_ZERO_ERROR; 816 u_memset(buf, 0x5555, bufSize); 817 len = utext_extract(ut, 0, utlen, buf, 1, &status); 818 if (us.length() == 0) { 819 TEST_SUCCESS(status); 820 TEST_ASSERT(buf[0] == 0); 821 } else { 822 // Buf len == 1, extracting a single 16 bit value. 823 // If the data char is supplementary, it doesn't matter whether the buffer remains unchanged, 824 // or whether the lead surrogate of the pair is extracted. 825 // It's a buffer overflow error in either case. 826 TEST_ASSERT(buf[0] == us.charAt(0) || 827 (buf[0] == 0x5555 && U_IS_SUPPLEMENTARY(us.char32At(0)))); 828 TEST_ASSERT(buf[1] == 0x5555); 829 if (us.length() == 1) { 830 TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING); 831 } else { 832 TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR); 833 } 834 } 835 836 delete []buf; 837 } 838 839 // 840 // ErrorTest() Check various error and edge cases. 841 // 842 void UTextTest::ErrorTest() 843 { 844 // Close of an unitialized UText. Shouldn't blow up. 845 { 846 UText ut; 847 memset(&ut, 0, sizeof(UText)); 848 utext_close(&ut); 849 utext_close(NULL); 850 } 851 852 // Double-close of a UText. Shouldn't blow up. UText should still be usable. 853 { 854 UErrorCode status = U_ZERO_ERROR; 855 UText ut = UTEXT_INITIALIZER; 856 UnicodeString s("Hello, World"); 857 UText *ut2 = utext_openUnicodeString(&ut, &s, &status); 858 TEST_SUCCESS(status); 859 TEST_ASSERT(ut2 == &ut); 860 861 UText *ut3 = utext_close(&ut); 862 TEST_ASSERT(ut3 == &ut); 863 864 UText *ut4 = utext_close(&ut); 865 TEST_ASSERT(ut4 == &ut); 866 867 utext_openUnicodeString(&ut, &s, &status); 868 TEST_SUCCESS(status); 869 utext_close(&ut); 870 } 871 872 // Re-use of a UText, chaining through each of the types of UText 873 // (If it doesn't blow up, and doesn't leak, it's probably working fine) 874 { 875 UErrorCode status = U_ZERO_ERROR; 876 UText ut = UTEXT_INITIALIZER; 877 UText *utp; 878 UnicodeString s1("Hello, World"); 879 UChar s2[] = {(UChar)0x41, (UChar)0x42, (UChar)0}; 880 const char *s3 = "\x66\x67\x68"; 881 882 utp = utext_openUnicodeString(&ut, &s1, &status); 883 TEST_SUCCESS(status); 884 TEST_ASSERT(utp == &ut); 885 886 utp = utext_openConstUnicodeString(&ut, &s1, &status); 887 TEST_SUCCESS(status); 888 TEST_ASSERT(utp == &ut); 889 890 utp = utext_openUTF8(&ut, s3, -1, &status); 891 TEST_SUCCESS(status); 892 TEST_ASSERT(utp == &ut); 893 894 utp = utext_openUChars(&ut, s2, -1, &status); 895 TEST_SUCCESS(status); 896 TEST_ASSERT(utp == &ut); 897 898 utp = utext_close(&ut); 899 TEST_ASSERT(utp == &ut); 900 901 utp = utext_openUnicodeString(&ut, &s1, &status); 902 TEST_SUCCESS(status); 903 TEST_ASSERT(utp == &ut); 904 } 905 906 // Invalid parameters on open 907 // 908 { 909 UErrorCode status = U_ZERO_ERROR; 910 UText ut = UTEXT_INITIALIZER; 911 912 utext_openUChars(&ut, NULL, 5, &status); 913 TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); 914 915 status = U_ZERO_ERROR; 916 utext_openUChars(&ut, NULL, -1, &status); 917 TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); 918 919 status = U_ZERO_ERROR; 920 utext_openUTF8(&ut, NULL, 4, &status); 921 TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); 922 923 status = U_ZERO_ERROR; 924 utext_openUTF8(&ut, NULL, -1, &status); 925 TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); 926 } 927 928 // 929 // UTF-8 with malformed sequences. 930 // These should come through as the Unicode replacement char, \ufffd 931 // 932 { 933 UErrorCode status = U_ZERO_ERROR; 934 UText *ut = NULL; 935 const char *badUTF8 = "\x41\x81\x42\xf0\x81\x81\x43"; 936 UChar32 c; 937 938 ut = utext_openUTF8(NULL, badUTF8, -1, &status); 939 TEST_SUCCESS(status); 940 c = utext_char32At(ut, 1); 941 TEST_ASSERT(c == 0xfffd); 942 c = utext_char32At(ut, 3); 943 TEST_ASSERT(c == 0xfffd); 944 c = utext_char32At(ut, 5); 945 TEST_ASSERT(c == 0xfffd); 946 c = utext_char32At(ut, 6); 947 TEST_ASSERT(c == 0x43); 948 949 UChar buf[10]; 950 int n = utext_extract(ut, 0, 9, buf, 10, &status); 951 TEST_SUCCESS(status); 952 TEST_ASSERT(n==5); 953 TEST_ASSERT(buf[1] == 0xfffd); 954 TEST_ASSERT(buf[3] == 0xfffd); 955 TEST_ASSERT(buf[2] == 0x42); 956 utext_close(ut); 957 } 958 959 960 // 961 // isLengthExpensive - does it make the exptected transitions after 962 // getting the length of a nul terminated string? 963 // 964 { 965 UErrorCode status = U_ZERO_ERROR; 966 UnicodeString sa("Hello, this is a string"); 967 UBool isExpensive; 968 969 UChar sb[100]; 970 memset(sb, 0x20, sizeof(sb)); 971 sb[99] = 0; 972 973 UText *uta = utext_openUnicodeString(NULL, &sa, &status); 974 TEST_SUCCESS(status); 975 isExpensive = utext_isLengthExpensive(uta); 976 TEST_ASSERT(isExpensive == FALSE); 977 utext_close(uta); 978 979 UText *utb = utext_openUChars(NULL, sb, -1, &status); 980 TEST_SUCCESS(status); 981 isExpensive = utext_isLengthExpensive(utb); 982 TEST_ASSERT(isExpensive == TRUE); 983 int64_t len = utext_nativeLength(utb); 984 TEST_ASSERT(len == 99); 985 isExpensive = utext_isLengthExpensive(utb); 986 TEST_ASSERT(isExpensive == FALSE); 987 utext_close(utb); 988 } 989 990 // 991 // Index to positions not on code point boundaries. 992 // 993 { 994 const char *u8str = "\xc8\x81\xe1\x82\x83\xf1\x84\x85\x86"; 995 int32_t startMap[] = { 0, 0, 2, 2, 2, 5, 5, 5, 5, 9, 9}; 996 int32_t nextMap[] = { 2, 2, 5, 5, 5, 9, 9, 9, 9, 9, 9}; 997 int32_t prevMap[] = { 0, 0, 0, 0, 0, 2, 2, 2, 2, 5, 5}; 998 UChar32 c32Map[] = {0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146, 0x044146, 0x044146, -1, -1}; 999 UChar32 pr32Map[] = { -1, -1, 0x201, 0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146}; 1000 1001 // extractLen is the size, in UChars, of what will be extracted between index and index+1. 1002 // is zero when both index positions lie within the same code point. 1003 int32_t exLen[] = { 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0}; 1004 1005 1006 UErrorCode status = U_ZERO_ERROR; 1007 UText *ut = utext_openUTF8(NULL, u8str, -1, &status); 1008 TEST_SUCCESS(status); 1009 1010 // Check setIndex 1011 int32_t i; 1012 int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t); 1013 for (i=0; i<startMapLimit; i++) { 1014 utext_setNativeIndex(ut, i); 1015 int64_t cpIndex = utext_getNativeIndex(ut); 1016 TEST_ASSERT(cpIndex == startMap[i]); 1017 cpIndex = UTEXT_GETNATIVEINDEX(ut); 1018 TEST_ASSERT(cpIndex == startMap[i]); 1019 } 1020 1021 // Check char32At 1022 for (i=0; i<startMapLimit; i++) { 1023 UChar32 c32 = utext_char32At(ut, i); 1024 TEST_ASSERT(c32 == c32Map[i]); 1025 int64_t cpIndex = utext_getNativeIndex(ut); 1026 TEST_ASSERT(cpIndex == startMap[i]); 1027 } 1028 1029 // Check utext_next32From 1030 for (i=0; i<startMapLimit; i++) { 1031 UChar32 c32 = utext_next32From(ut, i); 1032 TEST_ASSERT(c32 == c32Map[i]); 1033 int64_t cpIndex = utext_getNativeIndex(ut); 1034 TEST_ASSERT(cpIndex == nextMap[i]); 1035 } 1036 1037 // check utext_previous32From 1038 for (i=0; i<startMapLimit; i++) { 1039 gTestNum++; 1040 UChar32 c32 = utext_previous32From(ut, i); 1041 TEST_ASSERT(c32 == pr32Map[i]); 1042 int64_t cpIndex = utext_getNativeIndex(ut); 1043 TEST_ASSERT(cpIndex == prevMap[i]); 1044 } 1045 1046 // check Extract 1047 // Extract from i to i+1, which may be zero or one code points, 1048 // depending on whether the indices straddle a cp boundary. 1049 for (i=0; i<startMapLimit; i++) { 1050 UChar buf[3]; 1051 status = U_ZERO_ERROR; 1052 int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); 1053 TEST_SUCCESS(status); 1054 TEST_ASSERT(extractedLen == exLen[i]); 1055 if (extractedLen > 0) { 1056 UChar32 c32; 1057 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ 1058 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); 1059 TEST_ASSERT(c32 == c32Map[i]); 1060 } 1061 } 1062 1063 utext_close(ut); 1064 } 1065 1066 1067 { // Similar test, with utf16 instead of utf8 1068 // TODO: merge the common parts of these tests. 1069 1070 UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV); 1071 int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6}; 1072 int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6}; 1073 int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4}; 1074 UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1}; 1075 UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000}; 1076 int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,}; 1077 1078 u16str = u16str.unescape(); 1079 UErrorCode status = U_ZERO_ERROR; 1080 UText *ut = utext_openUnicodeString(NULL, &u16str, &status); 1081 TEST_SUCCESS(status); 1082 1083 int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t); 1084 int i; 1085 for (i=0; i<startMapLimit; i++) { 1086 utext_setNativeIndex(ut, i); 1087 int64_t cpIndex = utext_getNativeIndex(ut); 1088 TEST_ASSERT(cpIndex == startMap[i]); 1089 } 1090 1091 // Check char32At 1092 for (i=0; i<startMapLimit; i++) { 1093 UChar32 c32 = utext_char32At(ut, i); 1094 TEST_ASSERT(c32 == c32Map[i]); 1095 int64_t cpIndex = utext_getNativeIndex(ut); 1096 TEST_ASSERT(cpIndex == startMap[i]); 1097 } 1098 1099 // Check utext_next32From 1100 for (i=0; i<startMapLimit; i++) { 1101 UChar32 c32 = utext_next32From(ut, i); 1102 TEST_ASSERT(c32 == c32Map[i]); 1103 int64_t cpIndex = utext_getNativeIndex(ut); 1104 TEST_ASSERT(cpIndex == nextMap[i]); 1105 } 1106 1107 // check utext_previous32From 1108 for (i=0; i<startMapLimit; i++) { 1109 UChar32 c32 = utext_previous32From(ut, i); 1110 TEST_ASSERT(c32 == pr32Map[i]); 1111 int64_t cpIndex = utext_getNativeIndex(ut); 1112 TEST_ASSERT(cpIndex == prevMap[i]); 1113 } 1114 1115 // check Extract 1116 // Extract from i to i+1, which may be zero or one code points, 1117 // depending on whether the indices straddle a cp boundary. 1118 for (i=0; i<startMapLimit; i++) { 1119 UChar buf[3]; 1120 status = U_ZERO_ERROR; 1121 int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); 1122 TEST_SUCCESS(status); 1123 TEST_ASSERT(extractedLen == exLen[i]); 1124 if (extractedLen > 0) { 1125 UChar32 c32; 1126 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ 1127 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); 1128 TEST_ASSERT(c32 == c32Map[i]); 1129 } 1130 } 1131 1132 utext_close(ut); 1133 } 1134 1135 { // Similar test, with UText over Replaceable 1136 // TODO: merge the common parts of these tests. 1137 1138 UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV); 1139 int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6}; 1140 int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6}; 1141 int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4}; 1142 UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1}; 1143 UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000}; 1144 int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,}; 1145 1146 u16str = u16str.unescape(); 1147 UErrorCode status = U_ZERO_ERROR; 1148 UText *ut = utext_openReplaceable(NULL, &u16str, &status); 1149 TEST_SUCCESS(status); 1150 1151 int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t); 1152 int i; 1153 for (i=0; i<startMapLimit; i++) { 1154 utext_setNativeIndex(ut, i); 1155 int64_t cpIndex = utext_getNativeIndex(ut); 1156 TEST_ASSERT(cpIndex == startMap[i]); 1157 } 1158 1159 // Check char32At 1160 for (i=0; i<startMapLimit; i++) { 1161 UChar32 c32 = utext_char32At(ut, i); 1162 TEST_ASSERT(c32 == c32Map[i]); 1163 int64_t cpIndex = utext_getNativeIndex(ut); 1164 TEST_ASSERT(cpIndex == startMap[i]); 1165 } 1166 1167 // Check utext_next32From 1168 for (i=0; i<startMapLimit; i++) { 1169 UChar32 c32 = utext_next32From(ut, i); 1170 TEST_ASSERT(c32 == c32Map[i]); 1171 int64_t cpIndex = utext_getNativeIndex(ut); 1172 TEST_ASSERT(cpIndex == nextMap[i]); 1173 } 1174 1175 // check utext_previous32From 1176 for (i=0; i<startMapLimit; i++) { 1177 UChar32 c32 = utext_previous32From(ut, i); 1178 TEST_ASSERT(c32 == pr32Map[i]); 1179 int64_t cpIndex = utext_getNativeIndex(ut); 1180 TEST_ASSERT(cpIndex == prevMap[i]); 1181 } 1182 1183 // check Extract 1184 // Extract from i to i+1, which may be zero or one code points, 1185 // depending on whether the indices straddle a cp boundary. 1186 for (i=0; i<startMapLimit; i++) { 1187 UChar buf[3]; 1188 status = U_ZERO_ERROR; 1189 int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); 1190 TEST_SUCCESS(status); 1191 TEST_ASSERT(extractedLen == exLen[i]); 1192 if (extractedLen > 0) { 1193 UChar32 c32; 1194 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ 1195 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); 1196 TEST_ASSERT(c32 == c32Map[i]); 1197 } 1198 } 1199 1200 utext_close(ut); 1201 } 1202 } 1203 1204 1205 void UTextTest::FreezeTest() { 1206 // Check isWritable() and freeze() behavior. 1207 // 1208 1209 UnicodeString ustr("Hello, World."); 1210 const char u8str[] = {char(0x31), (char)0x32, (char)0x33, 0}; 1211 const UChar u16str[] = {(UChar)0x31, (UChar)0x32, (UChar)0x44, 0}; 1212 1213 UErrorCode status = U_ZERO_ERROR; 1214 UText *ut = NULL; 1215 UText *ut2 = NULL; 1216 1217 ut = utext_openUTF8(ut, u8str, -1, &status); 1218 TEST_SUCCESS(status); 1219 UBool writable = utext_isWritable(ut); 1220 TEST_ASSERT(writable == FALSE); 1221 utext_copy(ut, 1, 2, 0, TRUE, &status); 1222 TEST_ASSERT(status == U_NO_WRITE_PERMISSION); 1223 1224 status = U_ZERO_ERROR; 1225 ut = utext_openUChars(ut, u16str, -1, &status); 1226 TEST_SUCCESS(status); 1227 writable = utext_isWritable(ut); 1228 TEST_ASSERT(writable == FALSE); 1229 utext_copy(ut, 1, 2, 0, TRUE, &status); 1230 TEST_ASSERT(status == U_NO_WRITE_PERMISSION); 1231 1232 status = U_ZERO_ERROR; 1233 ut = utext_openUnicodeString(ut, &ustr, &status); 1234 TEST_SUCCESS(status); 1235 writable = utext_isWritable(ut); 1236 TEST_ASSERT(writable == TRUE); 1237 utext_freeze(ut); 1238 writable = utext_isWritable(ut); 1239 TEST_ASSERT(writable == FALSE); 1240 utext_copy(ut, 1, 2, 0, TRUE, &status); 1241 TEST_ASSERT(status == U_NO_WRITE_PERMISSION); 1242 1243 status = U_ZERO_ERROR; 1244 ut = utext_openUnicodeString(ut, &ustr, &status); 1245 TEST_SUCCESS(status); 1246 ut2 = utext_clone(ut2, ut, FALSE, FALSE, &status); // clone with readonly = false 1247 TEST_SUCCESS(status); 1248 writable = utext_isWritable(ut2); 1249 TEST_ASSERT(writable == TRUE); 1250 ut2 = utext_clone(ut2, ut, FALSE, TRUE, &status); // clone with readonly = true 1251 TEST_SUCCESS(status); 1252 writable = utext_isWritable(ut2); 1253 TEST_ASSERT(writable == FALSE); 1254 utext_copy(ut2, 1, 2, 0, TRUE, &status); 1255 TEST_ASSERT(status == U_NO_WRITE_PERMISSION); 1256 1257 status = U_ZERO_ERROR; 1258 ut = utext_openConstUnicodeString(ut, (const UnicodeString *)&ustr, &status); 1259 TEST_SUCCESS(status); 1260 writable = utext_isWritable(ut); 1261 TEST_ASSERT(writable == FALSE); 1262 utext_copy(ut, 1, 2, 0, TRUE, &status); 1263 TEST_ASSERT(status == U_NO_WRITE_PERMISSION); 1264 1265 // Deep Clone of a frozen UText should re-enable writing in the copy. 1266 status = U_ZERO_ERROR; 1267 ut = utext_openUnicodeString(ut, &ustr, &status); 1268 TEST_SUCCESS(status); 1269 utext_freeze(ut); 1270 ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone 1271 TEST_SUCCESS(status); 1272 writable = utext_isWritable(ut2); 1273 TEST_ASSERT(writable == TRUE); 1274 1275 1276 // Deep clone of a frozen UText, where the base type is intrinsically non-writable, 1277 // should NOT enable writing in the copy. 1278 status = U_ZERO_ERROR; 1279 ut = utext_openUChars(ut, u16str, -1, &status); 1280 TEST_SUCCESS(status); 1281 utext_freeze(ut); 1282 ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone 1283 TEST_SUCCESS(status); 1284 writable = utext_isWritable(ut2); 1285 TEST_ASSERT(writable == FALSE); 1286 1287 // cleanup 1288 utext_close(ut); 1289 utext_close(ut2); 1290 } 1291 1292 1293 // 1294 // Fragmented UText 1295 // A UText type that works with a chunk size of 1. 1296 // Intended to test for edge cases. 1297 // Input comes from a UnicodeString. 1298 // 1299 // ut.b the character. Put into both halves. 1300 // 1301 1302 U_CDECL_BEGIN 1303 static UBool U_CALLCONV 1304 fragTextAccess(UText *ut, int64_t index, UBool forward) { 1305 const UnicodeString *us = (const UnicodeString *)ut->context; 1306 UChar c; 1307 int32_t length = us->length(); 1308 if (forward && index>=0 && index<length) { 1309 c = us->charAt((int32_t)index); 1310 ut->b = c | c<<16; 1311 ut->chunkOffset = 0; 1312 ut->chunkLength = 1; 1313 ut->chunkNativeStart = index; 1314 ut->chunkNativeLimit = index+1; 1315 return true; 1316 } 1317 if (!forward && index>0 && index <=length) { 1318 c = us->charAt((int32_t)index-1); 1319 ut->b = c | c<<16; 1320 ut->chunkOffset = 1; 1321 ut->chunkLength = 1; 1322 ut->chunkNativeStart = index-1; 1323 ut->chunkNativeLimit = index; 1324 return true; 1325 } 1326 ut->b = 0; 1327 ut->chunkOffset = 0; 1328 ut->chunkLength = 0; 1329 if (index <= 0) { 1330 ut->chunkNativeStart = 0; 1331 ut->chunkNativeLimit = 0; 1332 } else { 1333 ut->chunkNativeStart = length; 1334 ut->chunkNativeLimit = length; 1335 } 1336 return false; 1337 } 1338 1339 // Function table to be used with this fragmented text provider. 1340 // Initialized in the open function. 1341 static UTextFuncs fragmentFuncs; 1342 1343 // Clone function for fragmented text provider. 1344 // Didn't really want to provide this, but it's easier to provide it than to keep it 1345 // out of the tests. 1346 // 1347 UText * 1348 cloneFragmentedUnicodeString(UText *dest, const UText *src, UBool deep, UErrorCode *status) { 1349 if (U_FAILURE(*status)) { 1350 return NULL; 1351 } 1352 if (deep) { 1353 *status = U_UNSUPPORTED_ERROR; 1354 return NULL; 1355 } 1356 dest = utext_openUnicodeString(dest, (UnicodeString *)src->context, status); 1357 utext_setNativeIndex(dest, utext_getNativeIndex(src)); 1358 return dest; 1359 } 1360 1361 U_CDECL_END 1362 1363 // Open function for the fragmented text provider. 1364 UText * 1365 openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) { 1366 ut = utext_openUnicodeString(ut, s, status); 1367 if (U_FAILURE(*status)) { 1368 return ut; 1369 } 1370 1371 // Copy of the function table from the stock UnicodeString UText, 1372 // and replace the entry for the access function. 1373 memcpy(&fragmentFuncs, ut->pFuncs, sizeof(fragmentFuncs)); 1374 fragmentFuncs.access = fragTextAccess; 1375 fragmentFuncs.clone = cloneFragmentedUnicodeString; 1376 ut->pFuncs = &fragmentFuncs; 1377 1378 ut->chunkContents = (UChar *)&ut->b; 1379 ut->pFuncs->access(ut, 0, TRUE); 1380 return ut; 1381 } 1382 1383 // Regression test for Ticket 5560 1384 // Clone fails to update chunkContentPointer in the cloned copy. 1385 // This is only an issue for UText types that work in a local buffer, 1386 // (UTF-8 wrapper, for example) 1387 // 1388 // The test: 1389 // 1. Create an inital UText 1390 // 2. Deep clone it. Contents should match original. 1391 // 3. Reset original to something different. 1392 // 4. Check that clone contents did not change. 1393 // 1394 void UTextTest::Ticket5560() { 1395 /* The following two strings are in UTF-8 even on EBCDIC platforms. */ 1396 static const char s1[] = {0x41,0x42,0x43,0x44,0x45,0x46,0}; /* "ABCDEF" */ 1397 static const char s2[] = {0x31,0x32,0x33,0x34,0x35,0x36,0}; /* "123456" */ 1398 UErrorCode status = U_ZERO_ERROR; 1399 1400 UText ut1 = UTEXT_INITIALIZER; 1401 UText ut2 = UTEXT_INITIALIZER; 1402 1403 utext_openUTF8(&ut1, s1, -1, &status); 1404 UChar c = utext_next32(&ut1); 1405 TEST_ASSERT(c == 0x41); // c == 'A' 1406 1407 utext_clone(&ut2, &ut1, TRUE, FALSE, &status); 1408 TEST_SUCCESS(status); 1409 c = utext_next32(&ut2); 1410 TEST_ASSERT(c == 0x42); // c == 'B' 1411 c = utext_next32(&ut1); 1412 TEST_ASSERT(c == 0x42); // c == 'B' 1413 1414 utext_openUTF8(&ut1, s2, -1, &status); 1415 c = utext_next32(&ut1); 1416 TEST_ASSERT(c == 0x31); // c == '1' 1417 c = utext_next32(&ut2); 1418 TEST_ASSERT(c == 0x43); // c == 'C' 1419 1420 utext_close(&ut1); 1421 utext_close(&ut2); 1422 } 1423 1424 1425 // Test for Ticket 6847 1426 // 1427 void UTextTest::Ticket6847() { 1428 const int STRLEN = 90; 1429 UChar s[STRLEN+1]; 1430 u_memset(s, 0x41, STRLEN); 1431 s[STRLEN] = 0; 1432 1433 UErrorCode status = U_ZERO_ERROR; 1434 UText *ut = utext_openUChars(NULL, s, -1, &status); 1435 1436 utext_setNativeIndex(ut, 0); 1437 int32_t count = 0; 1438 UChar32 c = 0; 1439 int64_t nativeIndex = UTEXT_GETNATIVEINDEX(ut); 1440 TEST_ASSERT(nativeIndex == 0); 1441 while ((c = utext_next32(ut)) != U_SENTINEL) { 1442 TEST_ASSERT(c == 0x41); 1443 TEST_ASSERT(count < STRLEN); 1444 if (count >= STRLEN) { 1445 break; 1446 } 1447 count++; 1448 nativeIndex = UTEXT_GETNATIVEINDEX(ut); 1449 TEST_ASSERT(nativeIndex == count); 1450 } 1451 TEST_ASSERT(count == STRLEN); 1452 nativeIndex = UTEXT_GETNATIVEINDEX(ut); 1453 TEST_ASSERT(nativeIndex == STRLEN); 1454 utext_close(ut); 1455 } 1456 1457 1458 void UTextTest::Ticket10562() { 1459 // Note: failures show as a heap error when the test is run under valgrind. 1460 UErrorCode status = U_ZERO_ERROR; 1461 1462 const char *utf8_string = "\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41"; 1463 UText *utf8Text = utext_openUTF8(NULL, utf8_string, -1, &status); 1464 TEST_SUCCESS(status); 1465 UText *deepClone = utext_clone(NULL, utf8Text, TRUE, FALSE, &status); 1466 TEST_SUCCESS(status); 1467 UText *shallowClone = utext_clone(NULL, deepClone, FALSE, FALSE, &status); 1468 TEST_SUCCESS(status); 1469 utext_close(shallowClone); 1470 utext_close(deepClone); 1471 utext_close(utf8Text); 1472 1473 status = U_ZERO_ERROR; 1474 UnicodeString usString("Hello, World."); 1475 UText *usText = utext_openUnicodeString(NULL, &usString, &status); 1476 TEST_SUCCESS(status); 1477 UText *usDeepClone = utext_clone(NULL, usText, TRUE, FALSE, &status); 1478 TEST_SUCCESS(status); 1479 UText *usShallowClone = utext_clone(NULL, usDeepClone, FALSE, FALSE, &status); 1480 TEST_SUCCESS(status); 1481 utext_close(usShallowClone); 1482 utext_close(usDeepClone); 1483 utext_close(usText); 1484 } 1485 1486