Home | History | Annotate | Download | only in CodeGen
      1 //===- TargetRegisterInfo.cpp - Target Register Information Implementation ===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the TargetRegisterInfo interface.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Target/TargetRegisterInfo.h"
     15 #include "llvm/ADT/BitVector.h"
     16 #include "llvm/CodeGen/MachineFunction.h"
     17 #include "llvm/CodeGen/MachineRegisterInfo.h"
     18 #include "llvm/CodeGen/VirtRegMap.h"
     19 #include "llvm/Support/raw_ostream.h"
     20 
     21 using namespace llvm;
     22 
     23 TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
     24                              regclass_iterator RCB, regclass_iterator RCE,
     25                              const char *const *SRINames,
     26                              const unsigned *SRILaneMasks,
     27                              unsigned SRICoveringLanes)
     28   : InfoDesc(ID), SubRegIndexNames(SRINames),
     29     SubRegIndexLaneMasks(SRILaneMasks),
     30     RegClassBegin(RCB), RegClassEnd(RCE),
     31     CoveringLanes(SRICoveringLanes) {
     32 }
     33 
     34 TargetRegisterInfo::~TargetRegisterInfo() {}
     35 
     36 void PrintReg::print(raw_ostream &OS) const {
     37   if (!Reg)
     38     OS << "%noreg";
     39   else if (TargetRegisterInfo::isStackSlot(Reg))
     40     OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg);
     41   else if (TargetRegisterInfo::isVirtualRegister(Reg))
     42     OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg);
     43   else if (TRI && Reg < TRI->getNumRegs())
     44     OS << '%' << TRI->getName(Reg);
     45   else
     46     OS << "%physreg" << Reg;
     47   if (SubIdx) {
     48     if (TRI)
     49       OS << ':' << TRI->getSubRegIndexName(SubIdx);
     50     else
     51       OS << ":sub(" << SubIdx << ')';
     52   }
     53 }
     54 
     55 void PrintRegUnit::print(raw_ostream &OS) const {
     56   // Generic printout when TRI is missing.
     57   if (!TRI) {
     58     OS << "Unit~" << Unit;
     59     return;
     60   }
     61 
     62   // Check for invalid register units.
     63   if (Unit >= TRI->getNumRegUnits()) {
     64     OS << "BadUnit~" << Unit;
     65     return;
     66   }
     67 
     68   // Normal units have at least one root.
     69   MCRegUnitRootIterator Roots(Unit, TRI);
     70   assert(Roots.isValid() && "Unit has no roots.");
     71   OS << TRI->getName(*Roots);
     72   for (++Roots; Roots.isValid(); ++Roots)
     73     OS << '~' << TRI->getName(*Roots);
     74 }
     75 
     76 void PrintVRegOrUnit::print(raw_ostream &OS) const {
     77   if (TRI && TRI->isVirtualRegister(Unit)) {
     78     OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Unit);
     79     return;
     80   }
     81   PrintRegUnit::print(OS);
     82 }
     83 
     84 /// getAllocatableClass - Return the maximal subclass of the given register
     85 /// class that is alloctable, or NULL.
     86 const TargetRegisterClass *
     87 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
     88   if (!RC || RC->isAllocatable())
     89     return RC;
     90 
     91   const unsigned *SubClass = RC->getSubClassMask();
     92   for (unsigned Base = 0, BaseE = getNumRegClasses();
     93        Base < BaseE; Base += 32) {
     94     unsigned Idx = Base;
     95     for (unsigned Mask = *SubClass++; Mask; Mask >>= 1) {
     96       unsigned Offset = countTrailingZeros(Mask);
     97       const TargetRegisterClass *SubRC = getRegClass(Idx + Offset);
     98       if (SubRC->isAllocatable())
     99         return SubRC;
    100       Mask >>= Offset;
    101       Idx += Offset + 1;
    102     }
    103   }
    104   return nullptr;
    105 }
    106 
    107 /// getMinimalPhysRegClass - Returns the Register Class of a physical
    108 /// register of the given type, picking the most sub register class of
    109 /// the right type that contains this physreg.
    110 const TargetRegisterClass *
    111 TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, EVT VT) const {
    112   assert(isPhysicalRegister(reg) && "reg must be a physical register");
    113 
    114   // Pick the most sub register class of the right type that contains
    115   // this physreg.
    116   const TargetRegisterClass* BestRC = nullptr;
    117   for (regclass_iterator I = regclass_begin(), E = regclass_end(); I != E; ++I){
    118     const TargetRegisterClass* RC = *I;
    119     if ((VT == MVT::Other || RC->hasType(VT)) && RC->contains(reg) &&
    120         (!BestRC || BestRC->hasSubClass(RC)))
    121       BestRC = RC;
    122   }
    123 
    124   assert(BestRC && "Couldn't find the register class");
    125   return BestRC;
    126 }
    127 
    128 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
    129 /// registers for the specific register class.
    130 static void getAllocatableSetForRC(const MachineFunction &MF,
    131                                    const TargetRegisterClass *RC, BitVector &R){
    132   assert(RC->isAllocatable() && "invalid for nonallocatable sets");
    133   ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF);
    134   for (unsigned i = 0; i != Order.size(); ++i)
    135     R.set(Order[i]);
    136 }
    137 
    138 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
    139                                           const TargetRegisterClass *RC) const {
    140   BitVector Allocatable(getNumRegs());
    141   if (RC) {
    142     // A register class with no allocatable subclass returns an empty set.
    143     const TargetRegisterClass *SubClass = getAllocatableClass(RC);
    144     if (SubClass)
    145       getAllocatableSetForRC(MF, SubClass, Allocatable);
    146   } else {
    147     for (TargetRegisterInfo::regclass_iterator I = regclass_begin(),
    148          E = regclass_end(); I != E; ++I)
    149       if ((*I)->isAllocatable())
    150         getAllocatableSetForRC(MF, *I, Allocatable);
    151   }
    152 
    153   // Mask out the reserved registers
    154   BitVector Reserved = getReservedRegs(MF);
    155   Allocatable &= Reserved.flip();
    156 
    157   return Allocatable;
    158 }
    159 
    160 static inline
    161 const TargetRegisterClass *firstCommonClass(const uint32_t *A,
    162                                             const uint32_t *B,
    163                                             const TargetRegisterInfo *TRI) {
    164   for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
    165     if (unsigned Common = *A++ & *B++)
    166       return TRI->getRegClass(I + countTrailingZeros(Common));
    167   return nullptr;
    168 }
    169 
    170 const TargetRegisterClass *
    171 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
    172                                       const TargetRegisterClass *B) const {
    173   // First take care of the trivial cases.
    174   if (A == B)
    175     return A;
    176   if (!A || !B)
    177     return nullptr;
    178 
    179   // Register classes are ordered topologically, so the largest common
    180   // sub-class it the common sub-class with the smallest ID.
    181   return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this);
    182 }
    183 
    184 const TargetRegisterClass *
    185 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
    186                                              const TargetRegisterClass *B,
    187                                              unsigned Idx) const {
    188   assert(A && B && "Missing register class");
    189   assert(Idx && "Bad sub-register index");
    190 
    191   // Find Idx in the list of super-register indices.
    192   for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
    193     if (RCI.getSubReg() == Idx)
    194       // The bit mask contains all register classes that are projected into B
    195       // by Idx. Find a class that is also a sub-class of A.
    196       return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
    197   return nullptr;
    198 }
    199 
    200 const TargetRegisterClass *TargetRegisterInfo::
    201 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
    202                        const TargetRegisterClass *RCB, unsigned SubB,
    203                        unsigned &PreA, unsigned &PreB) const {
    204   assert(RCA && SubA && RCB && SubB && "Invalid arguments");
    205 
    206   // Search all pairs of sub-register indices that project into RCA and RCB
    207   // respectively. This is quadratic, but usually the sets are very small. On
    208   // most targets like X86, there will only be a single sub-register index
    209   // (e.g., sub_16bit projecting into GR16).
    210   //
    211   // The worst case is a register class like DPR on ARM.
    212   // We have indices dsub_0..dsub_7 projecting into that class.
    213   //
    214   // It is very common that one register class is a sub-register of the other.
    215   // Arrange for RCA to be the larger register so the answer will be found in
    216   // the first iteration. This makes the search linear for the most common
    217   // case.
    218   const TargetRegisterClass *BestRC = nullptr;
    219   unsigned *BestPreA = &PreA;
    220   unsigned *BestPreB = &PreB;
    221   if (RCA->getSize() < RCB->getSize()) {
    222     std::swap(RCA, RCB);
    223     std::swap(SubA, SubB);
    224     std::swap(BestPreA, BestPreB);
    225   }
    226 
    227   // Also terminate the search one we have found a register class as small as
    228   // RCA.
    229   unsigned MinSize = RCA->getSize();
    230 
    231   for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
    232     unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
    233     for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
    234       // Check if a common super-register class exists for this index pair.
    235       const TargetRegisterClass *RC =
    236         firstCommonClass(IA.getMask(), IB.getMask(), this);
    237       if (!RC || RC->getSize() < MinSize)
    238         continue;
    239 
    240       // The indexes must compose identically: PreA+SubA == PreB+SubB.
    241       unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
    242       if (FinalA != FinalB)
    243         continue;
    244 
    245       // Is RC a better candidate than BestRC?
    246       if (BestRC && RC->getSize() >= BestRC->getSize())
    247         continue;
    248 
    249       // Yes, RC is the smallest super-register seen so far.
    250       BestRC = RC;
    251       *BestPreA = IA.getSubReg();
    252       *BestPreB = IB.getSubReg();
    253 
    254       // Bail early if we reached MinSize. We won't find a better candidate.
    255       if (BestRC->getSize() == MinSize)
    256         return BestRC;
    257     }
    258   }
    259   return BestRC;
    260 }
    261 
    262 // Compute target-independent register allocator hints to help eliminate copies.
    263 void
    264 TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
    265                                           ArrayRef<MCPhysReg> Order,
    266                                           SmallVectorImpl<MCPhysReg> &Hints,
    267                                           const MachineFunction &MF,
    268                                           const VirtRegMap *VRM) const {
    269   const MachineRegisterInfo &MRI = MF.getRegInfo();
    270   std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg);
    271 
    272   // Hints with HintType != 0 were set by target-dependent code.
    273   // Such targets must provide their own implementation of
    274   // TRI::getRegAllocationHints to interpret those hint types.
    275   assert(Hint.first == 0 && "Target must implement TRI::getRegAllocationHints");
    276 
    277   // Target-independent hints are either a physical or a virtual register.
    278   unsigned Phys = Hint.second;
    279   if (VRM && isVirtualRegister(Phys))
    280     Phys = VRM->getPhys(Phys);
    281 
    282   // Check that Phys is a valid hint in VirtReg's register class.
    283   if (!isPhysicalRegister(Phys))
    284     return;
    285   if (MRI.isReserved(Phys))
    286     return;
    287   // Check that Phys is in the allocation order. We shouldn't heed hints
    288   // from VirtReg's register class if they aren't in the allocation order. The
    289   // target probably has a reason for removing the register.
    290   if (std::find(Order.begin(), Order.end(), Phys) == Order.end())
    291     return;
    292 
    293   // All clear, tell the register allocator to prefer this register.
    294   Hints.push_back(Phys);
    295 }
    296