1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 /* This file contains codegen for the Thumb2 ISA. */ 18 19 #include "arm_lir.h" 20 #include "codegen_arm.h" 21 #include "dex/quick/mir_to_lir-inl.h" 22 #include "dex/reg_storage_eq.h" 23 #include "entrypoints/quick/quick_entrypoints.h" 24 #include "mirror/array.h" 25 26 namespace art { 27 28 LIR* ArmMir2Lir::OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) { 29 OpRegReg(kOpCmp, src1, src2); 30 return OpCondBranch(cond, target); 31 } 32 33 /* 34 * Generate a Thumb2 IT instruction, which can nullify up to 35 * four subsequent instructions based on a condition and its 36 * inverse. The condition applies to the first instruction, which 37 * is executed if the condition is met. The string "guide" consists 38 * of 0 to 3 chars, and applies to the 2nd through 4th instruction. 39 * A "T" means the instruction is executed if the condition is 40 * met, and an "E" means the instruction is executed if the condition 41 * is not met. 42 */ 43 LIR* ArmMir2Lir::OpIT(ConditionCode ccode, const char* guide) { 44 int mask; 45 int mask3 = 0; 46 int mask2 = 0; 47 int mask1 = 0; 48 ArmConditionCode code = ArmConditionEncoding(ccode); 49 int cond_bit = code & 1; 50 int alt_bit = cond_bit ^ 1; 51 52 // Note: case fallthroughs intentional 53 switch (strlen(guide)) { 54 case 3: 55 mask1 = (guide[2] == 'T') ? cond_bit : alt_bit; 56 case 2: 57 mask2 = (guide[1] == 'T') ? cond_bit : alt_bit; 58 case 1: 59 mask3 = (guide[0] == 'T') ? cond_bit : alt_bit; 60 break; 61 case 0: 62 break; 63 default: 64 LOG(FATAL) << "OAT: bad case in OpIT"; 65 } 66 mask = (mask3 << 3) | (mask2 << 2) | (mask1 << 1) | 67 (1 << (3 - strlen(guide))); 68 return NewLIR2(kThumb2It, code, mask); 69 } 70 71 void ArmMir2Lir::UpdateIT(LIR* it, const char* new_guide) { 72 int mask; 73 int mask3 = 0; 74 int mask2 = 0; 75 int mask1 = 0; 76 ArmConditionCode code = static_cast<ArmConditionCode>(it->operands[0]); 77 int cond_bit = code & 1; 78 int alt_bit = cond_bit ^ 1; 79 80 // Note: case fallthroughs intentional 81 switch (strlen(new_guide)) { 82 case 3: 83 mask1 = (new_guide[2] == 'T') ? cond_bit : alt_bit; 84 case 2: 85 mask2 = (new_guide[1] == 'T') ? cond_bit : alt_bit; 86 case 1: 87 mask3 = (new_guide[0] == 'T') ? cond_bit : alt_bit; 88 break; 89 case 0: 90 break; 91 default: 92 LOG(FATAL) << "OAT: bad case in UpdateIT"; 93 } 94 mask = (mask3 << 3) | (mask2 << 2) | (mask1 << 1) | 95 (1 << (3 - strlen(new_guide))); 96 it->operands[1] = mask; 97 } 98 99 void ArmMir2Lir::OpEndIT(LIR* it) { 100 // TODO: use the 'it' pointer to do some checks with the LIR, for example 101 // we could check that the number of instructions matches the mask 102 // in the IT instruction. 103 CHECK(it != nullptr); 104 GenBarrier(); 105 } 106 107 /* 108 * 64-bit 3way compare function. 109 * mov rX, #-1 110 * cmp op1hi, op2hi 111 * blt done 112 * bgt flip 113 * sub rX, op1lo, op2lo (treat as unsigned) 114 * beq done 115 * ite hi 116 * mov(hi) rX, #-1 117 * mov(!hi) rX, #1 118 * flip: 119 * neg rX 120 * done: 121 */ 122 void ArmMir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { 123 LIR* target1; 124 LIR* target2; 125 rl_src1 = LoadValueWide(rl_src1, kCoreReg); 126 rl_src2 = LoadValueWide(rl_src2, kCoreReg); 127 RegStorage t_reg = AllocTemp(); 128 LoadConstant(t_reg, -1); 129 OpRegReg(kOpCmp, rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh()); 130 LIR* branch1 = OpCondBranch(kCondLt, NULL); 131 LIR* branch2 = OpCondBranch(kCondGt, NULL); 132 OpRegRegReg(kOpSub, t_reg, rl_src1.reg.GetLow(), rl_src2.reg.GetLow()); 133 LIR* branch3 = OpCondBranch(kCondEq, NULL); 134 135 LIR* it = OpIT(kCondHi, "E"); 136 NewLIR2(kThumb2MovI8M, t_reg.GetReg(), ModifiedImmediate(-1)); 137 LoadConstant(t_reg, 1); 138 OpEndIT(it); 139 140 target2 = NewLIR0(kPseudoTargetLabel); 141 OpRegReg(kOpNeg, t_reg, t_reg); 142 143 target1 = NewLIR0(kPseudoTargetLabel); 144 145 RegLocation rl_temp = LocCReturn(); // Just using as template, will change 146 rl_temp.reg.SetReg(t_reg.GetReg()); 147 StoreValue(rl_dest, rl_temp); 148 FreeTemp(t_reg); 149 150 branch1->target = target1; 151 branch2->target = target2; 152 branch3->target = branch1->target; 153 } 154 155 void ArmMir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1, 156 int64_t val, ConditionCode ccode) { 157 int32_t val_lo = Low32Bits(val); 158 int32_t val_hi = High32Bits(val); 159 DCHECK_GE(ModifiedImmediate(val_lo), 0); 160 DCHECK_GE(ModifiedImmediate(val_hi), 0); 161 LIR* taken = &block_label_list_[bb->taken]; 162 LIR* not_taken = &block_label_list_[bb->fall_through]; 163 rl_src1 = LoadValueWide(rl_src1, kCoreReg); 164 RegStorage low_reg = rl_src1.reg.GetLow(); 165 RegStorage high_reg = rl_src1.reg.GetHigh(); 166 167 if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) { 168 RegStorage t_reg = AllocTemp(); 169 NewLIR4(kThumb2OrrRRRs, t_reg.GetReg(), low_reg.GetReg(), high_reg.GetReg(), 0); 170 FreeTemp(t_reg); 171 OpCondBranch(ccode, taken); 172 return; 173 } 174 175 switch (ccode) { 176 case kCondEq: 177 case kCondNe: 178 OpCmpImmBranch(kCondNe, high_reg, val_hi, (ccode == kCondEq) ? not_taken : taken); 179 break; 180 case kCondLt: 181 OpCmpImmBranch(kCondLt, high_reg, val_hi, taken); 182 OpCmpImmBranch(kCondGt, high_reg, val_hi, not_taken); 183 ccode = kCondUlt; 184 break; 185 case kCondLe: 186 OpCmpImmBranch(kCondLt, high_reg, val_hi, taken); 187 OpCmpImmBranch(kCondGt, high_reg, val_hi, not_taken); 188 ccode = kCondLs; 189 break; 190 case kCondGt: 191 OpCmpImmBranch(kCondGt, high_reg, val_hi, taken); 192 OpCmpImmBranch(kCondLt, high_reg, val_hi, not_taken); 193 ccode = kCondHi; 194 break; 195 case kCondGe: 196 OpCmpImmBranch(kCondGt, high_reg, val_hi, taken); 197 OpCmpImmBranch(kCondLt, high_reg, val_hi, not_taken); 198 ccode = kCondUge; 199 break; 200 default: 201 LOG(FATAL) << "Unexpected ccode: " << ccode; 202 } 203 OpCmpImmBranch(ccode, low_reg, val_lo, taken); 204 } 205 206 void ArmMir2Lir::GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code, 207 int32_t true_val, int32_t false_val, RegStorage rs_dest, 208 int dest_reg_class) { 209 // TODO: Generalize the IT below to accept more than one-instruction loads. 210 DCHECK(InexpensiveConstantInt(true_val)); 211 DCHECK(InexpensiveConstantInt(false_val)); 212 213 if ((true_val == 0 && code == kCondEq) || 214 (false_val == 0 && code == kCondNe)) { 215 OpRegRegReg(kOpSub, rs_dest, left_op, right_op); 216 DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode)); 217 LIR* it = OpIT(kCondNe, ""); 218 LoadConstant(rs_dest, code == kCondEq ? false_val : true_val); 219 OpEndIT(it); 220 return; 221 } 222 223 OpRegReg(kOpCmp, left_op, right_op); // Same? 224 LIR* it = OpIT(code, "E"); // if-convert the test 225 LoadConstant(rs_dest, true_val); // .eq case - load true 226 LoadConstant(rs_dest, false_val); // .eq case - load true 227 OpEndIT(it); 228 } 229 230 void ArmMir2Lir::GenSelect(BasicBlock* bb, MIR* mir) { 231 RegLocation rl_result; 232 RegLocation rl_src = mir_graph_->GetSrc(mir, 0); 233 RegLocation rl_dest = mir_graph_->GetDest(mir); 234 // Avoid using float regs here. 235 RegisterClass src_reg_class = rl_src.ref ? kRefReg : kCoreReg; 236 RegisterClass result_reg_class = rl_dest.ref ? kRefReg : kCoreReg; 237 rl_src = LoadValue(rl_src, src_reg_class); 238 ConditionCode ccode = mir->meta.ccode; 239 if (mir->ssa_rep->num_uses == 1) { 240 // CONST case 241 int true_val = mir->dalvikInsn.vB; 242 int false_val = mir->dalvikInsn.vC; 243 rl_result = EvalLoc(rl_dest, result_reg_class, true); 244 // Change kCondNe to kCondEq for the special cases below. 245 if (ccode == kCondNe) { 246 ccode = kCondEq; 247 std::swap(true_val, false_val); 248 } 249 bool cheap_false_val = InexpensiveConstantInt(false_val); 250 if (cheap_false_val && ccode == kCondEq && (true_val == 0 || true_val == -1)) { 251 OpRegRegImm(kOpSub, rl_result.reg, rl_src.reg, -true_val); 252 DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode)); 253 LIR* it = OpIT(true_val == 0 ? kCondNe : kCondUge, ""); 254 LoadConstant(rl_result.reg, false_val); 255 OpEndIT(it); // Add a scheduling barrier to keep the IT shadow intact 256 } else if (cheap_false_val && ccode == kCondEq && true_val == 1) { 257 OpRegRegImm(kOpRsub, rl_result.reg, rl_src.reg, 1); 258 DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode)); 259 LIR* it = OpIT(kCondLs, ""); 260 LoadConstant(rl_result.reg, false_val); 261 OpEndIT(it); // Add a scheduling barrier to keep the IT shadow intact 262 } else if (cheap_false_val && InexpensiveConstantInt(true_val)) { 263 OpRegImm(kOpCmp, rl_src.reg, 0); 264 LIR* it = OpIT(ccode, "E"); 265 LoadConstant(rl_result.reg, true_val); 266 LoadConstant(rl_result.reg, false_val); 267 OpEndIT(it); // Add a scheduling barrier to keep the IT shadow intact 268 } else { 269 // Unlikely case - could be tuned. 270 RegStorage t_reg1 = AllocTypedTemp(false, result_reg_class); 271 RegStorage t_reg2 = AllocTypedTemp(false, result_reg_class); 272 LoadConstant(t_reg1, true_val); 273 LoadConstant(t_reg2, false_val); 274 OpRegImm(kOpCmp, rl_src.reg, 0); 275 LIR* it = OpIT(ccode, "E"); 276 OpRegCopy(rl_result.reg, t_reg1); 277 OpRegCopy(rl_result.reg, t_reg2); 278 OpEndIT(it); // Add a scheduling barrier to keep the IT shadow intact 279 } 280 } else { 281 // MOVE case 282 RegLocation rl_true = mir_graph_->reg_location_[mir->ssa_rep->uses[1]]; 283 RegLocation rl_false = mir_graph_->reg_location_[mir->ssa_rep->uses[2]]; 284 rl_true = LoadValue(rl_true, result_reg_class); 285 rl_false = LoadValue(rl_false, result_reg_class); 286 rl_result = EvalLoc(rl_dest, result_reg_class, true); 287 OpRegImm(kOpCmp, rl_src.reg, 0); 288 LIR* it = nullptr; 289 if (rl_result.reg.GetReg() == rl_true.reg.GetReg()) { // Is the "true" case already in place? 290 it = OpIT(NegateComparison(ccode), ""); 291 OpRegCopy(rl_result.reg, rl_false.reg); 292 } else if (rl_result.reg.GetReg() == rl_false.reg.GetReg()) { // False case in place? 293 it = OpIT(ccode, ""); 294 OpRegCopy(rl_result.reg, rl_true.reg); 295 } else { // Normal - select between the two. 296 it = OpIT(ccode, "E"); 297 OpRegCopy(rl_result.reg, rl_true.reg); 298 OpRegCopy(rl_result.reg, rl_false.reg); 299 } 300 OpEndIT(it); // Add a scheduling barrier to keep the IT shadow intact 301 } 302 StoreValue(rl_dest, rl_result); 303 } 304 305 void ArmMir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) { 306 RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0); 307 RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2); 308 // Normalize such that if either operand is constant, src2 will be constant. 309 ConditionCode ccode = mir->meta.ccode; 310 if (rl_src1.is_const) { 311 std::swap(rl_src1, rl_src2); 312 ccode = FlipComparisonOrder(ccode); 313 } 314 if (rl_src2.is_const) { 315 rl_src2 = UpdateLocWide(rl_src2); 316 // Do special compare/branch against simple const operand if not already in registers. 317 int64_t val = mir_graph_->ConstantValueWide(rl_src2); 318 if ((rl_src2.location != kLocPhysReg) && 319 ((ModifiedImmediate(Low32Bits(val)) >= 0) && (ModifiedImmediate(High32Bits(val)) >= 0))) { 320 GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode); 321 return; 322 } 323 } 324 LIR* taken = &block_label_list_[bb->taken]; 325 LIR* not_taken = &block_label_list_[bb->fall_through]; 326 rl_src1 = LoadValueWide(rl_src1, kCoreReg); 327 rl_src2 = LoadValueWide(rl_src2, kCoreReg); 328 OpRegReg(kOpCmp, rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh()); 329 switch (ccode) { 330 case kCondEq: 331 OpCondBranch(kCondNe, not_taken); 332 break; 333 case kCondNe: 334 OpCondBranch(kCondNe, taken); 335 break; 336 case kCondLt: 337 OpCondBranch(kCondLt, taken); 338 OpCondBranch(kCondGt, not_taken); 339 ccode = kCondUlt; 340 break; 341 case kCondLe: 342 OpCondBranch(kCondLt, taken); 343 OpCondBranch(kCondGt, not_taken); 344 ccode = kCondLs; 345 break; 346 case kCondGt: 347 OpCondBranch(kCondGt, taken); 348 OpCondBranch(kCondLt, not_taken); 349 ccode = kCondHi; 350 break; 351 case kCondGe: 352 OpCondBranch(kCondGt, taken); 353 OpCondBranch(kCondLt, not_taken); 354 ccode = kCondUge; 355 break; 356 default: 357 LOG(FATAL) << "Unexpected ccode: " << ccode; 358 } 359 OpRegReg(kOpCmp, rl_src1.reg.GetLow(), rl_src2.reg.GetLow()); 360 OpCondBranch(ccode, taken); 361 } 362 363 /* 364 * Generate a register comparison to an immediate and branch. Caller 365 * is responsible for setting branch target field. 366 */ 367 LIR* ArmMir2Lir::OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, LIR* target) { 368 LIR* branch = nullptr; 369 ArmConditionCode arm_cond = ArmConditionEncoding(cond); 370 /* 371 * A common use of OpCmpImmBranch is for null checks, and using the Thumb 16-bit 372 * compare-and-branch if zero is ideal if it will reach. However, because null checks 373 * branch forward to a slow path, they will frequently not reach - and thus have to 374 * be converted to a long form during assembly (which will trigger another assembly 375 * pass). Here we estimate the branch distance for checks, and if large directly 376 * generate the long form in an attempt to avoid an extra assembly pass. 377 * TODO: consider interspersing slowpaths in code following unconditional branches. 378 */ 379 bool skip = ((target != NULL) && (target->opcode == kPseudoThrowTarget)); 380 skip &= ((cu_->code_item->insns_size_in_code_units_ - current_dalvik_offset_) > 64); 381 if (!skip && reg.Low8() && (check_value == 0)) { 382 if (arm_cond == kArmCondEq || arm_cond == kArmCondNe) { 383 branch = NewLIR2((arm_cond == kArmCondEq) ? kThumb2Cbz : kThumb2Cbnz, 384 reg.GetReg(), 0); 385 } else if (arm_cond == kArmCondLs) { 386 // kArmCondLs is an unsigned less or equal. A comparison r <= 0 is then the same as cbz. 387 // This case happens for a bounds check of array[0]. 388 branch = NewLIR2(kThumb2Cbz, reg.GetReg(), 0); 389 } 390 } 391 392 if (branch == nullptr) { 393 OpRegImm(kOpCmp, reg, check_value); 394 branch = NewLIR2(kThumbBCond, 0, arm_cond); 395 } 396 397 branch->target = target; 398 return branch; 399 } 400 401 LIR* ArmMir2Lir::OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) { 402 LIR* res; 403 int opcode; 404 // If src or dest is a pair, we'll be using low reg. 405 if (r_dest.IsPair()) { 406 r_dest = r_dest.GetLow(); 407 } 408 if (r_src.IsPair()) { 409 r_src = r_src.GetLow(); 410 } 411 if (r_dest.IsFloat() || r_src.IsFloat()) 412 return OpFpRegCopy(r_dest, r_src); 413 if (r_dest.Low8() && r_src.Low8()) 414 opcode = kThumbMovRR; 415 else if (!r_dest.Low8() && !r_src.Low8()) 416 opcode = kThumbMovRR_H2H; 417 else if (r_dest.Low8()) 418 opcode = kThumbMovRR_H2L; 419 else 420 opcode = kThumbMovRR_L2H; 421 res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg()); 422 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) { 423 res->flags.is_nop = true; 424 } 425 return res; 426 } 427 428 void ArmMir2Lir::OpRegCopy(RegStorage r_dest, RegStorage r_src) { 429 if (r_dest != r_src) { 430 LIR* res = OpRegCopyNoInsert(r_dest, r_src); 431 AppendLIR(res); 432 } 433 } 434 435 void ArmMir2Lir::OpRegCopyWide(RegStorage r_dest, RegStorage r_src) { 436 if (r_dest != r_src) { 437 bool dest_fp = r_dest.IsFloat(); 438 bool src_fp = r_src.IsFloat(); 439 DCHECK(r_dest.Is64Bit()); 440 DCHECK(r_src.Is64Bit()); 441 if (dest_fp) { 442 if (src_fp) { 443 OpRegCopy(r_dest, r_src); 444 } else { 445 NewLIR3(kThumb2Fmdrr, r_dest.GetReg(), r_src.GetLowReg(), r_src.GetHighReg()); 446 } 447 } else { 448 if (src_fp) { 449 NewLIR3(kThumb2Fmrrd, r_dest.GetLowReg(), r_dest.GetHighReg(), r_src.GetReg()); 450 } else { 451 // Handle overlap 452 if (r_src.GetHighReg() == r_dest.GetLowReg()) { 453 DCHECK_NE(r_src.GetLowReg(), r_dest.GetHighReg()); 454 OpRegCopy(r_dest.GetHigh(), r_src.GetHigh()); 455 OpRegCopy(r_dest.GetLow(), r_src.GetLow()); 456 } else { 457 OpRegCopy(r_dest.GetLow(), r_src.GetLow()); 458 OpRegCopy(r_dest.GetHigh(), r_src.GetHigh()); 459 } 460 } 461 } 462 } 463 } 464 465 // Table of magic divisors 466 struct MagicTable { 467 uint32_t magic; 468 uint32_t shift; 469 DividePattern pattern; 470 }; 471 472 static const MagicTable magic_table[] = { 473 {0, 0, DivideNone}, // 0 474 {0, 0, DivideNone}, // 1 475 {0, 0, DivideNone}, // 2 476 {0x55555556, 0, Divide3}, // 3 477 {0, 0, DivideNone}, // 4 478 {0x66666667, 1, Divide5}, // 5 479 {0x2AAAAAAB, 0, Divide3}, // 6 480 {0x92492493, 2, Divide7}, // 7 481 {0, 0, DivideNone}, // 8 482 {0x38E38E39, 1, Divide5}, // 9 483 {0x66666667, 2, Divide5}, // 10 484 {0x2E8BA2E9, 1, Divide5}, // 11 485 {0x2AAAAAAB, 1, Divide5}, // 12 486 {0x4EC4EC4F, 2, Divide5}, // 13 487 {0x92492493, 3, Divide7}, // 14 488 {0x88888889, 3, Divide7}, // 15 489 }; 490 491 // Integer division by constant via reciprocal multiply (Hacker's Delight, 10-4) 492 bool ArmMir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, 493 RegLocation rl_src, RegLocation rl_dest, int lit) { 494 if ((lit < 0) || (lit >= static_cast<int>(sizeof(magic_table)/sizeof(magic_table[0])))) { 495 return false; 496 } 497 DividePattern pattern = magic_table[lit].pattern; 498 if (pattern == DivideNone) { 499 return false; 500 } 501 502 RegStorage r_magic = AllocTemp(); 503 LoadConstant(r_magic, magic_table[lit].magic); 504 rl_src = LoadValue(rl_src, kCoreReg); 505 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); 506 RegStorage r_hi = AllocTemp(); 507 RegStorage r_lo = AllocTemp(); 508 509 // rl_dest and rl_src might overlap. 510 // Reuse r_hi to save the div result for reminder case. 511 RegStorage r_div_result = is_div ? rl_result.reg : r_hi; 512 513 NewLIR4(kThumb2Smull, r_lo.GetReg(), r_hi.GetReg(), r_magic.GetReg(), rl_src.reg.GetReg()); 514 switch (pattern) { 515 case Divide3: 516 OpRegRegRegShift(kOpSub, r_div_result, r_hi, rl_src.reg, EncodeShift(kArmAsr, 31)); 517 break; 518 case Divide5: 519 OpRegRegImm(kOpAsr, r_lo, rl_src.reg, 31); 520 OpRegRegRegShift(kOpRsub, r_div_result, r_lo, r_hi, 521 EncodeShift(kArmAsr, magic_table[lit].shift)); 522 break; 523 case Divide7: 524 OpRegReg(kOpAdd, r_hi, rl_src.reg); 525 OpRegRegImm(kOpAsr, r_lo, rl_src.reg, 31); 526 OpRegRegRegShift(kOpRsub, r_div_result, r_lo, r_hi, 527 EncodeShift(kArmAsr, magic_table[lit].shift)); 528 break; 529 default: 530 LOG(FATAL) << "Unexpected pattern: " << pattern; 531 } 532 533 if (!is_div) { 534 // div_result = src / lit 535 // tmp1 = div_result * lit 536 // dest = src - tmp1 537 RegStorage tmp1 = r_lo; 538 EasyMultiplyOp ops[2]; 539 540 bool canEasyMultiply = GetEasyMultiplyTwoOps(lit, ops); 541 DCHECK_NE(canEasyMultiply, false); 542 543 GenEasyMultiplyTwoOps(tmp1, r_div_result, ops); 544 OpRegRegReg(kOpSub, rl_result.reg, rl_src.reg, tmp1); 545 } 546 547 StoreValue(rl_dest, rl_result); 548 return true; 549 } 550 551 // Try to convert *lit to 1 RegRegRegShift/RegRegShift form. 552 bool ArmMir2Lir::GetEasyMultiplyOp(int lit, ArmMir2Lir::EasyMultiplyOp* op) { 553 if (lit == 0) { 554 // Special case for *divide-by-zero*. The ops won't actually be used to generate code, as 555 // GenArithOpIntLit will directly generate exception-throwing code, and multiply-by-zero will 556 // have been optimized away earlier. 557 op->op = kOpInvalid; 558 return true; 559 } 560 561 if (IsPowerOfTwo(lit)) { 562 op->op = kOpLsl; 563 op->shift = LowestSetBit(lit); 564 return true; 565 } 566 567 if (IsPowerOfTwo(lit - 1)) { 568 op->op = kOpAdd; 569 op->shift = LowestSetBit(lit - 1); 570 return true; 571 } 572 573 if (IsPowerOfTwo(lit + 1)) { 574 op->op = kOpRsub; 575 op->shift = LowestSetBit(lit + 1); 576 return true; 577 } 578 579 op->op = kOpInvalid; 580 op->shift = 0; 581 return false; 582 } 583 584 // Try to convert *lit to 1~2 RegRegRegShift/RegRegShift forms. 585 bool ArmMir2Lir::GetEasyMultiplyTwoOps(int lit, EasyMultiplyOp* ops) { 586 GetEasyMultiplyOp(lit, &ops[0]); 587 if (GetEasyMultiplyOp(lit, &ops[0])) { 588 ops[1].op = kOpInvalid; 589 ops[1].shift = 0; 590 return true; 591 } 592 593 int lit1 = lit; 594 uint32_t shift = LowestSetBit(lit1); 595 if (GetEasyMultiplyOp(lit1 >> shift, &ops[0])) { 596 ops[1].op = kOpLsl; 597 ops[1].shift = shift; 598 return true; 599 } 600 601 lit1 = lit - 1; 602 shift = LowestSetBit(lit1); 603 if (GetEasyMultiplyOp(lit1 >> shift, &ops[0])) { 604 ops[1].op = kOpAdd; 605 ops[1].shift = shift; 606 return true; 607 } 608 609 lit1 = lit + 1; 610 shift = LowestSetBit(lit1); 611 if (GetEasyMultiplyOp(lit1 >> shift, &ops[0])) { 612 ops[1].op = kOpRsub; 613 ops[1].shift = shift; 614 return true; 615 } 616 617 return false; 618 } 619 620 // Generate instructions to do multiply. 621 // Additional temporary register is required, 622 // if it need to generate 2 instructions and src/dest overlap. 623 void ArmMir2Lir::GenEasyMultiplyTwoOps(RegStorage r_dest, RegStorage r_src, EasyMultiplyOp* ops) { 624 // tmp1 = ( src << shift1) + [ src | -src | 0 ] 625 // dest = (tmp1 << shift2) + [ src | -src | 0 ] 626 627 RegStorage r_tmp1; 628 if (ops[1].op == kOpInvalid) { 629 r_tmp1 = r_dest; 630 } else if (r_dest.GetReg() != r_src.GetReg()) { 631 r_tmp1 = r_dest; 632 } else { 633 r_tmp1 = AllocTemp(); 634 } 635 636 switch (ops[0].op) { 637 case kOpLsl: 638 OpRegRegImm(kOpLsl, r_tmp1, r_src, ops[0].shift); 639 break; 640 case kOpAdd: 641 OpRegRegRegShift(kOpAdd, r_tmp1, r_src, r_src, EncodeShift(kArmLsl, ops[0].shift)); 642 break; 643 case kOpRsub: 644 OpRegRegRegShift(kOpRsub, r_tmp1, r_src, r_src, EncodeShift(kArmLsl, ops[0].shift)); 645 break; 646 default: 647 DCHECK_EQ(ops[0].op, kOpInvalid); 648 break; 649 } 650 651 switch (ops[1].op) { 652 case kOpInvalid: 653 return; 654 case kOpLsl: 655 OpRegRegImm(kOpLsl, r_dest, r_tmp1, ops[1].shift); 656 break; 657 case kOpAdd: 658 OpRegRegRegShift(kOpAdd, r_dest, r_src, r_tmp1, EncodeShift(kArmLsl, ops[1].shift)); 659 break; 660 case kOpRsub: 661 OpRegRegRegShift(kOpRsub, r_dest, r_src, r_tmp1, EncodeShift(kArmLsl, ops[1].shift)); 662 break; 663 default: 664 LOG(FATAL) << "Unexpected opcode passed to GenEasyMultiplyTwoOps"; 665 break; 666 } 667 } 668 669 bool ArmMir2Lir::EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) { 670 EasyMultiplyOp ops[2]; 671 672 if (!GetEasyMultiplyTwoOps(lit, ops)) { 673 return false; 674 } 675 676 rl_src = LoadValue(rl_src, kCoreReg); 677 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); 678 679 GenEasyMultiplyTwoOps(rl_result.reg, rl_src.reg, ops); 680 StoreValue(rl_dest, rl_result); 681 return true; 682 } 683 684 RegLocation ArmMir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1, 685 RegLocation rl_src2, bool is_div, bool check_zero) { 686 LOG(FATAL) << "Unexpected use of GenDivRem for Arm"; 687 return rl_dest; 688 } 689 690 RegLocation ArmMir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit, bool is_div) { 691 LOG(FATAL) << "Unexpected use of GenDivRemLit for Arm"; 692 return rl_dest; 693 } 694 695 RegLocation ArmMir2Lir::GenDivRemLit(RegLocation rl_dest, RegStorage reg1, int lit, bool is_div) { 696 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); 697 698 // Put the literal in a temp. 699 RegStorage lit_temp = AllocTemp(); 700 LoadConstant(lit_temp, lit); 701 // Use the generic case for div/rem with arg2 in a register. 702 // TODO: The literal temp can be freed earlier during a modulus to reduce reg pressure. 703 rl_result = GenDivRem(rl_result, reg1, lit_temp, is_div); 704 FreeTemp(lit_temp); 705 706 return rl_result; 707 } 708 709 RegLocation ArmMir2Lir::GenDivRem(RegLocation rl_dest, RegStorage reg1, RegStorage reg2, 710 bool is_div) { 711 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); 712 if (is_div) { 713 // Simple case, use sdiv instruction. 714 OpRegRegReg(kOpDiv, rl_result.reg, reg1, reg2); 715 } else { 716 // Remainder case, use the following code: 717 // temp = reg1 / reg2 - integer division 718 // temp = temp * reg2 719 // dest = reg1 - temp 720 721 RegStorage temp = AllocTemp(); 722 OpRegRegReg(kOpDiv, temp, reg1, reg2); 723 OpRegReg(kOpMul, temp, reg2); 724 OpRegRegReg(kOpSub, rl_result.reg, reg1, temp); 725 FreeTemp(temp); 726 } 727 728 return rl_result; 729 } 730 731 bool ArmMir2Lir::GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) { 732 DCHECK_EQ(cu_->instruction_set, kThumb2); 733 if (is_long) { 734 return false; 735 } 736 RegLocation rl_src1 = info->args[0]; 737 RegLocation rl_src2 = info->args[1]; 738 rl_src1 = LoadValue(rl_src1, kCoreReg); 739 rl_src2 = LoadValue(rl_src2, kCoreReg); 740 RegLocation rl_dest = InlineTarget(info); 741 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); 742 OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg); 743 LIR* it = OpIT((is_min) ? kCondGt : kCondLt, "E"); 744 OpRegReg(kOpMov, rl_result.reg, rl_src2.reg); 745 OpRegReg(kOpMov, rl_result.reg, rl_src1.reg); 746 OpEndIT(it); 747 StoreValue(rl_dest, rl_result); 748 return true; 749 } 750 751 bool ArmMir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) { 752 RegLocation rl_src_address = info->args[0]; // long address 753 rl_src_address = NarrowRegLoc(rl_src_address); // ignore high half in info->args[1] 754 RegLocation rl_dest = InlineTarget(info); 755 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg); 756 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); 757 if (size == k64) { 758 // Fake unaligned LDRD by two unaligned LDR instructions on ARMv7 with SCTLR.A set to 0. 759 if (rl_address.reg.GetReg() != rl_result.reg.GetLowReg()) { 760 Load32Disp(rl_address.reg, 0, rl_result.reg.GetLow()); 761 Load32Disp(rl_address.reg, 4, rl_result.reg.GetHigh()); 762 } else { 763 Load32Disp(rl_address.reg, 4, rl_result.reg.GetHigh()); 764 Load32Disp(rl_address.reg, 0, rl_result.reg.GetLow()); 765 } 766 StoreValueWide(rl_dest, rl_result); 767 } else { 768 DCHECK(size == kSignedByte || size == kSignedHalf || size == k32); 769 // Unaligned load with LDR and LDRSH is allowed on ARMv7 with SCTLR.A set to 0. 770 LoadBaseDisp(rl_address.reg, 0, rl_result.reg, size, kNotVolatile); 771 StoreValue(rl_dest, rl_result); 772 } 773 return true; 774 } 775 776 bool ArmMir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) { 777 RegLocation rl_src_address = info->args[0]; // long address 778 rl_src_address = NarrowRegLoc(rl_src_address); // ignore high half in info->args[1] 779 RegLocation rl_src_value = info->args[2]; // [size] value 780 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg); 781 if (size == k64) { 782 // Fake unaligned STRD by two unaligned STR instructions on ARMv7 with SCTLR.A set to 0. 783 RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg); 784 StoreBaseDisp(rl_address.reg, 0, rl_value.reg.GetLow(), k32, kNotVolatile); 785 StoreBaseDisp(rl_address.reg, 4, rl_value.reg.GetHigh(), k32, kNotVolatile); 786 } else { 787 DCHECK(size == kSignedByte || size == kSignedHalf || size == k32); 788 // Unaligned store with STR and STRSH is allowed on ARMv7 with SCTLR.A set to 0. 789 RegLocation rl_value = LoadValue(rl_src_value, kCoreReg); 790 StoreBaseDisp(rl_address.reg, 0, rl_value.reg, size, kNotVolatile); 791 } 792 return true; 793 } 794 795 // Generate a CAS with memory_order_seq_cst semantics. 796 bool ArmMir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) { 797 DCHECK_EQ(cu_->instruction_set, kThumb2); 798 // Unused - RegLocation rl_src_unsafe = info->args[0]; 799 RegLocation rl_src_obj = info->args[1]; // Object - known non-null 800 RegLocation rl_src_offset = info->args[2]; // long low 801 rl_src_offset = NarrowRegLoc(rl_src_offset); // ignore high half in info->args[3] 802 RegLocation rl_src_expected = info->args[4]; // int, long or Object 803 // If is_long, high half is in info->args[5] 804 RegLocation rl_src_new_value = info->args[is_long ? 6 : 5]; // int, long or Object 805 // If is_long, high half is in info->args[7] 806 RegLocation rl_dest = InlineTarget(info); // boolean place for result 807 808 // We have only 5 temporary registers available and actually only 4 if the InlineTarget 809 // above locked one of the temps. For a straightforward CAS64 we need 7 registers: 810 // r_ptr (1), new_value (2), expected(2) and ldrexd result (2). If neither expected nor 811 // new_value is in a non-temp core register we shall reload them in the ldrex/strex loop 812 // into the same temps, reducing the number of required temps down to 5. We shall work 813 // around the potentially locked temp by using LR for r_ptr, unconditionally. 814 // TODO: Pass information about the need for more temps to the stack frame generation 815 // code so that we can rely on being able to allocate enough temps. 816 DCHECK(!GetRegInfo(rs_rARM_LR)->IsTemp()); 817 MarkTemp(rs_rARM_LR); 818 FreeTemp(rs_rARM_LR); 819 LockTemp(rs_rARM_LR); 820 bool load_early = true; 821 if (is_long) { 822 RegStorage expected_reg = rl_src_expected.reg.IsPair() ? rl_src_expected.reg.GetLow() : 823 rl_src_expected.reg; 824 RegStorage new_val_reg = rl_src_new_value.reg.IsPair() ? rl_src_new_value.reg.GetLow() : 825 rl_src_new_value.reg; 826 bool expected_is_core_reg = rl_src_expected.location == kLocPhysReg && !expected_reg.IsFloat(); 827 bool new_value_is_core_reg = rl_src_new_value.location == kLocPhysReg && !new_val_reg.IsFloat(); 828 bool expected_is_good_reg = expected_is_core_reg && !IsTemp(expected_reg); 829 bool new_value_is_good_reg = new_value_is_core_reg && !IsTemp(new_val_reg); 830 831 if (!expected_is_good_reg && !new_value_is_good_reg) { 832 // None of expected/new_value is non-temp reg, need to load both late 833 load_early = false; 834 // Make sure they are not in the temp regs and the load will not be skipped. 835 if (expected_is_core_reg) { 836 FlushRegWide(rl_src_expected.reg); 837 ClobberSReg(rl_src_expected.s_reg_low); 838 ClobberSReg(GetSRegHi(rl_src_expected.s_reg_low)); 839 rl_src_expected.location = kLocDalvikFrame; 840 } 841 if (new_value_is_core_reg) { 842 FlushRegWide(rl_src_new_value.reg); 843 ClobberSReg(rl_src_new_value.s_reg_low); 844 ClobberSReg(GetSRegHi(rl_src_new_value.s_reg_low)); 845 rl_src_new_value.location = kLocDalvikFrame; 846 } 847 } 848 } 849 850 // Prevent reordering with prior memory operations. 851 GenMemBarrier(kAnyStore); 852 853 RegLocation rl_object = LoadValue(rl_src_obj, kRefReg); 854 RegLocation rl_new_value; 855 if (!is_long) { 856 rl_new_value = LoadValue(rl_src_new_value); 857 } else if (load_early) { 858 rl_new_value = LoadValueWide(rl_src_new_value, kCoreReg); 859 } 860 861 if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) { 862 // Mark card for object assuming new value is stored. 863 MarkGCCard(rl_new_value.reg, rl_object.reg); 864 } 865 866 RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg); 867 868 RegStorage r_ptr = rs_rARM_LR; 869 OpRegRegReg(kOpAdd, r_ptr, rl_object.reg, rl_offset.reg); 870 871 // Free now unneeded rl_object and rl_offset to give more temps. 872 ClobberSReg(rl_object.s_reg_low); 873 FreeTemp(rl_object.reg); 874 ClobberSReg(rl_offset.s_reg_low); 875 FreeTemp(rl_offset.reg); 876 877 RegLocation rl_expected; 878 if (!is_long) { 879 rl_expected = LoadValue(rl_src_expected); 880 } else if (load_early) { 881 rl_expected = LoadValueWide(rl_src_expected, kCoreReg); 882 } else { 883 // NOTE: partially defined rl_expected & rl_new_value - but we just want the regs. 884 RegStorage low_reg = AllocTemp(); 885 RegStorage high_reg = AllocTemp(); 886 rl_new_value.reg = RegStorage::MakeRegPair(low_reg, high_reg); 887 rl_expected = rl_new_value; 888 } 889 890 // do { 891 // tmp = [r_ptr] - expected; 892 // } while (tmp == 0 && failure([r_ptr] <- r_new_value)); 893 // result = tmp != 0; 894 895 RegStorage r_tmp = AllocTemp(); 896 LIR* target = NewLIR0(kPseudoTargetLabel); 897 898 LIR* it = nullptr; 899 if (is_long) { 900 RegStorage r_tmp_high = AllocTemp(); 901 if (!load_early) { 902 LoadValueDirectWide(rl_src_expected, rl_expected.reg); 903 } 904 NewLIR3(kThumb2Ldrexd, r_tmp.GetReg(), r_tmp_high.GetReg(), r_ptr.GetReg()); 905 OpRegReg(kOpSub, r_tmp, rl_expected.reg.GetLow()); 906 OpRegReg(kOpSub, r_tmp_high, rl_expected.reg.GetHigh()); 907 if (!load_early) { 908 LoadValueDirectWide(rl_src_new_value, rl_new_value.reg); 909 } 910 // Make sure we use ORR that sets the ccode 911 if (r_tmp.Low8() && r_tmp_high.Low8()) { 912 NewLIR2(kThumbOrr, r_tmp.GetReg(), r_tmp_high.GetReg()); 913 } else { 914 NewLIR4(kThumb2OrrRRRs, r_tmp.GetReg(), r_tmp.GetReg(), r_tmp_high.GetReg(), 0); 915 } 916 FreeTemp(r_tmp_high); // Now unneeded 917 918 DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode)); 919 it = OpIT(kCondEq, "T"); 920 NewLIR4(kThumb2Strexd /* eq */, r_tmp.GetReg(), rl_new_value.reg.GetLowReg(), rl_new_value.reg.GetHighReg(), r_ptr.GetReg()); 921 922 } else { 923 NewLIR3(kThumb2Ldrex, r_tmp.GetReg(), r_ptr.GetReg(), 0); 924 OpRegReg(kOpSub, r_tmp, rl_expected.reg); 925 DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode)); 926 it = OpIT(kCondEq, "T"); 927 NewLIR4(kThumb2Strex /* eq */, r_tmp.GetReg(), rl_new_value.reg.GetReg(), r_ptr.GetReg(), 0); 928 } 929 930 // Still one conditional left from OpIT(kCondEq, "T") from either branch 931 OpRegImm(kOpCmp /* eq */, r_tmp, 1); 932 OpEndIT(it); 933 934 OpCondBranch(kCondEq, target); 935 936 if (!load_early) { 937 FreeTemp(rl_expected.reg); // Now unneeded. 938 } 939 940 // Prevent reordering with subsequent memory operations. 941 GenMemBarrier(kLoadAny); 942 943 // result := (tmp1 != 0) ? 0 : 1; 944 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); 945 OpRegRegImm(kOpRsub, rl_result.reg, r_tmp, 1); 946 DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode)); 947 it = OpIT(kCondUlt, ""); 948 LoadConstant(rl_result.reg, 0); /* cc */ 949 FreeTemp(r_tmp); // Now unneeded. 950 OpEndIT(it); // Barrier to terminate OpIT. 951 952 StoreValue(rl_dest, rl_result); 953 954 // Now, restore lr to its non-temp status. 955 Clobber(rs_rARM_LR); 956 UnmarkTemp(rs_rARM_LR); 957 return true; 958 } 959 960 bool ArmMir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) { 961 constexpr int kLargeArrayThreshold = 256; 962 963 RegLocation rl_src = info->args[0]; 964 RegLocation rl_src_pos = info->args[1]; 965 RegLocation rl_dst = info->args[2]; 966 RegLocation rl_dst_pos = info->args[3]; 967 RegLocation rl_length = info->args[4]; 968 // Compile time check, handle exception by non-inline method to reduce related meta-data. 969 if ((rl_src_pos.is_const && (mir_graph_->ConstantValue(rl_src_pos) < 0)) || 970 (rl_dst_pos.is_const && (mir_graph_->ConstantValue(rl_dst_pos) < 0)) || 971 (rl_length.is_const && (mir_graph_->ConstantValue(rl_length) < 0))) { 972 return false; 973 } 974 975 ClobberCallerSave(); 976 LockCallTemps(); // Prepare for explicit register usage. 977 LockTemp(rs_r12); 978 RegStorage rs_src = rs_r0; 979 RegStorage rs_dst = rs_r1; 980 LoadValueDirectFixed(rl_src, rs_src); 981 LoadValueDirectFixed(rl_dst, rs_dst); 982 983 // Handle null pointer exception in slow-path. 984 LIR* src_check_branch = OpCmpImmBranch(kCondEq, rs_src, 0, nullptr); 985 LIR* dst_check_branch = OpCmpImmBranch(kCondEq, rs_dst, 0, nullptr); 986 // Handle potential overlapping in slow-path. 987 LIR* src_dst_same = OpCmpBranch(kCondEq, rs_src, rs_dst, nullptr); 988 // Handle exception or big length in slow-path. 989 RegStorage rs_length = rs_r2; 990 LoadValueDirectFixed(rl_length, rs_length); 991 LIR* len_neg_or_too_big = OpCmpImmBranch(kCondHi, rs_length, kLargeArrayThreshold, nullptr); 992 // Src bounds check. 993 RegStorage rs_pos = rs_r3; 994 RegStorage rs_arr_length = rs_r12; 995 LoadValueDirectFixed(rl_src_pos, rs_pos); 996 LIR* src_pos_negative = OpCmpImmBranch(kCondLt, rs_pos, 0, nullptr); 997 Load32Disp(rs_src, mirror::Array::LengthOffset().Int32Value(), rs_arr_length); 998 OpRegReg(kOpSub, rs_arr_length, rs_pos); 999 LIR* src_bad_len = OpCmpBranch(kCondLt, rs_arr_length, rs_length, nullptr); 1000 // Dst bounds check. 1001 LoadValueDirectFixed(rl_dst_pos, rs_pos); 1002 LIR* dst_pos_negative = OpCmpImmBranch(kCondLt, rs_pos, 0, nullptr); 1003 Load32Disp(rs_dst, mirror::Array::LengthOffset().Int32Value(), rs_arr_length); 1004 OpRegReg(kOpSub, rs_arr_length, rs_pos); 1005 LIR* dst_bad_len = OpCmpBranch(kCondLt, rs_arr_length, rs_length, nullptr); 1006 1007 // Everything is checked now. 1008 OpRegImm(kOpAdd, rs_dst, mirror::Array::DataOffset(2).Int32Value()); 1009 OpRegReg(kOpAdd, rs_dst, rs_pos); 1010 OpRegReg(kOpAdd, rs_dst, rs_pos); 1011 OpRegImm(kOpAdd, rs_src, mirror::Array::DataOffset(2).Int32Value()); 1012 LoadValueDirectFixed(rl_src_pos, rs_pos); 1013 OpRegReg(kOpAdd, rs_src, rs_pos); 1014 OpRegReg(kOpAdd, rs_src, rs_pos); 1015 1016 RegStorage rs_tmp = rs_pos; 1017 OpRegRegImm(kOpLsl, rs_length, rs_length, 1); 1018 1019 // Copy one element. 1020 OpRegRegImm(kOpAnd, rs_tmp, rs_length, 2); 1021 LIR* jmp_to_begin_loop = OpCmpImmBranch(kCondEq, rs_tmp, 0, nullptr); 1022 OpRegImm(kOpSub, rs_length, 2); 1023 LoadBaseIndexed(rs_src, rs_length, rs_tmp, 0, kSignedHalf); 1024 StoreBaseIndexed(rs_dst, rs_length, rs_tmp, 0, kSignedHalf); 1025 1026 // Copy two elements. 1027 LIR *begin_loop = NewLIR0(kPseudoTargetLabel); 1028 LIR* jmp_to_ret = OpCmpImmBranch(kCondEq, rs_length, 0, nullptr); 1029 OpRegImm(kOpSub, rs_length, 4); 1030 LoadBaseIndexed(rs_src, rs_length, rs_tmp, 0, k32); 1031 StoreBaseIndexed(rs_dst, rs_length, rs_tmp, 0, k32); 1032 OpUnconditionalBranch(begin_loop); 1033 1034 LIR *check_failed = NewLIR0(kPseudoTargetLabel); 1035 LIR* launchpad_branch = OpUnconditionalBranch(nullptr); 1036 LIR* return_point = NewLIR0(kPseudoTargetLabel); 1037 1038 src_check_branch->target = check_failed; 1039 dst_check_branch->target = check_failed; 1040 src_dst_same->target = check_failed; 1041 len_neg_or_too_big->target = check_failed; 1042 src_pos_negative->target = check_failed; 1043 src_bad_len->target = check_failed; 1044 dst_pos_negative->target = check_failed; 1045 dst_bad_len->target = check_failed; 1046 jmp_to_begin_loop->target = begin_loop; 1047 jmp_to_ret->target = return_point; 1048 1049 AddIntrinsicSlowPath(info, launchpad_branch, return_point); 1050 ClobberCallerSave(); // We must clobber everything because slow path will return here 1051 1052 return true; 1053 } 1054 1055 LIR* ArmMir2Lir::OpPcRelLoad(RegStorage reg, LIR* target) { 1056 return RawLIR(current_dalvik_offset_, kThumb2LdrPcRel12, reg.GetReg(), 0, 0, 0, 0, target); 1057 } 1058 1059 LIR* ArmMir2Lir::OpVldm(RegStorage r_base, int count) { 1060 return NewLIR3(kThumb2Vldms, r_base.GetReg(), rs_fr0.GetReg(), count); 1061 } 1062 1063 LIR* ArmMir2Lir::OpVstm(RegStorage r_base, int count) { 1064 return NewLIR3(kThumb2Vstms, r_base.GetReg(), rs_fr0.GetReg(), count); 1065 } 1066 1067 void ArmMir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src, 1068 RegLocation rl_result, int lit, 1069 int first_bit, int second_bit) { 1070 OpRegRegRegShift(kOpAdd, rl_result.reg, rl_src.reg, rl_src.reg, 1071 EncodeShift(kArmLsl, second_bit - first_bit)); 1072 if (first_bit != 0) { 1073 OpRegRegImm(kOpLsl, rl_result.reg, rl_result.reg, first_bit); 1074 } 1075 } 1076 1077 void ArmMir2Lir::GenDivZeroCheckWide(RegStorage reg) { 1078 DCHECK(reg.IsPair()); // TODO: support k64BitSolo. 1079 RegStorage t_reg = AllocTemp(); 1080 NewLIR4(kThumb2OrrRRRs, t_reg.GetReg(), reg.GetLowReg(), reg.GetHighReg(), 0); 1081 FreeTemp(t_reg); 1082 GenDivZeroCheck(kCondEq); 1083 } 1084 1085 // Test suspend flag, return target of taken suspend branch 1086 LIR* ArmMir2Lir::OpTestSuspend(LIR* target) { 1087 #ifdef ARM_R4_SUSPEND_FLAG 1088 NewLIR2(kThumbSubRI8, rs_rARM_SUSPEND.GetReg(), 1); 1089 return OpCondBranch((target == NULL) ? kCondEq : kCondNe, target); 1090 #else 1091 RegStorage t_reg = AllocTemp(); 1092 LoadBaseDisp(rs_rARM_SELF, Thread::ThreadFlagsOffset<4>().Int32Value(), 1093 t_reg, kUnsignedHalf); 1094 LIR* cmp_branch = OpCmpImmBranch((target == NULL) ? kCondNe : kCondEq, t_reg, 1095 0, target); 1096 FreeTemp(t_reg); 1097 return cmp_branch; 1098 #endif 1099 } 1100 1101 // Decrement register and branch on condition 1102 LIR* ArmMir2Lir::OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) { 1103 // Combine sub & test using sub setflags encoding here 1104 OpRegRegImm(kOpSub, reg, reg, 1); // For value == 1, this should set flags. 1105 DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode)); 1106 return OpCondBranch(c_code, target); 1107 } 1108 1109 bool ArmMir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) { 1110 #if ANDROID_SMP != 0 1111 // Start off with using the last LIR as the barrier. If it is not enough, then we will generate one. 1112 LIR* barrier = last_lir_insn_; 1113 1114 int dmb_flavor; 1115 // TODO: revisit Arm barrier kinds 1116 switch (barrier_kind) { 1117 case kAnyStore: dmb_flavor = kISH; break; 1118 case kLoadAny: dmb_flavor = kISH; break; 1119 case kStoreStore: dmb_flavor = kISHST; break; 1120 case kAnyAny: dmb_flavor = kISH; break; 1121 default: 1122 LOG(FATAL) << "Unexpected MemBarrierKind: " << barrier_kind; 1123 dmb_flavor = kSY; // quiet gcc. 1124 break; 1125 } 1126 1127 bool ret = false; 1128 1129 // If the same barrier already exists, don't generate another. 1130 if (barrier == nullptr 1131 || (barrier != nullptr && (barrier->opcode != kThumb2Dmb || barrier->operands[0] != dmb_flavor))) { 1132 barrier = NewLIR1(kThumb2Dmb, dmb_flavor); 1133 ret = true; 1134 } 1135 1136 // At this point we must have a memory barrier. Mark it as a scheduling barrier as well. 1137 DCHECK(!barrier->flags.use_def_invalid); 1138 barrier->u.m.def_mask = &kEncodeAll; 1139 return ret; 1140 #else 1141 return false; 1142 #endif 1143 } 1144 1145 void ArmMir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) { 1146 rl_src = LoadValueWide(rl_src, kCoreReg); 1147 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); 1148 RegStorage z_reg = AllocTemp(); 1149 LoadConstantNoClobber(z_reg, 0); 1150 // Check for destructive overlap 1151 if (rl_result.reg.GetLowReg() == rl_src.reg.GetHighReg()) { 1152 RegStorage t_reg = AllocTemp(); 1153 OpRegCopy(t_reg, rl_result.reg.GetLow()); 1154 OpRegRegReg(kOpSub, rl_result.reg.GetLow(), z_reg, rl_src.reg.GetLow()); 1155 OpRegRegReg(kOpSbc, rl_result.reg.GetHigh(), z_reg, t_reg); 1156 FreeTemp(t_reg); 1157 } else { 1158 OpRegRegReg(kOpSub, rl_result.reg.GetLow(), z_reg, rl_src.reg.GetLow()); 1159 OpRegRegReg(kOpSbc, rl_result.reg.GetHigh(), z_reg, rl_src.reg.GetHigh()); 1160 } 1161 FreeTemp(z_reg); 1162 StoreValueWide(rl_dest, rl_result); 1163 } 1164 1165 void ArmMir2Lir::GenMulLong(Instruction::Code opcode, RegLocation rl_dest, 1166 RegLocation rl_src1, RegLocation rl_src2) { 1167 /* 1168 * tmp1 = src1.hi * src2.lo; // src1.hi is no longer needed 1169 * dest = src1.lo * src2.lo; 1170 * tmp1 += src1.lo * src2.hi; 1171 * dest.hi += tmp1; 1172 * 1173 * To pull off inline multiply, we have a worst-case requirement of 7 temporary 1174 * registers. Normally for Arm, we get 5. We can get to 6 by including 1175 * lr in the temp set. The only problematic case is all operands and result are 1176 * distinct, and none have been promoted. In that case, we can succeed by aggressively 1177 * freeing operand temp registers after they are no longer needed. All other cases 1178 * can proceed normally. We'll just punt on the case of the result having a misaligned 1179 * overlap with either operand and send that case to a runtime handler. 1180 */ 1181 RegLocation rl_result; 1182 if (BadOverlap(rl_src1, rl_dest) || (BadOverlap(rl_src2, rl_dest))) { 1183 FlushAllRegs(); 1184 CallRuntimeHelperRegLocationRegLocation(kQuickLmul, rl_src1, rl_src2, false); 1185 rl_result = GetReturnWide(kCoreReg); 1186 StoreValueWide(rl_dest, rl_result); 1187 return; 1188 } 1189 1190 rl_src1 = LoadValueWide(rl_src1, kCoreReg); 1191 rl_src2 = LoadValueWide(rl_src2, kCoreReg); 1192 1193 int reg_status = 0; 1194 RegStorage res_lo; 1195 RegStorage res_hi; 1196 bool dest_promoted = rl_dest.location == kLocPhysReg && rl_dest.reg.Valid() && 1197 !IsTemp(rl_dest.reg.GetLow()) && !IsTemp(rl_dest.reg.GetHigh()); 1198 bool src1_promoted = !IsTemp(rl_src1.reg.GetLow()) && !IsTemp(rl_src1.reg.GetHigh()); 1199 bool src2_promoted = !IsTemp(rl_src2.reg.GetLow()) && !IsTemp(rl_src2.reg.GetHigh()); 1200 // Check if rl_dest is *not* either operand and we have enough temp registers. 1201 if ((rl_dest.s_reg_low != rl_src1.s_reg_low && rl_dest.s_reg_low != rl_src2.s_reg_low) && 1202 (dest_promoted || src1_promoted || src2_promoted)) { 1203 // In this case, we do not need to manually allocate temp registers for result. 1204 rl_result = EvalLoc(rl_dest, kCoreReg, true); 1205 res_lo = rl_result.reg.GetLow(); 1206 res_hi = rl_result.reg.GetHigh(); 1207 } else { 1208 res_lo = AllocTemp(); 1209 if ((rl_src1.s_reg_low == rl_src2.s_reg_low) || src1_promoted || src2_promoted) { 1210 // In this case, we have enough temp registers to be allocated for result. 1211 res_hi = AllocTemp(); 1212 reg_status = 1; 1213 } else { 1214 // In this case, all temps are now allocated. 1215 // res_hi will be allocated after we can free src1_hi. 1216 reg_status = 2; 1217 } 1218 } 1219 1220 // Temporarily add LR to the temp pool, and assign it to tmp1 1221 MarkTemp(rs_rARM_LR); 1222 FreeTemp(rs_rARM_LR); 1223 RegStorage tmp1 = rs_rARM_LR; 1224 LockTemp(rs_rARM_LR); 1225 1226 if (rl_src1.reg == rl_src2.reg) { 1227 DCHECK(res_hi.Valid()); 1228 DCHECK(res_lo.Valid()); 1229 NewLIR3(kThumb2MulRRR, tmp1.GetReg(), rl_src1.reg.GetLowReg(), rl_src1.reg.GetHighReg()); 1230 NewLIR4(kThumb2Umull, res_lo.GetReg(), res_hi.GetReg(), rl_src1.reg.GetLowReg(), 1231 rl_src1.reg.GetLowReg()); 1232 OpRegRegRegShift(kOpAdd, res_hi, res_hi, tmp1, EncodeShift(kArmLsl, 1)); 1233 } else { 1234 NewLIR3(kThumb2MulRRR, tmp1.GetReg(), rl_src2.reg.GetLowReg(), rl_src1.reg.GetHighReg()); 1235 if (reg_status == 2) { 1236 DCHECK(!res_hi.Valid()); 1237 DCHECK_NE(rl_src1.reg.GetLowReg(), rl_src2.reg.GetLowReg()); 1238 DCHECK_NE(rl_src1.reg.GetHighReg(), rl_src2.reg.GetHighReg()); 1239 // Will force free src1_hi, so must clobber. 1240 Clobber(rl_src1.reg); 1241 FreeTemp(rl_src1.reg.GetHigh()); 1242 res_hi = AllocTemp(); 1243 } 1244 DCHECK(res_hi.Valid()); 1245 DCHECK(res_lo.Valid()); 1246 NewLIR4(kThumb2Umull, res_lo.GetReg(), res_hi.GetReg(), rl_src2.reg.GetLowReg(), 1247 rl_src1.reg.GetLowReg()); 1248 NewLIR4(kThumb2Mla, tmp1.GetReg(), rl_src1.reg.GetLowReg(), rl_src2.reg.GetHighReg(), 1249 tmp1.GetReg()); 1250 NewLIR4(kThumb2AddRRR, res_hi.GetReg(), tmp1.GetReg(), res_hi.GetReg(), 0); 1251 if (reg_status == 2) { 1252 FreeTemp(rl_src1.reg.GetLow()); 1253 } 1254 } 1255 1256 // Now, restore lr to its non-temp status. 1257 FreeTemp(tmp1); 1258 Clobber(rs_rARM_LR); 1259 UnmarkTemp(rs_rARM_LR); 1260 1261 if (reg_status != 0) { 1262 // We had manually allocated registers for rl_result. 1263 // Now construct a RegLocation. 1264 rl_result = GetReturnWide(kCoreReg); // Just using as a template. 1265 rl_result.reg = RegStorage::MakeRegPair(res_lo, res_hi); 1266 } 1267 1268 StoreValueWide(rl_dest, rl_result); 1269 } 1270 1271 void ArmMir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, 1272 RegLocation rl_src2) { 1273 switch (opcode) { 1274 case Instruction::MUL_LONG: 1275 case Instruction::MUL_LONG_2ADDR: 1276 GenMulLong(opcode, rl_dest, rl_src1, rl_src2); 1277 return; 1278 case Instruction::NEG_LONG: 1279 GenNegLong(rl_dest, rl_src2); 1280 return; 1281 1282 default: 1283 break; 1284 } 1285 1286 // Fallback for all other ops. 1287 Mir2Lir::GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2); 1288 } 1289 1290 /* 1291 * Generate array load 1292 */ 1293 void ArmMir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, 1294 RegLocation rl_index, RegLocation rl_dest, int scale) { 1295 RegisterClass reg_class = RegClassBySize(size); 1296 int len_offset = mirror::Array::LengthOffset().Int32Value(); 1297 int data_offset; 1298 RegLocation rl_result; 1299 bool constant_index = rl_index.is_const; 1300 rl_array = LoadValue(rl_array, kRefReg); 1301 if (!constant_index) { 1302 rl_index = LoadValue(rl_index, kCoreReg); 1303 } 1304 1305 if (rl_dest.wide) { 1306 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value(); 1307 } else { 1308 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value(); 1309 } 1310 1311 // If index is constant, just fold it into the data offset 1312 if (constant_index) { 1313 data_offset += mir_graph_->ConstantValue(rl_index) << scale; 1314 } 1315 1316 /* null object? */ 1317 GenNullCheck(rl_array.reg, opt_flags); 1318 1319 bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK)); 1320 RegStorage reg_len; 1321 if (needs_range_check) { 1322 reg_len = AllocTemp(); 1323 /* Get len */ 1324 Load32Disp(rl_array.reg, len_offset, reg_len); 1325 MarkPossibleNullPointerException(opt_flags); 1326 } else { 1327 ForceImplicitNullCheck(rl_array.reg, opt_flags); 1328 } 1329 if (rl_dest.wide || rl_dest.fp || constant_index) { 1330 RegStorage reg_ptr; 1331 if (constant_index) { 1332 reg_ptr = rl_array.reg; // NOTE: must not alter reg_ptr in constant case. 1333 } else { 1334 // No special indexed operation, lea + load w/ displacement 1335 reg_ptr = AllocTempRef(); 1336 OpRegRegRegShift(kOpAdd, reg_ptr, rl_array.reg, rl_index.reg, EncodeShift(kArmLsl, scale)); 1337 FreeTemp(rl_index.reg); 1338 } 1339 rl_result = EvalLoc(rl_dest, reg_class, true); 1340 1341 if (needs_range_check) { 1342 if (constant_index) { 1343 GenArrayBoundsCheck(mir_graph_->ConstantValue(rl_index), reg_len); 1344 } else { 1345 GenArrayBoundsCheck(rl_index.reg, reg_len); 1346 } 1347 FreeTemp(reg_len); 1348 } 1349 LoadBaseDisp(reg_ptr, data_offset, rl_result.reg, size, kNotVolatile); 1350 MarkPossibleNullPointerException(opt_flags); 1351 if (!constant_index) { 1352 FreeTemp(reg_ptr); 1353 } 1354 if (rl_dest.wide) { 1355 StoreValueWide(rl_dest, rl_result); 1356 } else { 1357 StoreValue(rl_dest, rl_result); 1358 } 1359 } else { 1360 // Offset base, then use indexed load 1361 RegStorage reg_ptr = AllocTempRef(); 1362 OpRegRegImm(kOpAdd, reg_ptr, rl_array.reg, data_offset); 1363 FreeTemp(rl_array.reg); 1364 rl_result = EvalLoc(rl_dest, reg_class, true); 1365 1366 if (needs_range_check) { 1367 GenArrayBoundsCheck(rl_index.reg, reg_len); 1368 FreeTemp(reg_len); 1369 } 1370 LoadBaseIndexed(reg_ptr, rl_index.reg, rl_result.reg, scale, size); 1371 MarkPossibleNullPointerException(opt_flags); 1372 FreeTemp(reg_ptr); 1373 StoreValue(rl_dest, rl_result); 1374 } 1375 } 1376 1377 /* 1378 * Generate array store 1379 * 1380 */ 1381 void ArmMir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array, 1382 RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) { 1383 RegisterClass reg_class = RegClassBySize(size); 1384 int len_offset = mirror::Array::LengthOffset().Int32Value(); 1385 bool constant_index = rl_index.is_const; 1386 1387 int data_offset; 1388 if (size == k64 || size == kDouble) { 1389 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value(); 1390 } else { 1391 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value(); 1392 } 1393 1394 // If index is constant, just fold it into the data offset. 1395 if (constant_index) { 1396 data_offset += mir_graph_->ConstantValue(rl_index) << scale; 1397 } 1398 1399 rl_array = LoadValue(rl_array, kRefReg); 1400 if (!constant_index) { 1401 rl_index = LoadValue(rl_index, kCoreReg); 1402 } 1403 1404 RegStorage reg_ptr; 1405 bool allocated_reg_ptr_temp = false; 1406 if (constant_index) { 1407 reg_ptr = rl_array.reg; 1408 } else if (IsTemp(rl_array.reg) && !card_mark) { 1409 Clobber(rl_array.reg); 1410 reg_ptr = rl_array.reg; 1411 } else { 1412 allocated_reg_ptr_temp = true; 1413 reg_ptr = AllocTempRef(); 1414 } 1415 1416 /* null object? */ 1417 GenNullCheck(rl_array.reg, opt_flags); 1418 1419 bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK)); 1420 RegStorage reg_len; 1421 if (needs_range_check) { 1422 reg_len = AllocTemp(); 1423 // NOTE: max live temps(4) here. 1424 /* Get len */ 1425 Load32Disp(rl_array.reg, len_offset, reg_len); 1426 MarkPossibleNullPointerException(opt_flags); 1427 } else { 1428 ForceImplicitNullCheck(rl_array.reg, opt_flags); 1429 } 1430 /* at this point, reg_ptr points to array, 2 live temps */ 1431 if (rl_src.wide || rl_src.fp || constant_index) { 1432 if (rl_src.wide) { 1433 rl_src = LoadValueWide(rl_src, reg_class); 1434 } else { 1435 rl_src = LoadValue(rl_src, reg_class); 1436 } 1437 if (!constant_index) { 1438 OpRegRegRegShift(kOpAdd, reg_ptr, rl_array.reg, rl_index.reg, EncodeShift(kArmLsl, scale)); 1439 } 1440 if (needs_range_check) { 1441 if (constant_index) { 1442 GenArrayBoundsCheck(mir_graph_->ConstantValue(rl_index), reg_len); 1443 } else { 1444 GenArrayBoundsCheck(rl_index.reg, reg_len); 1445 } 1446 FreeTemp(reg_len); 1447 } 1448 1449 StoreBaseDisp(reg_ptr, data_offset, rl_src.reg, size, kNotVolatile); 1450 MarkPossibleNullPointerException(opt_flags); 1451 } else { 1452 /* reg_ptr -> array data */ 1453 OpRegRegImm(kOpAdd, reg_ptr, rl_array.reg, data_offset); 1454 rl_src = LoadValue(rl_src, reg_class); 1455 if (needs_range_check) { 1456 GenArrayBoundsCheck(rl_index.reg, reg_len); 1457 FreeTemp(reg_len); 1458 } 1459 StoreBaseIndexed(reg_ptr, rl_index.reg, rl_src.reg, scale, size); 1460 MarkPossibleNullPointerException(opt_flags); 1461 } 1462 if (allocated_reg_ptr_temp) { 1463 FreeTemp(reg_ptr); 1464 } 1465 if (card_mark) { 1466 MarkGCCard(rl_src.reg, rl_array.reg); 1467 } 1468 } 1469 1470 1471 void ArmMir2Lir::GenShiftImmOpLong(Instruction::Code opcode, 1472 RegLocation rl_dest, RegLocation rl_src, RegLocation rl_shift) { 1473 rl_src = LoadValueWide(rl_src, kCoreReg); 1474 // Per spec, we only care about low 6 bits of shift amount. 1475 int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f; 1476 if (shift_amount == 0) { 1477 StoreValueWide(rl_dest, rl_src); 1478 return; 1479 } 1480 if (BadOverlap(rl_src, rl_dest)) { 1481 GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift); 1482 return; 1483 } 1484 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); 1485 switch (opcode) { 1486 case Instruction::SHL_LONG: 1487 case Instruction::SHL_LONG_2ADDR: 1488 if (shift_amount == 1) { 1489 OpRegRegReg(kOpAdd, rl_result.reg.GetLow(), rl_src.reg.GetLow(), rl_src.reg.GetLow()); 1490 OpRegRegReg(kOpAdc, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), rl_src.reg.GetHigh()); 1491 } else if (shift_amount == 32) { 1492 OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg); 1493 LoadConstant(rl_result.reg.GetLow(), 0); 1494 } else if (shift_amount > 31) { 1495 OpRegRegImm(kOpLsl, rl_result.reg.GetHigh(), rl_src.reg.GetLow(), shift_amount - 32); 1496 LoadConstant(rl_result.reg.GetLow(), 0); 1497 } else { 1498 OpRegRegImm(kOpLsl, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), shift_amount); 1499 OpRegRegRegShift(kOpOr, rl_result.reg.GetHigh(), rl_result.reg.GetHigh(), rl_src.reg.GetLow(), 1500 EncodeShift(kArmLsr, 32 - shift_amount)); 1501 OpRegRegImm(kOpLsl, rl_result.reg.GetLow(), rl_src.reg.GetLow(), shift_amount); 1502 } 1503 break; 1504 case Instruction::SHR_LONG: 1505 case Instruction::SHR_LONG_2ADDR: 1506 if (shift_amount == 32) { 1507 OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh()); 1508 OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), 31); 1509 } else if (shift_amount > 31) { 1510 OpRegRegImm(kOpAsr, rl_result.reg.GetLow(), rl_src.reg.GetHigh(), shift_amount - 32); 1511 OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), 31); 1512 } else { 1513 RegStorage t_reg = AllocTemp(); 1514 OpRegRegImm(kOpLsr, t_reg, rl_src.reg.GetLow(), shift_amount); 1515 OpRegRegRegShift(kOpOr, rl_result.reg.GetLow(), t_reg, rl_src.reg.GetHigh(), 1516 EncodeShift(kArmLsl, 32 - shift_amount)); 1517 FreeTemp(t_reg); 1518 OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), shift_amount); 1519 } 1520 break; 1521 case Instruction::USHR_LONG: 1522 case Instruction::USHR_LONG_2ADDR: 1523 if (shift_amount == 32) { 1524 OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh()); 1525 LoadConstant(rl_result.reg.GetHigh(), 0); 1526 } else if (shift_amount > 31) { 1527 OpRegRegImm(kOpLsr, rl_result.reg.GetLow(), rl_src.reg.GetHigh(), shift_amount - 32); 1528 LoadConstant(rl_result.reg.GetHigh(), 0); 1529 } else { 1530 RegStorage t_reg = AllocTemp(); 1531 OpRegRegImm(kOpLsr, t_reg, rl_src.reg.GetLow(), shift_amount); 1532 OpRegRegRegShift(kOpOr, rl_result.reg.GetLow(), t_reg, rl_src.reg.GetHigh(), 1533 EncodeShift(kArmLsl, 32 - shift_amount)); 1534 FreeTemp(t_reg); 1535 OpRegRegImm(kOpLsr, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), shift_amount); 1536 } 1537 break; 1538 default: 1539 LOG(FATAL) << "Unexpected case"; 1540 } 1541 StoreValueWide(rl_dest, rl_result); 1542 } 1543 1544 void ArmMir2Lir::GenArithImmOpLong(Instruction::Code opcode, 1545 RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { 1546 if ((opcode == Instruction::SUB_LONG_2ADDR) || (opcode == Instruction::SUB_LONG)) { 1547 if (!rl_src2.is_const) { 1548 // Don't bother with special handling for subtract from immediate. 1549 GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2); 1550 return; 1551 } 1552 } else { 1553 // Normalize 1554 if (!rl_src2.is_const) { 1555 DCHECK(rl_src1.is_const); 1556 std::swap(rl_src1, rl_src2); 1557 } 1558 } 1559 if (BadOverlap(rl_src1, rl_dest)) { 1560 GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2); 1561 return; 1562 } 1563 DCHECK(rl_src2.is_const); 1564 int64_t val = mir_graph_->ConstantValueWide(rl_src2); 1565 uint32_t val_lo = Low32Bits(val); 1566 uint32_t val_hi = High32Bits(val); 1567 int32_t mod_imm_lo = ModifiedImmediate(val_lo); 1568 int32_t mod_imm_hi = ModifiedImmediate(val_hi); 1569 1570 // Only a subset of add/sub immediate instructions set carry - so bail if we don't fit 1571 switch (opcode) { 1572 case Instruction::ADD_LONG: 1573 case Instruction::ADD_LONG_2ADDR: 1574 case Instruction::SUB_LONG: 1575 case Instruction::SUB_LONG_2ADDR: 1576 if ((mod_imm_lo < 0) || (mod_imm_hi < 0)) { 1577 GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2); 1578 return; 1579 } 1580 break; 1581 default: 1582 break; 1583 } 1584 rl_src1 = LoadValueWide(rl_src1, kCoreReg); 1585 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); 1586 // NOTE: once we've done the EvalLoc on dest, we can no longer bail. 1587 switch (opcode) { 1588 case Instruction::ADD_LONG: 1589 case Instruction::ADD_LONG_2ADDR: 1590 NewLIR3(kThumb2AddRRI8M, rl_result.reg.GetLowReg(), rl_src1.reg.GetLowReg(), mod_imm_lo); 1591 NewLIR3(kThumb2AdcRRI8M, rl_result.reg.GetHighReg(), rl_src1.reg.GetHighReg(), mod_imm_hi); 1592 break; 1593 case Instruction::OR_LONG: 1594 case Instruction::OR_LONG_2ADDR: 1595 if ((val_lo != 0) || (rl_result.reg.GetLowReg() != rl_src1.reg.GetLowReg())) { 1596 OpRegRegImm(kOpOr, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), val_lo); 1597 } 1598 if ((val_hi != 0) || (rl_result.reg.GetHighReg() != rl_src1.reg.GetHighReg())) { 1599 OpRegRegImm(kOpOr, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), val_hi); 1600 } 1601 break; 1602 case Instruction::XOR_LONG: 1603 case Instruction::XOR_LONG_2ADDR: 1604 OpRegRegImm(kOpXor, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), val_lo); 1605 OpRegRegImm(kOpXor, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), val_hi); 1606 break; 1607 case Instruction::AND_LONG: 1608 case Instruction::AND_LONG_2ADDR: 1609 if ((val_lo != 0xffffffff) || (rl_result.reg.GetLowReg() != rl_src1.reg.GetLowReg())) { 1610 OpRegRegImm(kOpAnd, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), val_lo); 1611 } 1612 if ((val_hi != 0xffffffff) || (rl_result.reg.GetHighReg() != rl_src1.reg.GetHighReg())) { 1613 OpRegRegImm(kOpAnd, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), val_hi); 1614 } 1615 break; 1616 case Instruction::SUB_LONG_2ADDR: 1617 case Instruction::SUB_LONG: 1618 NewLIR3(kThumb2SubRRI8M, rl_result.reg.GetLowReg(), rl_src1.reg.GetLowReg(), mod_imm_lo); 1619 NewLIR3(kThumb2SbcRRI8M, rl_result.reg.GetHighReg(), rl_src1.reg.GetHighReg(), mod_imm_hi); 1620 break; 1621 default: 1622 LOG(FATAL) << "Unexpected opcode " << opcode; 1623 } 1624 StoreValueWide(rl_dest, rl_result); 1625 } 1626 1627 } // namespace art 1628