Home | History | Annotate | Download | only in Utils
      1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements some loop unrolling utilities. It does not define any
     11 // actual pass or policy, but provides a single function to perform loop
     12 // unrolling.
     13 //
     14 // The process of unrolling can produce extraneous basic blocks linked with
     15 // unconditional branches.  This will be corrected in the future.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #include "llvm/Transforms/Utils/UnrollLoop.h"
     20 #include "llvm/ADT/Statistic.h"
     21 #include "llvm/Analysis/InstructionSimplify.h"
     22 #include "llvm/Analysis/LoopIterator.h"
     23 #include "llvm/Analysis/LoopPass.h"
     24 #include "llvm/Analysis/ScalarEvolution.h"
     25 #include "llvm/IR/BasicBlock.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/Dominators.h"
     28 #include "llvm/IR/DiagnosticInfo.h"
     29 #include "llvm/IR/LLVMContext.h"
     30 #include "llvm/Support/Debug.h"
     31 #include "llvm/Support/raw_ostream.h"
     32 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     33 #include "llvm/Transforms/Utils/Cloning.h"
     34 #include "llvm/Transforms/Utils/Local.h"
     35 #include "llvm/Transforms/Utils/LoopUtils.h"
     36 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
     37 using namespace llvm;
     38 
     39 #define DEBUG_TYPE "loop-unroll"
     40 
     41 // TODO: Should these be here or in LoopUnroll?
     42 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
     43 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
     44 
     45 /// RemapInstruction - Convert the instruction operands from referencing the
     46 /// current values into those specified by VMap.
     47 static inline void RemapInstruction(Instruction *I,
     48                                     ValueToValueMapTy &VMap) {
     49   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
     50     Value *Op = I->getOperand(op);
     51     ValueToValueMapTy::iterator It = VMap.find(Op);
     52     if (It != VMap.end())
     53       I->setOperand(op, It->second);
     54   }
     55 
     56   if (PHINode *PN = dyn_cast<PHINode>(I)) {
     57     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
     58       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
     59       if (It != VMap.end())
     60         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
     61     }
     62   }
     63 }
     64 
     65 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
     66 /// only has one predecessor, and that predecessor only has one successor.
     67 /// The LoopInfo Analysis that is passed will be kept consistent.
     68 /// Returns the new combined block.
     69 static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI,
     70                                             LPPassManager *LPM) {
     71   // Merge basic blocks into their predecessor if there is only one distinct
     72   // pred, and if there is only one distinct successor of the predecessor, and
     73   // if there are no PHI nodes.
     74   BasicBlock *OnlyPred = BB->getSinglePredecessor();
     75   if (!OnlyPred) return nullptr;
     76 
     77   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
     78     return nullptr;
     79 
     80   DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
     81 
     82   // Resolve any PHI nodes at the start of the block.  They are all
     83   // guaranteed to have exactly one entry if they exist, unless there are
     84   // multiple duplicate (but guaranteed to be equal) entries for the
     85   // incoming edges.  This occurs when there are multiple edges from
     86   // OnlyPred to OnlySucc.
     87   FoldSingleEntryPHINodes(BB);
     88 
     89   // Delete the unconditional branch from the predecessor...
     90   OnlyPred->getInstList().pop_back();
     91 
     92   // Make all PHI nodes that referred to BB now refer to Pred as their
     93   // source...
     94   BB->replaceAllUsesWith(OnlyPred);
     95 
     96   // Move all definitions in the successor to the predecessor...
     97   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
     98 
     99   // OldName will be valid until erased.
    100   StringRef OldName = BB->getName();
    101 
    102   // Erase basic block from the function...
    103 
    104   // ScalarEvolution holds references to loop exit blocks.
    105   if (LPM) {
    106     if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) {
    107       if (Loop *L = LI->getLoopFor(BB))
    108         SE->forgetLoop(L);
    109     }
    110   }
    111   LI->removeBlock(BB);
    112 
    113   // Inherit predecessor's name if it exists...
    114   if (!OldName.empty() && !OnlyPred->hasName())
    115     OnlyPred->setName(OldName);
    116 
    117   BB->eraseFromParent();
    118 
    119   return OnlyPred;
    120 }
    121 
    122 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
    123 /// if unrolling was successful, or false if the loop was unmodified. Unrolling
    124 /// can only fail when the loop's latch block is not terminated by a conditional
    125 /// branch instruction. However, if the trip count (and multiple) are not known,
    126 /// loop unrolling will mostly produce more code that is no faster.
    127 ///
    128 /// TripCount is generally defined as the number of times the loop header
    129 /// executes. UnrollLoop relaxes the definition to permit early exits: here
    130 /// TripCount is the iteration on which control exits LatchBlock if no early
    131 /// exits were taken. Note that UnrollLoop assumes that the loop counter test
    132 /// terminates LatchBlock in order to remove unnecesssary instances of the
    133 /// test. In other words, control may exit the loop prior to TripCount
    134 /// iterations via an early branch, but control may not exit the loop from the
    135 /// LatchBlock's terminator prior to TripCount iterations.
    136 ///
    137 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
    138 /// execute without exiting the loop.
    139 ///
    140 /// The LoopInfo Analysis that is passed will be kept consistent.
    141 ///
    142 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be
    143 /// removed from the LoopPassManager as well. LPM can also be NULL.
    144 ///
    145 /// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are
    146 /// available from the Pass it must also preserve those analyses.
    147 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
    148                       bool AllowRuntime, unsigned TripMultiple,
    149                       LoopInfo *LI, Pass *PP, LPPassManager *LPM) {
    150   BasicBlock *Preheader = L->getLoopPreheader();
    151   if (!Preheader) {
    152     DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
    153     return false;
    154   }
    155 
    156   BasicBlock *LatchBlock = L->getLoopLatch();
    157   if (!LatchBlock) {
    158     DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
    159     return false;
    160   }
    161 
    162   // Loops with indirectbr cannot be cloned.
    163   if (!L->isSafeToClone()) {
    164     DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
    165     return false;
    166   }
    167 
    168   BasicBlock *Header = L->getHeader();
    169   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
    170 
    171   if (!BI || BI->isUnconditional()) {
    172     // The loop-rotate pass can be helpful to avoid this in many cases.
    173     DEBUG(dbgs() <<
    174              "  Can't unroll; loop not terminated by a conditional branch.\n");
    175     return false;
    176   }
    177 
    178   if (Header->hasAddressTaken()) {
    179     // The loop-rotate pass can be helpful to avoid this in many cases.
    180     DEBUG(dbgs() <<
    181           "  Won't unroll loop: address of header block is taken.\n");
    182     return false;
    183   }
    184 
    185   if (TripCount != 0)
    186     DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
    187   if (TripMultiple != 1)
    188     DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
    189 
    190   // Effectively "DCE" unrolled iterations that are beyond the tripcount
    191   // and will never be executed.
    192   if (TripCount != 0 && Count > TripCount)
    193     Count = TripCount;
    194 
    195   // Don't enter the unroll code if there is nothing to do. This way we don't
    196   // need to support "partial unrolling by 1".
    197   if (TripCount == 0 && Count < 2)
    198     return false;
    199 
    200   assert(Count > 0);
    201   assert(TripMultiple > 0);
    202   assert(TripCount == 0 || TripCount % TripMultiple == 0);
    203 
    204   // Are we eliminating the loop control altogether?
    205   bool CompletelyUnroll = Count == TripCount;
    206 
    207   // We assume a run-time trip count if the compiler cannot
    208   // figure out the loop trip count and the unroll-runtime
    209   // flag is specified.
    210   bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
    211 
    212   if (RuntimeTripCount && !UnrollRuntimeLoopProlog(L, Count, LI, LPM))
    213     return false;
    214 
    215   // Notify ScalarEvolution that the loop will be substantially changed,
    216   // if not outright eliminated.
    217   if (PP) {
    218     ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>();
    219     if (SE)
    220       SE->forgetLoop(L);
    221   }
    222 
    223   // If we know the trip count, we know the multiple...
    224   unsigned BreakoutTrip = 0;
    225   if (TripCount != 0) {
    226     BreakoutTrip = TripCount % Count;
    227     TripMultiple = 0;
    228   } else {
    229     // Figure out what multiple to use.
    230     BreakoutTrip = TripMultiple =
    231       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
    232   }
    233 
    234   // Report the unrolling decision.
    235   DebugLoc LoopLoc = L->getStartLoc();
    236   Function *F = Header->getParent();
    237   LLVMContext &Ctx = F->getContext();
    238 
    239   if (CompletelyUnroll) {
    240     DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
    241           << " with trip count " << TripCount << "!\n");
    242     emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
    243                            Twine("completely unrolled loop with ") +
    244                                Twine(TripCount) + " iterations");
    245   } else {
    246     auto EmitDiag = [&](const Twine &T) {
    247       emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
    248                              "unrolled loop by a factor of " + Twine(Count) +
    249                                  T);
    250     };
    251 
    252     DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
    253           << " by " << Count);
    254     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
    255       DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
    256       EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip));
    257     } else if (TripMultiple != 1) {
    258       DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
    259       EmitDiag(" with " + Twine(TripMultiple) + " trips per branch");
    260     } else if (RuntimeTripCount) {
    261       DEBUG(dbgs() << " with run-time trip count");
    262       EmitDiag(" with run-time trip count");
    263     }
    264     DEBUG(dbgs() << "!\n");
    265   }
    266 
    267   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
    268   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
    269 
    270   // For the first iteration of the loop, we should use the precloned values for
    271   // PHI nodes.  Insert associations now.
    272   ValueToValueMapTy LastValueMap;
    273   std::vector<PHINode*> OrigPHINode;
    274   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    275     OrigPHINode.push_back(cast<PHINode>(I));
    276   }
    277 
    278   std::vector<BasicBlock*> Headers;
    279   std::vector<BasicBlock*> Latches;
    280   Headers.push_back(Header);
    281   Latches.push_back(LatchBlock);
    282 
    283   // The current on-the-fly SSA update requires blocks to be processed in
    284   // reverse postorder so that LastValueMap contains the correct value at each
    285   // exit.
    286   LoopBlocksDFS DFS(L);
    287   DFS.perform(LI);
    288 
    289   // Stash the DFS iterators before adding blocks to the loop.
    290   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
    291   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
    292 
    293   for (unsigned It = 1; It != Count; ++It) {
    294     std::vector<BasicBlock*> NewBlocks;
    295 
    296     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
    297       ValueToValueMapTy VMap;
    298       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
    299       Header->getParent()->getBasicBlockList().push_back(New);
    300 
    301       // Loop over all of the PHI nodes in the block, changing them to use the
    302       // incoming values from the previous block.
    303       if (*BB == Header)
    304         for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
    305           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
    306           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
    307           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
    308             if (It > 1 && L->contains(InValI))
    309               InVal = LastValueMap[InValI];
    310           VMap[OrigPHINode[i]] = InVal;
    311           New->getInstList().erase(NewPHI);
    312         }
    313 
    314       // Update our running map of newest clones
    315       LastValueMap[*BB] = New;
    316       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
    317            VI != VE; ++VI)
    318         LastValueMap[VI->first] = VI->second;
    319 
    320       L->addBasicBlockToLoop(New, LI->getBase());
    321 
    322       // Add phi entries for newly created values to all exit blocks.
    323       for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB);
    324            SI != SE; ++SI) {
    325         if (L->contains(*SI))
    326           continue;
    327         for (BasicBlock::iterator BBI = (*SI)->begin();
    328              PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
    329           Value *Incoming = phi->getIncomingValueForBlock(*BB);
    330           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
    331           if (It != LastValueMap.end())
    332             Incoming = It->second;
    333           phi->addIncoming(Incoming, New);
    334         }
    335       }
    336       // Keep track of new headers and latches as we create them, so that
    337       // we can insert the proper branches later.
    338       if (*BB == Header)
    339         Headers.push_back(New);
    340       if (*BB == LatchBlock)
    341         Latches.push_back(New);
    342 
    343       NewBlocks.push_back(New);
    344     }
    345 
    346     // Remap all instructions in the most recent iteration
    347     for (unsigned i = 0; i < NewBlocks.size(); ++i)
    348       for (BasicBlock::iterator I = NewBlocks[i]->begin(),
    349            E = NewBlocks[i]->end(); I != E; ++I)
    350         ::RemapInstruction(I, LastValueMap);
    351   }
    352 
    353   // Loop over the PHI nodes in the original block, setting incoming values.
    354   for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
    355     PHINode *PN = OrigPHINode[i];
    356     if (CompletelyUnroll) {
    357       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
    358       Header->getInstList().erase(PN);
    359     }
    360     else if (Count > 1) {
    361       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
    362       // If this value was defined in the loop, take the value defined by the
    363       // last iteration of the loop.
    364       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
    365         if (L->contains(InValI))
    366           InVal = LastValueMap[InVal];
    367       }
    368       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
    369       PN->addIncoming(InVal, Latches.back());
    370     }
    371   }
    372 
    373   // Now that all the basic blocks for the unrolled iterations are in place,
    374   // set up the branches to connect them.
    375   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
    376     // The original branch was replicated in each unrolled iteration.
    377     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
    378 
    379     // The branch destination.
    380     unsigned j = (i + 1) % e;
    381     BasicBlock *Dest = Headers[j];
    382     bool NeedConditional = true;
    383 
    384     if (RuntimeTripCount && j != 0) {
    385       NeedConditional = false;
    386     }
    387 
    388     // For a complete unroll, make the last iteration end with a branch
    389     // to the exit block.
    390     if (CompletelyUnroll && j == 0) {
    391       Dest = LoopExit;
    392       NeedConditional = false;
    393     }
    394 
    395     // If we know the trip count or a multiple of it, we can safely use an
    396     // unconditional branch for some iterations.
    397     if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
    398       NeedConditional = false;
    399     }
    400 
    401     if (NeedConditional) {
    402       // Update the conditional branch's successor for the following
    403       // iteration.
    404       Term->setSuccessor(!ContinueOnTrue, Dest);
    405     } else {
    406       // Remove phi operands at this loop exit
    407       if (Dest != LoopExit) {
    408         BasicBlock *BB = Latches[i];
    409         for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
    410              SI != SE; ++SI) {
    411           if (*SI == Headers[i])
    412             continue;
    413           for (BasicBlock::iterator BBI = (*SI)->begin();
    414                PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
    415             Phi->removeIncomingValue(BB, false);
    416           }
    417         }
    418       }
    419       // Replace the conditional branch with an unconditional one.
    420       BranchInst::Create(Dest, Term);
    421       Term->eraseFromParent();
    422     }
    423   }
    424 
    425   // Merge adjacent basic blocks, if possible.
    426   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
    427     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
    428     if (Term->isUnconditional()) {
    429       BasicBlock *Dest = Term->getSuccessor(0);
    430       if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM))
    431         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
    432     }
    433   }
    434 
    435   DominatorTree *DT = nullptr;
    436   if (PP) {
    437     // FIXME: Reconstruct dom info, because it is not preserved properly.
    438     // Incrementally updating domtree after loop unrolling would be easy.
    439     if (DominatorTreeWrapperPass *DTWP =
    440             PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
    441       DT = &DTWP->getDomTree();
    442       DT->recalculate(*L->getHeader()->getParent());
    443     }
    444 
    445     // Simplify any new induction variables in the partially unrolled loop.
    446     ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>();
    447     if (SE && !CompletelyUnroll) {
    448       SmallVector<WeakVH, 16> DeadInsts;
    449       simplifyLoopIVs(L, SE, LPM, DeadInsts);
    450 
    451       // Aggressively clean up dead instructions that simplifyLoopIVs already
    452       // identified. Any remaining should be cleaned up below.
    453       while (!DeadInsts.empty())
    454         if (Instruction *Inst =
    455             dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
    456           RecursivelyDeleteTriviallyDeadInstructions(Inst);
    457     }
    458   }
    459   // At this point, the code is well formed.  We now do a quick sweep over the
    460   // inserted code, doing constant propagation and dead code elimination as we
    461   // go.
    462   const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
    463   for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
    464        BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
    465     for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
    466       Instruction *Inst = I++;
    467 
    468       if (isInstructionTriviallyDead(Inst))
    469         (*BB)->getInstList().erase(Inst);
    470       else if (Value *V = SimplifyInstruction(Inst))
    471         if (LI->replacementPreservesLCSSAForm(Inst, V)) {
    472           Inst->replaceAllUsesWith(V);
    473           (*BB)->getInstList().erase(Inst);
    474         }
    475     }
    476 
    477   NumCompletelyUnrolled += CompletelyUnroll;
    478   ++NumUnrolled;
    479 
    480   Loop *OuterL = L->getParentLoop();
    481   // Remove the loop from the LoopPassManager if it's completely removed.
    482   if (CompletelyUnroll && LPM != nullptr)
    483     LPM->deleteLoopFromQueue(L);
    484 
    485   // If we have a pass and a DominatorTree we should re-simplify impacted loops
    486   // to ensure subsequent analyses can rely on this form. We want to simplify
    487   // at least one layer outside of the loop that was unrolled so that any
    488   // changes to the parent loop exposed by the unrolling are considered.
    489   if (PP && DT) {
    490     if (!OuterL && !CompletelyUnroll)
    491       OuterL = L;
    492     if (OuterL) {
    493       DataLayoutPass *DLP = PP->getAnalysisIfAvailable<DataLayoutPass>();
    494       const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr;
    495       ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>();
    496       simplifyLoop(OuterL, DT, LI, PP, /*AliasAnalysis*/ nullptr, SE, DL);
    497 
    498       // LCSSA must be performed on the outermost affected loop. The unrolled
    499       // loop's last loop latch is guaranteed to be in the outermost loop after
    500       // deleteLoopFromQueue updates LoopInfo.
    501       Loop *LatchLoop = LI->getLoopFor(Latches.back());
    502       if (!OuterL->contains(LatchLoop))
    503         while (OuterL->getParentLoop() != LatchLoop)
    504           OuterL = OuterL->getParentLoop();
    505 
    506       formLCSSARecursively(*OuterL, *DT, SE);
    507     }
    508   }
    509 
    510   return true;
    511 }
    512