Home | History | Annotate | Download | only in crypto
      1 // Copyright (c) 2013 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "net/quic/crypto/strike_register.h"
      6 
      7 #include <limits>
      8 
      9 #include "base/logging.h"
     10 
     11 using std::make_pair;
     12 using std::max;
     13 using std::min;
     14 using std::pair;
     15 using std::set;
     16 using std::vector;
     17 
     18 namespace net {
     19 
     20 namespace {
     21 
     22 uint32 GetInitialHorizon(uint32 current_time_internal,
     23                          uint32 window_secs,
     24                          StrikeRegister::StartupType startup) {
     25   if (startup == StrikeRegister::DENY_REQUESTS_AT_STARTUP) {
     26     // The horizon is initially set |window_secs| into the future because, if
     27     // we just crashed, then we may have accepted nonces in the span
     28     // [current_time...current_time+window_secs] and so we conservatively
     29     // reject the whole timespan unless |startup| tells us otherwise.
     30     return current_time_internal + window_secs + 1;
     31   } else {  // startup == StrikeRegister::NO_STARTUP_PERIOD_NEEDED
     32     // The orbit can be assumed to be globally unique.  Use a horizon
     33     // in the past.
     34     return 0;
     35   }
     36 }
     37 
     38 }  // namespace
     39 
     40 // static
     41 const uint32 StrikeRegister::kExternalNodeSize = 24;
     42 // static
     43 const uint32 StrikeRegister::kNil = (1u << 31) | 1;
     44 // static
     45 const uint32 StrikeRegister::kExternalFlag = 1 << 23;
     46 
     47 // InternalNode represents a non-leaf node in the critbit tree. See the comment
     48 // in the .h file for details.
     49 class StrikeRegister::InternalNode {
     50  public:
     51   void SetChild(unsigned direction, uint32 child) {
     52     data_[direction] = (data_[direction] & 0xff) | (child << 8);
     53   }
     54 
     55   void SetCritByte(uint8 critbyte) {
     56     data_[0] = (data_[0] & 0xffffff00) | critbyte;
     57   }
     58 
     59   void SetOtherBits(uint8 otherbits) {
     60     data_[1] = (data_[1] & 0xffffff00) | otherbits;
     61   }
     62 
     63   void SetNextPtr(uint32 next) { data_[0] = next; }
     64 
     65   uint32 next() const { return data_[0]; }
     66 
     67   uint32 child(unsigned n) const { return data_[n] >> 8; }
     68 
     69   uint8 critbyte() const { return data_[0]; }
     70 
     71   uint8 otherbits() const { return data_[1]; }
     72 
     73   // These bytes are organised thus:
     74   //   <24 bits> left child
     75   //   <8 bits> crit-byte
     76   //   <24 bits> right child
     77   //   <8 bits> other-bits
     78   uint32 data_[2];
     79 };
     80 
     81 // kCreationTimeFromInternalEpoch contains the number of seconds between the
     82 // start of the internal epoch and the creation time. This allows us
     83 // to consider times that are before the creation time.
     84 static const uint32 kCreationTimeFromInternalEpoch = 63115200;  // 2 years.
     85 
     86 void StrikeRegister::ValidateStrikeRegisterConfig(unsigned max_entries) {
     87   // We only have 23 bits of index available.
     88   CHECK_LT(max_entries, 1u << 23);
     89   CHECK_GT(max_entries, 1u);           // There must be at least two entries.
     90   CHECK_EQ(sizeof(InternalNode), 8u);  // in case of compiler changes.
     91 }
     92 
     93 StrikeRegister::StrikeRegister(unsigned max_entries,
     94                                uint32 current_time,
     95                                uint32 window_secs,
     96                                const uint8 orbit[8],
     97                                StartupType startup)
     98     : max_entries_(max_entries),
     99       window_secs_(window_secs),
    100       internal_epoch_(current_time > kCreationTimeFromInternalEpoch
    101                           ? current_time - kCreationTimeFromInternalEpoch
    102                           : 0),
    103       horizon_(GetInitialHorizon(
    104           ExternalTimeToInternal(current_time), window_secs, startup)) {
    105   memcpy(orbit_, orbit, sizeof(orbit_));
    106 
    107   ValidateStrikeRegisterConfig(max_entries);
    108   internal_nodes_ = new InternalNode[max_entries];
    109   external_nodes_.reset(new uint8[kExternalNodeSize * max_entries]);
    110 
    111   Reset();
    112 }
    113 
    114 StrikeRegister::~StrikeRegister() { delete[] internal_nodes_; }
    115 
    116 void StrikeRegister::Reset() {
    117   // Thread a free list through all of the internal nodes.
    118   internal_node_free_head_ = 0;
    119   for (unsigned i = 0; i < max_entries_ - 1; i++)
    120     internal_nodes_[i].SetNextPtr(i + 1);
    121   internal_nodes_[max_entries_ - 1].SetNextPtr(kNil);
    122 
    123   // Also thread a free list through the external nodes.
    124   external_node_free_head_ = 0;
    125   for (unsigned i = 0; i < max_entries_ - 1; i++)
    126     external_node_next_ptr(i) = i + 1;
    127   external_node_next_ptr(max_entries_ - 1) = kNil;
    128 
    129   // This is the root of the tree.
    130   internal_node_head_ = kNil;
    131 }
    132 
    133 InsertStatus StrikeRegister::Insert(const uint8 nonce[32],
    134                                     uint32 current_time_external) {
    135   // Make space for the insertion if the strike register is full.
    136   while (external_node_free_head_ == kNil ||
    137          internal_node_free_head_ == kNil) {
    138     DropOldestNode();
    139   }
    140 
    141   const uint32 current_time = ExternalTimeToInternal(current_time_external);
    142 
    143   // Check to see if the orbit is correct.
    144   if (memcmp(nonce + sizeof(current_time), orbit_, sizeof(orbit_))) {
    145     return NONCE_INVALID_ORBIT_FAILURE;
    146   }
    147 
    148   const uint32 nonce_time = ExternalTimeToInternal(TimeFromBytes(nonce));
    149 
    150   // Check that the timestamp is in the valid range.
    151   pair<uint32, uint32> valid_range =
    152       StrikeRegister::GetValidRange(current_time);
    153   if (nonce_time < valid_range.first || nonce_time > valid_range.second) {
    154     return NONCE_INVALID_TIME_FAILURE;
    155   }
    156 
    157   // We strip the orbit out of the nonce.
    158   uint8 value[24];
    159   memcpy(value, nonce, sizeof(nonce_time));
    160   memcpy(value + sizeof(nonce_time),
    161          nonce + sizeof(nonce_time) + sizeof(orbit_),
    162          sizeof(value) - sizeof(nonce_time));
    163 
    164   // Find the best match to |value| in the crit-bit tree. The best match is
    165   // simply the value which /could/ match |value|, if any does, so we still
    166   // need a memcmp to check.
    167   uint32 best_match_index = BestMatch(value);
    168   if (best_match_index == kNil) {
    169     // Empty tree. Just insert the new value at the root.
    170     uint32 index = GetFreeExternalNode();
    171     memcpy(external_node(index), value, sizeof(value));
    172     internal_node_head_ = (index | kExternalFlag) << 8;
    173     DCHECK_LE(horizon_, nonce_time);
    174     return NONCE_OK;
    175   }
    176 
    177   const uint8* best_match = external_node(best_match_index);
    178   if (memcmp(best_match, value, sizeof(value)) == 0) {
    179     // We found the value in the tree.
    180     return NONCE_NOT_UNIQUE_FAILURE;
    181   }
    182 
    183   // We are going to insert a new entry into the tree, so get the nodes now.
    184   uint32 internal_node_index = GetFreeInternalNode();
    185   uint32 external_node_index = GetFreeExternalNode();
    186 
    187   // If we just evicted the best match, then we have to try and match again.
    188   // We know that we didn't just empty the tree because we require that
    189   // max_entries_ >= 2. Also, we know that it doesn't match because, if it
    190   // did, it would have been returned previously.
    191   if (external_node_index == best_match_index) {
    192     best_match_index = BestMatch(value);
    193     best_match = external_node(best_match_index);
    194   }
    195 
    196   // Now we need to find the first bit where we differ from |best_match|.
    197   unsigned differing_byte;
    198   uint8 new_other_bits;
    199   for (differing_byte = 0; differing_byte < sizeof(value); differing_byte++) {
    200     new_other_bits = value[differing_byte] ^ best_match[differing_byte];
    201     if (new_other_bits) {
    202       break;
    203     }
    204   }
    205 
    206   // Once we have the XOR the of first differing byte in new_other_bits we need
    207   // to find the most significant differing bit. We could do this with a simple
    208   // for loop, testing bits 7..0. Instead we fold the bits so that we end up
    209   // with a byte where all the bits below the most significant one, are set.
    210   new_other_bits |= new_other_bits >> 1;
    211   new_other_bits |= new_other_bits >> 2;
    212   new_other_bits |= new_other_bits >> 4;
    213   // Now this bit trick results in all the bits set, except the original
    214   // most-significant one.
    215   new_other_bits = (new_other_bits & ~(new_other_bits >> 1)) ^ 255;
    216 
    217   // Consider the effect of ORing against |new_other_bits|. If |value| did not
    218   // have the critical bit set, the result is the same as |new_other_bits|. If
    219   // it did, the result is all ones.
    220 
    221   unsigned newdirection;
    222   if ((new_other_bits | value[differing_byte]) == 0xff) {
    223     newdirection = 1;
    224   } else {
    225     newdirection = 0;
    226   }
    227 
    228   memcpy(external_node(external_node_index), value, sizeof(value));
    229   InternalNode* inode = &internal_nodes_[internal_node_index];
    230 
    231   inode->SetChild(newdirection, external_node_index | kExternalFlag);
    232   inode->SetCritByte(differing_byte);
    233   inode->SetOtherBits(new_other_bits);
    234 
    235   // |where_index| is a pointer to the uint32 which needs to be updated in
    236   // order to insert the new internal node into the tree. The internal nodes
    237   // store the child indexes in the top 24-bits of a 32-bit word and, to keep
    238   // the code simple, we define that |internal_node_head_| is organised the
    239   // same way.
    240   DCHECK_EQ(internal_node_head_ & 0xff, 0u);
    241   uint32* where_index = &internal_node_head_;
    242   while (((*where_index >> 8) & kExternalFlag) == 0) {
    243     InternalNode* node = &internal_nodes_[*where_index >> 8];
    244     if (node->critbyte() > differing_byte) {
    245       break;
    246     }
    247     if (node->critbyte() == differing_byte &&
    248         node->otherbits() > new_other_bits) {
    249       break;
    250     }
    251     if (node->critbyte() == differing_byte &&
    252         node->otherbits() == new_other_bits) {
    253       CHECK(false);
    254     }
    255 
    256     uint8 c = value[node->critbyte()];
    257     const int direction =
    258         (1 + static_cast<unsigned>(node->otherbits() | c)) >> 8;
    259     where_index = &node->data_[direction];
    260   }
    261 
    262   inode->SetChild(newdirection ^ 1, *where_index >> 8);
    263   *where_index = (*where_index & 0xff) | (internal_node_index << 8);
    264 
    265   DCHECK_LE(horizon_, nonce_time);
    266   return NONCE_OK;
    267 }
    268 
    269 const uint8* StrikeRegister::orbit() const {
    270   return orbit_;
    271 }
    272 
    273 uint32 StrikeRegister::GetCurrentValidWindowSecs(
    274     uint32 current_time_external) const {
    275   uint32 current_time = ExternalTimeToInternal(current_time_external);
    276   pair<uint32, uint32> valid_range = StrikeRegister::GetValidRange(
    277       current_time);
    278   if (valid_range.second >= valid_range.first) {
    279     return valid_range.second - current_time + 1;
    280   } else {
    281     return 0;
    282   }
    283 }
    284 
    285 void StrikeRegister::Validate() {
    286   set<uint32> free_internal_nodes;
    287   for (uint32 i = internal_node_free_head_; i != kNil;
    288        i = internal_nodes_[i].next()) {
    289     CHECK_LT(i, max_entries_);
    290     CHECK_EQ(free_internal_nodes.count(i), 0u);
    291     free_internal_nodes.insert(i);
    292   }
    293 
    294   set<uint32> free_external_nodes;
    295   for (uint32 i = external_node_free_head_; i != kNil;
    296        i = external_node_next_ptr(i)) {
    297     CHECK_LT(i, max_entries_);
    298     CHECK_EQ(free_external_nodes.count(i), 0u);
    299     free_external_nodes.insert(i);
    300   }
    301 
    302   set<uint32> used_external_nodes;
    303   set<uint32> used_internal_nodes;
    304 
    305   if (internal_node_head_ != kNil &&
    306       ((internal_node_head_ >> 8) & kExternalFlag) == 0) {
    307     vector<pair<unsigned, bool> > bits;
    308     ValidateTree(internal_node_head_ >> 8, -1, bits, free_internal_nodes,
    309                  free_external_nodes, &used_internal_nodes,
    310                  &used_external_nodes);
    311   }
    312 }
    313 
    314 // static
    315 uint32 StrikeRegister::TimeFromBytes(const uint8 d[4]) {
    316   return static_cast<uint32>(d[0]) << 24 |
    317          static_cast<uint32>(d[1]) << 16 |
    318          static_cast<uint32>(d[2]) << 8 |
    319          static_cast<uint32>(d[3]);
    320 }
    321 
    322 pair<uint32, uint32> StrikeRegister::GetValidRange(
    323     uint32 current_time_internal) const {
    324   if (current_time_internal < horizon_) {
    325     // Empty valid range.
    326     return make_pair(std::numeric_limits<uint32>::max(), 0);
    327   }
    328 
    329   uint32 lower_bound;
    330   if (current_time_internal >= window_secs_) {
    331     lower_bound = max(horizon_, current_time_internal - window_secs_);
    332   } else {
    333     lower_bound = horizon_;
    334   }
    335 
    336   // Also limit the upper range based on horizon_.  This makes the
    337   // strike register reject inserts that are far in the future and
    338   // would consume strike register resources for a long time.  This
    339   // allows the strike server to degrade optimally in cases where the
    340   // insert rate exceeds |max_entries_ / (2 * window_secs_)| entries
    341   // per second.
    342   uint32 upper_bound =
    343       current_time_internal + min(current_time_internal - horizon_,
    344                                   window_secs_);
    345 
    346   return make_pair(lower_bound, upper_bound);
    347 }
    348 
    349 uint32 StrikeRegister::ExternalTimeToInternal(uint32 external_time) const {
    350   return external_time - internal_epoch_;
    351 }
    352 
    353 uint32 StrikeRegister::BestMatch(const uint8 v[24]) const {
    354   if (internal_node_head_ == kNil) {
    355     return kNil;
    356   }
    357 
    358   uint32 next = internal_node_head_ >> 8;
    359   while ((next & kExternalFlag) == 0) {
    360     InternalNode* node = &internal_nodes_[next];
    361     uint8 b = v[node->critbyte()];
    362     unsigned direction =
    363         (1 + static_cast<unsigned>(node->otherbits() | b)) >> 8;
    364     next = node->child(direction);
    365   }
    366 
    367   return next & ~kExternalFlag;
    368 }
    369 
    370 uint32& StrikeRegister::external_node_next_ptr(unsigned i) {
    371   return *reinterpret_cast<uint32*>(&external_nodes_[i * kExternalNodeSize]);
    372 }
    373 
    374 uint8* StrikeRegister::external_node(unsigned i) {
    375   return &external_nodes_[i * kExternalNodeSize];
    376 }
    377 
    378 uint32 StrikeRegister::GetFreeExternalNode() {
    379   uint32 index = external_node_free_head_;
    380   DCHECK(index != kNil);
    381   external_node_free_head_ = external_node_next_ptr(index);
    382   return index;
    383 }
    384 
    385 uint32 StrikeRegister::GetFreeInternalNode() {
    386   uint32 index = internal_node_free_head_;
    387   DCHECK(index != kNil);
    388   internal_node_free_head_ = internal_nodes_[index].next();
    389   return index;
    390 }
    391 
    392 void StrikeRegister::DropOldestNode() {
    393   // DropOldestNode should never be called on an empty tree.
    394   DCHECK(internal_node_head_ != kNil);
    395 
    396   // An internal node in a crit-bit tree always has exactly two children.
    397   // This means that, if we are removing an external node (which is one of
    398   // those children), then we also need to remove an internal node. In order
    399   // to do that we keep pointers to the parent (wherep) and grandparent
    400   // (whereq) when walking down the tree.
    401 
    402   uint32 p = internal_node_head_ >> 8, *wherep = &internal_node_head_,
    403          *whereq = NULL;
    404   while ((p & kExternalFlag) == 0) {
    405     whereq = wherep;
    406     InternalNode* inode = &internal_nodes_[p];
    407     // We always go left, towards the smallest element, exploiting the fact
    408     // that the timestamp is big-endian and at the start of the value.
    409     wherep = &inode->data_[0];
    410     p = (*wherep) >> 8;
    411   }
    412 
    413   const uint32 ext_index = p & ~kExternalFlag;
    414   const uint8* ext_node = external_node(ext_index);
    415   uint32 new_horizon = ExternalTimeToInternal(TimeFromBytes(ext_node)) + 1;
    416   DCHECK_LE(horizon_, new_horizon);
    417   horizon_ = new_horizon;
    418 
    419   if (!whereq) {
    420     // We are removing the last element in a tree.
    421     internal_node_head_ = kNil;
    422     FreeExternalNode(ext_index);
    423     return;
    424   }
    425 
    426   // |wherep| points to the left child pointer in the parent so we can add
    427   // one and dereference to get the right child.
    428   const uint32 other_child = wherep[1];
    429   FreeInternalNode((*whereq) >> 8);
    430   *whereq = (*whereq & 0xff) | (other_child & 0xffffff00);
    431   FreeExternalNode(ext_index);
    432 }
    433 
    434 void StrikeRegister::FreeExternalNode(uint32 index) {
    435   external_node_next_ptr(index) = external_node_free_head_;
    436   external_node_free_head_ = index;
    437 }
    438 
    439 void StrikeRegister::FreeInternalNode(uint32 index) {
    440   internal_nodes_[index].SetNextPtr(internal_node_free_head_);
    441   internal_node_free_head_ = index;
    442 }
    443 
    444 void StrikeRegister::ValidateTree(
    445     uint32 internal_node,
    446     int last_bit,
    447     const vector<pair<unsigned, bool> >& bits,
    448     const set<uint32>& free_internal_nodes,
    449     const set<uint32>& free_external_nodes,
    450     set<uint32>* used_internal_nodes,
    451     set<uint32>* used_external_nodes) {
    452   CHECK_LT(internal_node, max_entries_);
    453   const InternalNode* i = &internal_nodes_[internal_node];
    454   unsigned bit = 0;
    455   switch (i->otherbits()) {
    456     case 0xff & ~(1 << 7):
    457       bit = 0;
    458       break;
    459     case 0xff & ~(1 << 6):
    460       bit = 1;
    461       break;
    462     case 0xff & ~(1 << 5):
    463       bit = 2;
    464       break;
    465     case 0xff & ~(1 << 4):
    466       bit = 3;
    467       break;
    468     case 0xff & ~(1 << 3):
    469       bit = 4;
    470       break;
    471     case 0xff & ~(1 << 2):
    472       bit = 5;
    473       break;
    474     case 0xff & ~(1 << 1):
    475       bit = 6;
    476       break;
    477     case 0xff & ~1:
    478       bit = 7;
    479       break;
    480     default:
    481       CHECK(false);
    482   }
    483 
    484   bit += 8 * i->critbyte();
    485   if (last_bit > -1) {
    486     CHECK_GT(bit, static_cast<unsigned>(last_bit));
    487   }
    488 
    489   CHECK_EQ(free_internal_nodes.count(internal_node), 0u);
    490 
    491   for (unsigned child = 0; child < 2; child++) {
    492     if (i->child(child) & kExternalFlag) {
    493       uint32 ext = i->child(child) & ~kExternalFlag;
    494       CHECK_EQ(free_external_nodes.count(ext), 0u);
    495       CHECK_EQ(used_external_nodes->count(ext), 0u);
    496       used_external_nodes->insert(ext);
    497       const uint8* bytes = external_node(ext);
    498       for (vector<pair<unsigned, bool> >::const_iterator i = bits.begin();
    499            i != bits.end(); i++) {
    500         unsigned byte = i->first / 8;
    501         DCHECK_LE(byte, 0xffu);
    502         unsigned bit = i->first % 8;
    503         static const uint8 kMasks[8] =
    504             {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
    505         CHECK_EQ((bytes[byte] & kMasks[bit]) != 0, i->second);
    506       }
    507     } else {
    508       uint32 inter = i->child(child);
    509       vector<pair<unsigned, bool> > new_bits(bits);
    510       new_bits.push_back(pair<unsigned, bool>(bit, child != 0));
    511       CHECK_EQ(free_internal_nodes.count(inter), 0u);
    512       CHECK_EQ(used_internal_nodes->count(inter), 0u);
    513       used_internal_nodes->insert(inter);
    514       ValidateTree(inter, bit, bits, free_internal_nodes, free_external_nodes,
    515                    used_internal_nodes, used_external_nodes);
    516     }
    517   }
    518 }
    519 
    520 }  // namespace net
    521