Home | History | Annotate | Download | only in Scalar
      1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements Loop Rotation Pass.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Transforms/Scalar.h"
     15 #include "llvm/ADT/Statistic.h"
     16 #include "llvm/Analysis/CodeMetrics.h"
     17 #include "llvm/Analysis/InstructionSimplify.h"
     18 #include "llvm/Analysis/LoopPass.h"
     19 #include "llvm/Analysis/ScalarEvolution.h"
     20 #include "llvm/Analysis/TargetTransformInfo.h"
     21 #include "llvm/Analysis/ValueTracking.h"
     22 #include "llvm/IR/CFG.h"
     23 #include "llvm/IR/Dominators.h"
     24 #include "llvm/IR/Function.h"
     25 #include "llvm/IR/IntrinsicInst.h"
     26 #include "llvm/Support/CommandLine.h"
     27 #include "llvm/Support/Debug.h"
     28 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     29 #include "llvm/Transforms/Utils/Local.h"
     30 #include "llvm/Transforms/Utils/SSAUpdater.h"
     31 #include "llvm/Transforms/Utils/ValueMapper.h"
     32 using namespace llvm;
     33 
     34 #define DEBUG_TYPE "loop-rotate"
     35 
     36 static cl::opt<unsigned>
     37 DefaultRotationThreshold("rotation-max-header-size", cl::init(16), cl::Hidden,
     38        cl::desc("The default maximum header size for automatic loop rotation"));
     39 
     40 STATISTIC(NumRotated, "Number of loops rotated");
     41 namespace {
     42 
     43   class LoopRotate : public LoopPass {
     44   public:
     45     static char ID; // Pass ID, replacement for typeid
     46     LoopRotate(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) {
     47       initializeLoopRotatePass(*PassRegistry::getPassRegistry());
     48       if (SpecifiedMaxHeaderSize == -1)
     49         MaxHeaderSize = DefaultRotationThreshold;
     50       else
     51         MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize);
     52     }
     53 
     54     // LCSSA form makes instruction renaming easier.
     55     void getAnalysisUsage(AnalysisUsage &AU) const override {
     56       AU.addPreserved<DominatorTreeWrapperPass>();
     57       AU.addRequired<LoopInfo>();
     58       AU.addPreserved<LoopInfo>();
     59       AU.addRequiredID(LoopSimplifyID);
     60       AU.addPreservedID(LoopSimplifyID);
     61       AU.addRequiredID(LCSSAID);
     62       AU.addPreservedID(LCSSAID);
     63       AU.addPreserved<ScalarEvolution>();
     64       AU.addRequired<TargetTransformInfo>();
     65     }
     66 
     67     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
     68     bool simplifyLoopLatch(Loop *L);
     69     bool rotateLoop(Loop *L, bool SimplifiedLatch);
     70 
     71   private:
     72     unsigned MaxHeaderSize;
     73     LoopInfo *LI;
     74     const TargetTransformInfo *TTI;
     75   };
     76 }
     77 
     78 char LoopRotate::ID = 0;
     79 INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
     80 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
     81 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
     82 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
     83 INITIALIZE_PASS_DEPENDENCY(LCSSA)
     84 INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
     85 
     86 Pass *llvm::createLoopRotatePass(int MaxHeaderSize) {
     87   return new LoopRotate(MaxHeaderSize);
     88 }
     89 
     90 /// Rotate Loop L as many times as possible. Return true if
     91 /// the loop is rotated at least once.
     92 bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
     93   if (skipOptnoneFunction(L))
     94     return false;
     95 
     96   // Save the loop metadata.
     97   MDNode *LoopMD = L->getLoopID();
     98 
     99   LI = &getAnalysis<LoopInfo>();
    100   TTI = &getAnalysis<TargetTransformInfo>();
    101 
    102   // Simplify the loop latch before attempting to rotate the header
    103   // upward. Rotation may not be needed if the loop tail can be folded into the
    104   // loop exit.
    105   bool SimplifiedLatch = simplifyLoopLatch(L);
    106 
    107   // One loop can be rotated multiple times.
    108   bool MadeChange = false;
    109   while (rotateLoop(L, SimplifiedLatch)) {
    110     MadeChange = true;
    111     SimplifiedLatch = false;
    112   }
    113 
    114   // Restore the loop metadata.
    115   // NB! We presume LoopRotation DOESN'T ADD its own metadata.
    116   if ((MadeChange || SimplifiedLatch) && LoopMD)
    117     L->setLoopID(LoopMD);
    118 
    119   return MadeChange;
    120 }
    121 
    122 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
    123 /// old header into the preheader.  If there were uses of the values produced by
    124 /// these instruction that were outside of the loop, we have to insert PHI nodes
    125 /// to merge the two values.  Do this now.
    126 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
    127                                             BasicBlock *OrigPreheader,
    128                                             ValueToValueMapTy &ValueMap) {
    129   // Remove PHI node entries that are no longer live.
    130   BasicBlock::iterator I, E = OrigHeader->end();
    131   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
    132     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
    133 
    134   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
    135   // as necessary.
    136   SSAUpdater SSA;
    137   for (I = OrigHeader->begin(); I != E; ++I) {
    138     Value *OrigHeaderVal = I;
    139 
    140     // If there are no uses of the value (e.g. because it returns void), there
    141     // is nothing to rewrite.
    142     if (OrigHeaderVal->use_empty())
    143       continue;
    144 
    145     Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
    146 
    147     // The value now exits in two versions: the initial value in the preheader
    148     // and the loop "next" value in the original header.
    149     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
    150     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
    151     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
    152 
    153     // Visit each use of the OrigHeader instruction.
    154     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
    155          UE = OrigHeaderVal->use_end(); UI != UE; ) {
    156       // Grab the use before incrementing the iterator.
    157       Use &U = *UI;
    158 
    159       // Increment the iterator before removing the use from the list.
    160       ++UI;
    161 
    162       // SSAUpdater can't handle a non-PHI use in the same block as an
    163       // earlier def. We can easily handle those cases manually.
    164       Instruction *UserInst = cast<Instruction>(U.getUser());
    165       if (!isa<PHINode>(UserInst)) {
    166         BasicBlock *UserBB = UserInst->getParent();
    167 
    168         // The original users in the OrigHeader are already using the
    169         // original definitions.
    170         if (UserBB == OrigHeader)
    171           continue;
    172 
    173         // Users in the OrigPreHeader need to use the value to which the
    174         // original definitions are mapped.
    175         if (UserBB == OrigPreheader) {
    176           U = OrigPreHeaderVal;
    177           continue;
    178         }
    179       }
    180 
    181       // Anything else can be handled by SSAUpdater.
    182       SSA.RewriteUse(U);
    183     }
    184   }
    185 }
    186 
    187 /// Determine whether the instructions in this range my be safely and cheaply
    188 /// speculated. This is not an important enough situation to develop complex
    189 /// heuristics. We handle a single arithmetic instruction along with any type
    190 /// conversions.
    191 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
    192                                   BasicBlock::iterator End) {
    193   bool seenIncrement = false;
    194   for (BasicBlock::iterator I = Begin; I != End; ++I) {
    195 
    196     if (!isSafeToSpeculativelyExecute(I))
    197       return false;
    198 
    199     if (isa<DbgInfoIntrinsic>(I))
    200       continue;
    201 
    202     switch (I->getOpcode()) {
    203     default:
    204       return false;
    205     case Instruction::GetElementPtr:
    206       // GEPs are cheap if all indices are constant.
    207       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
    208         return false;
    209       // fall-thru to increment case
    210     case Instruction::Add:
    211     case Instruction::Sub:
    212     case Instruction::And:
    213     case Instruction::Or:
    214     case Instruction::Xor:
    215     case Instruction::Shl:
    216     case Instruction::LShr:
    217     case Instruction::AShr:
    218       if (seenIncrement)
    219         return false;
    220       seenIncrement = true;
    221       break;
    222     case Instruction::Trunc:
    223     case Instruction::ZExt:
    224     case Instruction::SExt:
    225       // ignore type conversions
    226       break;
    227     }
    228   }
    229   return true;
    230 }
    231 
    232 /// Fold the loop tail into the loop exit by speculating the loop tail
    233 /// instructions. Typically, this is a single post-increment. In the case of a
    234 /// simple 2-block loop, hoisting the increment can be much better than
    235 /// duplicating the entire loop header. In the cast of loops with early exits,
    236 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
    237 /// canonical form so downstream passes can handle it.
    238 ///
    239 /// I don't believe this invalidates SCEV.
    240 bool LoopRotate::simplifyLoopLatch(Loop *L) {
    241   BasicBlock *Latch = L->getLoopLatch();
    242   if (!Latch || Latch->hasAddressTaken())
    243     return false;
    244 
    245   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
    246   if (!Jmp || !Jmp->isUnconditional())
    247     return false;
    248 
    249   BasicBlock *LastExit = Latch->getSinglePredecessor();
    250   if (!LastExit || !L->isLoopExiting(LastExit))
    251     return false;
    252 
    253   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
    254   if (!BI)
    255     return false;
    256 
    257   if (!shouldSpeculateInstrs(Latch->begin(), Jmp))
    258     return false;
    259 
    260   DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
    261         << LastExit->getName() << "\n");
    262 
    263   // Hoist the instructions from Latch into LastExit.
    264   LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp);
    265 
    266   unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
    267   BasicBlock *Header = Jmp->getSuccessor(0);
    268   assert(Header == L->getHeader() && "expected a backward branch");
    269 
    270   // Remove Latch from the CFG so that LastExit becomes the new Latch.
    271   BI->setSuccessor(FallThruPath, Header);
    272   Latch->replaceSuccessorsPhiUsesWith(LastExit);
    273   Jmp->eraseFromParent();
    274 
    275   // Nuke the Latch block.
    276   assert(Latch->empty() && "unable to evacuate Latch");
    277   LI->removeBlock(Latch);
    278   if (DominatorTreeWrapperPass *DTWP =
    279           getAnalysisIfAvailable<DominatorTreeWrapperPass>())
    280     DTWP->getDomTree().eraseNode(Latch);
    281   Latch->eraseFromParent();
    282   return true;
    283 }
    284 
    285 /// Rotate loop LP. Return true if the loop is rotated.
    286 ///
    287 /// \param SimplifiedLatch is true if the latch was just folded into the final
    288 /// loop exit. In this case we may want to rotate even though the new latch is
    289 /// now an exiting branch. This rotation would have happened had the latch not
    290 /// been simplified. However, if SimplifiedLatch is false, then we avoid
    291 /// rotating loops in which the latch exits to avoid excessive or endless
    292 /// rotation. LoopRotate should be repeatable and converge to a canonical
    293 /// form. This property is satisfied because simplifying the loop latch can only
    294 /// happen once across multiple invocations of the LoopRotate pass.
    295 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
    296   // If the loop has only one block then there is not much to rotate.
    297   if (L->getBlocks().size() == 1)
    298     return false;
    299 
    300   BasicBlock *OrigHeader = L->getHeader();
    301   BasicBlock *OrigLatch = L->getLoopLatch();
    302 
    303   BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
    304   if (!BI || BI->isUnconditional())
    305     return false;
    306 
    307   // If the loop header is not one of the loop exiting blocks then
    308   // either this loop is already rotated or it is not
    309   // suitable for loop rotation transformations.
    310   if (!L->isLoopExiting(OrigHeader))
    311     return false;
    312 
    313   // If the loop latch already contains a branch that leaves the loop then the
    314   // loop is already rotated.
    315   if (!OrigLatch)
    316     return false;
    317 
    318   // Rotate if either the loop latch does *not* exit the loop, or if the loop
    319   // latch was just simplified.
    320   if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch)
    321     return false;
    322 
    323   // Check size of original header and reject loop if it is very big or we can't
    324   // duplicate blocks inside it.
    325   {
    326     CodeMetrics Metrics;
    327     Metrics.analyzeBasicBlock(OrigHeader, *TTI);
    328     if (Metrics.notDuplicatable) {
    329       DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
    330             << " instructions: "; L->dump());
    331       return false;
    332     }
    333     if (Metrics.NumInsts > MaxHeaderSize)
    334       return false;
    335   }
    336 
    337   // Now, this loop is suitable for rotation.
    338   BasicBlock *OrigPreheader = L->getLoopPreheader();
    339 
    340   // If the loop could not be converted to canonical form, it must have an
    341   // indirectbr in it, just give up.
    342   if (!OrigPreheader)
    343     return false;
    344 
    345   // Anything ScalarEvolution may know about this loop or the PHI nodes
    346   // in its header will soon be invalidated.
    347   if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
    348     SE->forgetLoop(L);
    349 
    350   DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
    351 
    352   // Find new Loop header. NewHeader is a Header's one and only successor
    353   // that is inside loop.  Header's other successor is outside the
    354   // loop.  Otherwise loop is not suitable for rotation.
    355   BasicBlock *Exit = BI->getSuccessor(0);
    356   BasicBlock *NewHeader = BI->getSuccessor(1);
    357   if (L->contains(Exit))
    358     std::swap(Exit, NewHeader);
    359   assert(NewHeader && "Unable to determine new loop header");
    360   assert(L->contains(NewHeader) && !L->contains(Exit) &&
    361          "Unable to determine loop header and exit blocks");
    362 
    363   // This code assumes that the new header has exactly one predecessor.
    364   // Remove any single-entry PHI nodes in it.
    365   assert(NewHeader->getSinglePredecessor() &&
    366          "New header doesn't have one pred!");
    367   FoldSingleEntryPHINodes(NewHeader);
    368 
    369   // Begin by walking OrigHeader and populating ValueMap with an entry for
    370   // each Instruction.
    371   BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
    372   ValueToValueMapTy ValueMap;
    373 
    374   // For PHI nodes, the value available in OldPreHeader is just the
    375   // incoming value from OldPreHeader.
    376   for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
    377     ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
    378 
    379   // For the rest of the instructions, either hoist to the OrigPreheader if
    380   // possible or create a clone in the OldPreHeader if not.
    381   TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
    382   while (I != E) {
    383     Instruction *Inst = I++;
    384 
    385     // If the instruction's operands are invariant and it doesn't read or write
    386     // memory, then it is safe to hoist.  Doing this doesn't change the order of
    387     // execution in the preheader, but does prevent the instruction from
    388     // executing in each iteration of the loop.  This means it is safe to hoist
    389     // something that might trap, but isn't safe to hoist something that reads
    390     // memory (without proving that the loop doesn't write).
    391     if (L->hasLoopInvariantOperands(Inst) &&
    392         !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
    393         !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) &&
    394         !isa<AllocaInst>(Inst)) {
    395       Inst->moveBefore(LoopEntryBranch);
    396       continue;
    397     }
    398 
    399     // Otherwise, create a duplicate of the instruction.
    400     Instruction *C = Inst->clone();
    401 
    402     // Eagerly remap the operands of the instruction.
    403     RemapInstruction(C, ValueMap,
    404                      RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
    405 
    406     // With the operands remapped, see if the instruction constant folds or is
    407     // otherwise simplifyable.  This commonly occurs because the entry from PHI
    408     // nodes allows icmps and other instructions to fold.
    409     Value *V = SimplifyInstruction(C);
    410     if (V && LI->replacementPreservesLCSSAForm(C, V)) {
    411       // If so, then delete the temporary instruction and stick the folded value
    412       // in the map.
    413       delete C;
    414       ValueMap[Inst] = V;
    415     } else {
    416       // Otherwise, stick the new instruction into the new block!
    417       C->setName(Inst->getName());
    418       C->insertBefore(LoopEntryBranch);
    419       ValueMap[Inst] = C;
    420     }
    421   }
    422 
    423   // Along with all the other instructions, we just cloned OrigHeader's
    424   // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
    425   // successors by duplicating their incoming values for OrigHeader.
    426   TerminatorInst *TI = OrigHeader->getTerminator();
    427   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    428     for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
    429          PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
    430       PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
    431 
    432   // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
    433   // OrigPreHeader's old terminator (the original branch into the loop), and
    434   // remove the corresponding incoming values from the PHI nodes in OrigHeader.
    435   LoopEntryBranch->eraseFromParent();
    436 
    437   // If there were any uses of instructions in the duplicated block outside the
    438   // loop, update them, inserting PHI nodes as required
    439   RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
    440 
    441   // NewHeader is now the header of the loop.
    442   L->moveToHeader(NewHeader);
    443   assert(L->getHeader() == NewHeader && "Latch block is our new header");
    444 
    445 
    446   // At this point, we've finished our major CFG changes.  As part of cloning
    447   // the loop into the preheader we've simplified instructions and the
    448   // duplicated conditional branch may now be branching on a constant.  If it is
    449   // branching on a constant and if that constant means that we enter the loop,
    450   // then we fold away the cond branch to an uncond branch.  This simplifies the
    451   // loop in cases important for nested loops, and it also means we don't have
    452   // to split as many edges.
    453   BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
    454   assert(PHBI->isConditional() && "Should be clone of BI condbr!");
    455   if (!isa<ConstantInt>(PHBI->getCondition()) ||
    456       PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
    457           != NewHeader) {
    458     // The conditional branch can't be folded, handle the general case.
    459     // Update DominatorTree to reflect the CFG change we just made.  Then split
    460     // edges as necessary to preserve LoopSimplify form.
    461     if (DominatorTreeWrapperPass *DTWP =
    462             getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
    463       DominatorTree &DT = DTWP->getDomTree();
    464       // Everything that was dominated by the old loop header is now dominated
    465       // by the original loop preheader. Conceptually the header was merged
    466       // into the preheader, even though we reuse the actual block as a new
    467       // loop latch.
    468       DomTreeNode *OrigHeaderNode = DT.getNode(OrigHeader);
    469       SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
    470                                                    OrigHeaderNode->end());
    471       DomTreeNode *OrigPreheaderNode = DT.getNode(OrigPreheader);
    472       for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I)
    473         DT.changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode);
    474 
    475       assert(DT.getNode(Exit)->getIDom() == OrigPreheaderNode);
    476       assert(DT.getNode(NewHeader)->getIDom() == OrigPreheaderNode);
    477 
    478       // Update OrigHeader to be dominated by the new header block.
    479       DT.changeImmediateDominator(OrigHeader, OrigLatch);
    480     }
    481 
    482     // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
    483     // thus is not a preheader anymore.
    484     // Split the edge to form a real preheader.
    485     BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this);
    486     NewPH->setName(NewHeader->getName() + ".lr.ph");
    487 
    488     // Preserve canonical loop form, which means that 'Exit' should have only
    489     // one predecessor. Note that Exit could be an exit block for multiple
    490     // nested loops, causing both of the edges to now be critical and need to
    491     // be split.
    492     SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
    493     bool SplitLatchEdge = false;
    494     for (SmallVectorImpl<BasicBlock *>::iterator PI = ExitPreds.begin(),
    495                                                  PE = ExitPreds.end();
    496          PI != PE; ++PI) {
    497       // We only need to split loop exit edges.
    498       Loop *PredLoop = LI->getLoopFor(*PI);
    499       if (!PredLoop || PredLoop->contains(Exit))
    500         continue;
    501       SplitLatchEdge |= L->getLoopLatch() == *PI;
    502       BasicBlock *ExitSplit = SplitCriticalEdge(*PI, Exit, this);
    503       ExitSplit->moveBefore(Exit);
    504     }
    505     assert(SplitLatchEdge &&
    506            "Despite splitting all preds, failed to split latch exit?");
    507   } else {
    508     // We can fold the conditional branch in the preheader, this makes things
    509     // simpler. The first step is to remove the extra edge to the Exit block.
    510     Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
    511     BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
    512     NewBI->setDebugLoc(PHBI->getDebugLoc());
    513     PHBI->eraseFromParent();
    514 
    515     // With our CFG finalized, update DomTree if it is available.
    516     if (DominatorTreeWrapperPass *DTWP =
    517             getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
    518       DominatorTree &DT = DTWP->getDomTree();
    519       // Update OrigHeader to be dominated by the new header block.
    520       DT.changeImmediateDominator(NewHeader, OrigPreheader);
    521       DT.changeImmediateDominator(OrigHeader, OrigLatch);
    522 
    523       // Brute force incremental dominator tree update. Call
    524       // findNearestCommonDominator on all CFG predecessors of each child of the
    525       // original header.
    526       DomTreeNode *OrigHeaderNode = DT.getNode(OrigHeader);
    527       SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
    528                                                    OrigHeaderNode->end());
    529       bool Changed;
    530       do {
    531         Changed = false;
    532         for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) {
    533           DomTreeNode *Node = HeaderChildren[I];
    534           BasicBlock *BB = Node->getBlock();
    535 
    536           pred_iterator PI = pred_begin(BB);
    537           BasicBlock *NearestDom = *PI;
    538           for (pred_iterator PE = pred_end(BB); PI != PE; ++PI)
    539             NearestDom = DT.findNearestCommonDominator(NearestDom, *PI);
    540 
    541           // Remember if this changes the DomTree.
    542           if (Node->getIDom()->getBlock() != NearestDom) {
    543             DT.changeImmediateDominator(BB, NearestDom);
    544             Changed = true;
    545           }
    546         }
    547 
    548       // If the dominator changed, this may have an effect on other
    549       // predecessors, continue until we reach a fixpoint.
    550       } while (Changed);
    551     }
    552   }
    553 
    554   assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
    555   assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
    556 
    557   // Now that the CFG and DomTree are in a consistent state again, try to merge
    558   // the OrigHeader block into OrigLatch.  This will succeed if they are
    559   // connected by an unconditional branch.  This is just a cleanup so the
    560   // emitted code isn't too gross in this common case.
    561   MergeBlockIntoPredecessor(OrigHeader, this);
    562 
    563   DEBUG(dbgs() << "LoopRotation: into "; L->dump());
    564 
    565   ++NumRotated;
    566   return true;
    567 }
    568