Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "main.h"
     11 
     12 template<typename ArrayType> void array(const ArrayType& m)
     13 {
     14   typedef typename ArrayType::Index Index;
     15   typedef typename ArrayType::Scalar Scalar;
     16   typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType;
     17   typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType;
     18 
     19   Index rows = m.rows();
     20   Index cols = m.cols();
     21 
     22   ArrayType m1 = ArrayType::Random(rows, cols),
     23              m2 = ArrayType::Random(rows, cols),
     24              m3(rows, cols);
     25 
     26   ColVectorType cv1 = ColVectorType::Random(rows);
     27   RowVectorType rv1 = RowVectorType::Random(cols);
     28 
     29   Scalar  s1 = internal::random<Scalar>(),
     30           s2 = internal::random<Scalar>();
     31 
     32   // scalar addition
     33   VERIFY_IS_APPROX(m1 + s1, s1 + m1);
     34   VERIFY_IS_APPROX(m1 + s1, ArrayType::Constant(rows,cols,s1) + m1);
     35   VERIFY_IS_APPROX(s1 - m1, (-m1)+s1 );
     36   VERIFY_IS_APPROX(m1 - s1, m1 - ArrayType::Constant(rows,cols,s1));
     37   VERIFY_IS_APPROX(s1 - m1, ArrayType::Constant(rows,cols,s1) - m1);
     38   VERIFY_IS_APPROX((m1*Scalar(2)) - s2, (m1+m1) - ArrayType::Constant(rows,cols,s2) );
     39   m3 = m1;
     40   m3 += s2;
     41   VERIFY_IS_APPROX(m3, m1 + s2);
     42   m3 = m1;
     43   m3 -= s1;
     44   VERIFY_IS_APPROX(m3, m1 - s1);
     45 
     46   // scalar operators via Maps
     47   m3 = m1;
     48   ArrayType::Map(m1.data(), m1.rows(), m1.cols()) -= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
     49   VERIFY_IS_APPROX(m1, m3 - m2);
     50 
     51   m3 = m1;
     52   ArrayType::Map(m1.data(), m1.rows(), m1.cols()) += ArrayType::Map(m2.data(), m2.rows(), m2.cols());
     53   VERIFY_IS_APPROX(m1, m3 + m2);
     54 
     55   m3 = m1;
     56   ArrayType::Map(m1.data(), m1.rows(), m1.cols()) *= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
     57   VERIFY_IS_APPROX(m1, m3 * m2);
     58 
     59   m3 = m1;
     60   m2 = ArrayType::Random(rows,cols);
     61   m2 = (m2==0).select(1,m2);
     62   ArrayType::Map(m1.data(), m1.rows(), m1.cols()) /= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
     63   VERIFY_IS_APPROX(m1, m3 / m2);
     64 
     65   // reductions
     66   VERIFY_IS_APPROX(m1.abs().colwise().sum().sum(), m1.abs().sum());
     67   VERIFY_IS_APPROX(m1.abs().rowwise().sum().sum(), m1.abs().sum());
     68   using std::abs;
     69   VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.colwise().sum().sum() - m1.sum()), m1.abs().sum());
     70   VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.rowwise().sum().sum() - m1.sum()), m1.abs().sum());
     71   if (!internal::isMuchSmallerThan(abs(m1.sum() - (m1+m2).sum()), m1.abs().sum(), test_precision<Scalar>()))
     72       VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum());
     73   VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar>()));
     74 
     75   // vector-wise ops
     76   m3 = m1;
     77   VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1);
     78   m3 = m1;
     79   VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1);
     80   m3 = m1;
     81   VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1);
     82   m3 = m1;
     83   VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1);
     84 }
     85 
     86 template<typename ArrayType> void comparisons(const ArrayType& m)
     87 {
     88   using std::abs;
     89   typedef typename ArrayType::Index Index;
     90   typedef typename ArrayType::Scalar Scalar;
     91   typedef typename NumTraits<Scalar>::Real RealScalar;
     92 
     93   Index rows = m.rows();
     94   Index cols = m.cols();
     95 
     96   Index r = internal::random<Index>(0, rows-1),
     97         c = internal::random<Index>(0, cols-1);
     98 
     99   ArrayType m1 = ArrayType::Random(rows, cols),
    100              m2 = ArrayType::Random(rows, cols),
    101              m3(rows, cols);
    102 
    103   VERIFY(((m1 + Scalar(1)) > m1).all());
    104   VERIFY(((m1 - Scalar(1)) < m1).all());
    105   if (rows*cols>1)
    106   {
    107     m3 = m1;
    108     m3(r,c) += 1;
    109     VERIFY(! (m1 < m3).all() );
    110     VERIFY(! (m1 > m3).all() );
    111   }
    112 
    113   // comparisons to scalar
    114   VERIFY( (m1 != (m1(r,c)+1) ).any() );
    115   VERIFY( (m1 > (m1(r,c)-1) ).any() );
    116   VERIFY( (m1 < (m1(r,c)+1) ).any() );
    117   VERIFY( (m1 == m1(r,c) ).any() );
    118 
    119   // test Select
    120   VERIFY_IS_APPROX( (m1<m2).select(m1,m2), m1.cwiseMin(m2) );
    121   VERIFY_IS_APPROX( (m1>m2).select(m1,m2), m1.cwiseMax(m2) );
    122   Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2);
    123   for (int j=0; j<cols; ++j)
    124   for (int i=0; i<rows; ++i)
    125     m3(i,j) = abs(m1(i,j))<mid ? 0 : m1(i,j);
    126   VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid))
    127                         .select(ArrayType::Zero(rows,cols),m1), m3);
    128   // shorter versions:
    129   VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid))
    130                         .select(0,m1), m3);
    131   VERIFY_IS_APPROX( (m1.abs()>=ArrayType::Constant(rows,cols,mid))
    132                         .select(m1,0), m3);
    133   // even shorter version:
    134   VERIFY_IS_APPROX( (m1.abs()<mid).select(0,m1), m3);
    135 
    136   // count
    137   VERIFY(((m1.abs()+1)>RealScalar(0.1)).count() == rows*cols);
    138 
    139   // and/or
    140   VERIFY( (m1<RealScalar(0) && m1>RealScalar(0)).count() == 0);
    141   VERIFY( (m1<RealScalar(0) || m1>=RealScalar(0)).count() == rows*cols);
    142   RealScalar a = m1.abs().mean();
    143   VERIFY( (m1<-a || m1>a).count() == (m1.abs()>a).count());
    144 
    145   typedef Array<typename ArrayType::Index, Dynamic, 1> ArrayOfIndices;
    146 
    147   // TODO allows colwise/rowwise for array
    148   VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).colwise().count(), ArrayOfIndices::Constant(cols,rows).transpose());
    149   VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).rowwise().count(), ArrayOfIndices::Constant(rows, cols));
    150 }
    151 
    152 template<typename ArrayType> void array_real(const ArrayType& m)
    153 {
    154   using std::abs;
    155   using std::sqrt;
    156   typedef typename ArrayType::Index Index;
    157   typedef typename ArrayType::Scalar Scalar;
    158   typedef typename NumTraits<Scalar>::Real RealScalar;
    159 
    160   Index rows = m.rows();
    161   Index cols = m.cols();
    162 
    163   ArrayType m1 = ArrayType::Random(rows, cols),
    164             m2 = ArrayType::Random(rows, cols),
    165             m3(rows, cols);
    166 
    167   Scalar  s1 = internal::random<Scalar>();
    168 
    169   // these tests are mostly to check possible compilation issues.
    170   VERIFY_IS_APPROX(m1.sin(), sin(m1));
    171   VERIFY_IS_APPROX(m1.cos(), cos(m1));
    172   VERIFY_IS_APPROX(m1.asin(), asin(m1));
    173   VERIFY_IS_APPROX(m1.acos(), acos(m1));
    174   VERIFY_IS_APPROX(m1.tan(), tan(m1));
    175 
    176   VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval()));
    177 
    178   VERIFY_IS_APPROX(m1.abs().sqrt(), sqrt(abs(m1)));
    179   VERIFY_IS_APPROX(m1.abs(), sqrt(numext::abs2(m1)));
    180 
    181   VERIFY_IS_APPROX(numext::abs2(numext::real(m1)) + numext::abs2(numext::imag(m1)), numext::abs2(m1));
    182   VERIFY_IS_APPROX(numext::abs2(real(m1)) + numext::abs2(imag(m1)), numext::abs2(m1));
    183   if(!NumTraits<Scalar>::IsComplex)
    184     VERIFY_IS_APPROX(numext::real(m1), m1);
    185 
    186   // shift argument of logarithm so that it is not zero
    187   Scalar smallNumber = NumTraits<Scalar>::dummy_precision();
    188   VERIFY_IS_APPROX((m1.abs() + smallNumber).log() , log(abs(m1) + smallNumber));
    189 
    190   VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2));
    191   VERIFY_IS_APPROX(m1.exp(), exp(m1));
    192   VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp());
    193 
    194   VERIFY_IS_APPROX(m1.pow(2), m1.square());
    195   VERIFY_IS_APPROX(pow(m1,2), m1.square());
    196 
    197   ArrayType exponents = ArrayType::Constant(rows, cols, RealScalar(2));
    198   VERIFY_IS_APPROX(Eigen::pow(m1,exponents), m1.square());
    199 
    200   m3 = m1.abs();
    201   VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt());
    202   VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt());
    203 
    204   // scalar by array division
    205   const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon());
    206   s1 += Scalar(tiny);
    207   m1 += ArrayType::Constant(rows,cols,Scalar(tiny));
    208   VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse());
    209 
    210   // check inplace transpose
    211   m3 = m1;
    212   m3.transposeInPlace();
    213   VERIFY_IS_APPROX(m3,m1.transpose());
    214   m3.transposeInPlace();
    215   VERIFY_IS_APPROX(m3,m1);
    216 }
    217 
    218 template<typename ArrayType> void array_complex(const ArrayType& m)
    219 {
    220   typedef typename ArrayType::Index Index;
    221 
    222   Index rows = m.rows();
    223   Index cols = m.cols();
    224 
    225   ArrayType m1 = ArrayType::Random(rows, cols),
    226             m2(rows, cols);
    227 
    228   for (Index i = 0; i < m.rows(); ++i)
    229     for (Index j = 0; j < m.cols(); ++j)
    230       m2(i,j) = sqrt(m1(i,j));
    231 
    232   VERIFY_IS_APPROX(m1.sqrt(), m2);
    233   VERIFY_IS_APPROX(m1.sqrt(), Eigen::sqrt(m1));
    234 }
    235 
    236 template<typename ArrayType> void min_max(const ArrayType& m)
    237 {
    238   typedef typename ArrayType::Index Index;
    239   typedef typename ArrayType::Scalar Scalar;
    240 
    241   Index rows = m.rows();
    242   Index cols = m.cols();
    243 
    244   ArrayType m1 = ArrayType::Random(rows, cols);
    245 
    246   // min/max with array
    247   Scalar maxM1 = m1.maxCoeff();
    248   Scalar minM1 = m1.minCoeff();
    249 
    250   VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)(ArrayType::Constant(rows,cols, minM1)));
    251   VERIFY_IS_APPROX(m1, (m1.min)(ArrayType::Constant(rows,cols, maxM1)));
    252 
    253   VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)(ArrayType::Constant(rows,cols, maxM1)));
    254   VERIFY_IS_APPROX(m1, (m1.max)(ArrayType::Constant(rows,cols, minM1)));
    255 
    256   // min/max with scalar input
    257   VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)( minM1));
    258   VERIFY_IS_APPROX(m1, (m1.min)( maxM1));
    259 
    260   VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)( maxM1));
    261   VERIFY_IS_APPROX(m1, (m1.max)( minM1));
    262 
    263 }
    264 
    265 void test_array()
    266 {
    267   for(int i = 0; i < g_repeat; i++) {
    268     CALL_SUBTEST_1( array(Array<float, 1, 1>()) );
    269     CALL_SUBTEST_2( array(Array22f()) );
    270     CALL_SUBTEST_3( array(Array44d()) );
    271     CALL_SUBTEST_4( array(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    272     CALL_SUBTEST_5( array(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    273     CALL_SUBTEST_6( array(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    274   }
    275   for(int i = 0; i < g_repeat; i++) {
    276     CALL_SUBTEST_1( comparisons(Array<float, 1, 1>()) );
    277     CALL_SUBTEST_2( comparisons(Array22f()) );
    278     CALL_SUBTEST_3( comparisons(Array44d()) );
    279     CALL_SUBTEST_5( comparisons(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    280     CALL_SUBTEST_6( comparisons(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    281   }
    282   for(int i = 0; i < g_repeat; i++) {
    283     CALL_SUBTEST_1( min_max(Array<float, 1, 1>()) );
    284     CALL_SUBTEST_2( min_max(Array22f()) );
    285     CALL_SUBTEST_3( min_max(Array44d()) );
    286     CALL_SUBTEST_5( min_max(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    287     CALL_SUBTEST_6( min_max(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    288   }
    289   for(int i = 0; i < g_repeat; i++) {
    290     CALL_SUBTEST_1( array_real(Array<float, 1, 1>()) );
    291     CALL_SUBTEST_2( array_real(Array22f()) );
    292     CALL_SUBTEST_3( array_real(Array44d()) );
    293     CALL_SUBTEST_5( array_real(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    294   }
    295   for(int i = 0; i < g_repeat; i++) {
    296     CALL_SUBTEST_4( array_complex(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    297   }
    298 
    299   VERIFY((internal::is_same< internal::global_math_functions_filtering_base<int>::type, int >::value));
    300   VERIFY((internal::is_same< internal::global_math_functions_filtering_base<float>::type, float >::value));
    301   VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Array2i>::type, ArrayBase<Array2i> >::value));
    302   typedef CwiseUnaryOp<internal::scalar_sum_op<double>, ArrayXd > Xpr;
    303   VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Xpr>::type,
    304                            ArrayBase<Xpr>
    305                          >::value));
    306 }
    307